Introduction to Empirical Processes and
Semiparametric Inference

Yu Gu

June 2, 2021

=] = = E na
Yu Gu Introduction and Overview



Outline

0 Introduction: empirical processes
@ Introduction: semiparametric models

© Examples of theoretical justification
@ Cox model with right-censored data
@ Transformation model with interval-censored data
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What is an empirical process?

@ A stochastic process is a collection of random variables

{X(t),t € T} on the same probability space, indexed by an
arbitrary index set T.

@ In general, an empirical process is a stochastic process
based on a random sample, usually of ni.i.d. random
variables Xj, ..., Xy.
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Example: empirical distribution function

Let Xi,..., X, be i.i.d. real-valued random variables with
cumulative distribution function (c.d.f.) F. Then the empirical
distribution function (e.d.f.) is defined as

1 n
Fo(t) = F,21()0 <t), teR.
i=1

Fn(t) is one of the simplest examples of an empirical process.
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Example: Kaplan-Meier estimator

Let (X1,d1),...,(Xn, 0n) be a sample of right-censored failure
time observations. Then the Kaplan-Meier estimator of the
survival function is given by

A S 61(X = TE)}
8(t) = 1- ,
X ,CIT;IS,{ S A= TD)

where T? < T2 < --- < T2 are unique observed failure times.
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General features of an empirical process

@ The i.i.d. sample X, ..., X, is drawn from a probability
measure P on an arbitrary sample space X.

e Define the empirical measure to be P, = 1 37 | 5x., where
dx denotes the Dirac measure at x.

@ For a measurable function f : X — R, define

1 n
Ppf := /deP’,,: nz;f()(,-).
1=

@ For any class F of such real-valued functions on X,
{P,f : f € F} is the empirical process indexed by F.
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Start with the classical e.d.f. I,

@ Setting X = R, F, can be re-expressed as the empirical
process {P,f : f € F}, where F = {1(x < t),t € R}.

@ By the law of large numbers, F,(t) 25 F(t) for each t € R.
@ By the central limit theorem, for each f € R,

Ga(t) == VA (Fat) = F(1)) % N(0, F(1)(1 = F(1))).
@ From the functional perspective, uniform results over f € R

would be more appealing.
» Need theory of empirical processes
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Strengthened results on F, and G,

@ Glivenko (1933) and Cantelli (1933) demonstrated that the
previous result could be strengthened to

a.s.

[Fn = Flloc = sup [Fn(t) — F(t)] = 0.
teR

@ Donsker (1952) showed that
Gn S B(F) in(>(R),
where B is the standard Brownian bridge process on [0, 1];

for any index set T, ¢°°(T) denotes the space of all
bounded functions f: T — R.
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Extend to general empirical processes

@ Properties of the approximation of Pf by P,f, uniformly in F
» the random quantity ||P, — P|| 7 := supsc £ [Pnf — Pf|
» the empirical process G, := v/n(P, — P)

@ Two special classes
» Glivenko-Cantelli: 7 is P-Glivenko-Cantelli if

[P, — P := sup [P,f — Pf| 23 0.
feF

» Donsker: F is P-Donsker if
Gn 3G int>(F),

where G is a mean zero Gaussian process indexed by F.
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Remarks

@ Glivenko-Cantelli: uniform almost surely convergence
@ Donsker: uniform central limit theorem
@ Donsker = Glivenko-Cantelli (GC)

@ GC or Donsker properties depend crucially on the
complexity (or entropy) of F.
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Complexity of (F,] - ||)

@ Covering number
» denoted by N(e, F, | - 1)

» minimum number of balls B(f;¢) :={g: ||g — f|| < ¢}
needed to cover F

> entropy: log N(e, F, || - |))
@ Bracketing number
» denoted by Nj(e, 7, | - )

» minimum number of brackets [¢, u]' with || — u|| < e
needed to cover F

» entropy with bracketing: log Njj(e, 7, | - [|)

1 Given two functions £(-) and u(-), the bracket [£, u] is the set of all functions f € F with £(x) < f(x) < u(x),

forallx € X.
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GC theorems

Theorem (GC by bracketing)

Let F be a class of measurable functions such that Ny(e, F, || - ||) < oo
for every e > 0. Then F is a GC class.

y

Theorem (GC by entropy)

Let F be a class of measurable functions with envelope?® F such that

PF < oo. Let Fu be the class of functions f1{F < M} where f ranges
over F. Then ||P, — P||z — 0 both almost surely and in mean, if and

only if

,1—7 log N(e, Fi, L1 (Pr)) 5 0,

forevery e > 0 and M > 0.

@An envelop function is any function that can bound every function in F everywhere. That is, for each f € F,
|[f(x)| < F(x) foranyx € X.
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Donsker theorems

Define the bracketing entropy integral as

Jy (6. F. L (P)) : / \/log N (. F. L (P))ad.

Theorem (Donsker by bracketing entropy integral)

Suppose that F is a class of measurable functions with
square-integrable (measurable) envelope F and such that
Jj (00, F, La(P)) < oo. Then F is P-Donsker.
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Donsker theorems (cont.)

Define the uniform entropy integral as

4
J6.F.Lo) = [ supflog N (el Fla. . L(@) e

Theorem (Donsker by uniform entropy integral)

Let F be a pointwise-measurable class of measurable functions
with (measurable) envelope F such that PF? < co. If
J(o0, F, Lp) < oo then F is P-Donsker.
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Some useful results

Suppose F is Donsker.
@ Any subset of F is Donsker.

@ F is Donsker, where F denotes the set of all f for which
there exists a sequence f, in F with f, — f both pointwise
and in Ly(P).

© The symmetric convex hull of F is Donsker, where
SCONV.F = {Z,)\,-f,- cheF, YAl < 1}.

© Any Lipschitz-continuous transformation of F is Donsker.
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M-estimators

@ Definition:
» Metric space: (©,d)
» my: X — R, foreachf € ©

v

“Empirical gain”: Mp(0) = Prmy
M-estimator: 6, = arg maxgco Mn(6)

v

@ Examples:
» Maximum (penalized) likelihood estimator

» Least squares estimator

» Nonparametric maximum likelihood estimator, e.g.,
Grenander estimator, where © is the set of all
non-increasing densities on [0, o) and my(x) = log 6(x)
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Application: consistency of M-estimators

@ Two assumptions:
Q@ F={m(): 0c0O}is P-GC
@ 0 is a well-separated maximizer of M(0) = Pmy, i.e., for every
6>0,M(6) > SUPgce:d(0,00)>5 M(0).

@ For fixed 6 > 0, let () = M (6o) — supgce.q(o,00)>5 M(0)

{d(0n.00) > 5} = M@) < sup  M(6)
6€0:d(6,00)>6

& M(6,) — M (6o) < —()
= M(0,) — M (6) + (Mn (60) — Mn(én)) < —(6)
= 2:22 [Mn(0) — M(0)| > (5)

=P (d(ém 0o) > 5) <P <328 \Mn(8) — M(6)] > w(a)/z) 0.
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General statistical models

@ Collection of probability measures {P € P} that specify the
distribution of a random observation X.

@ Parametric models: P = {Py: 6 € RY}
@ Nonparametric models: P = {P : P is any distribution}

@ Semiparametric models: P = {Py,, : 0 € R9,n € M}

» M is an infinite-dimensional space
» 0: parameter of interest
» 7). nuisance parameter
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Why semiparametric models?

@ Only interested in some specific variable relationships:
treatment effect, risk effect, etc.

@ Not necessary to specify delicately those parameters that
contribute to the probability distribution but are less
interesting.

@ Models are flexible and robust and parameters of interest
are easy to be interpreted.
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Primary goals of semiparametric inference

@ Select an appropriate model for inference on X.
@ Estimate (¢,7n) (sometimes 0 alone is the main focus).

@ Conduct inference (e.g., confidence intervals or bands) for
the parameters of interest.

» Usually for 6 only
» Sometimes the convergence rate for 7 is not Op(n~1/2)
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Asymptotic properties of an estimator

@ Consistency: 0, > 6,
@ Asymptotic normality: v/n(d, — 6o) L’

@ Semiparametric efficiency
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On semiparametric efficiency

@ Efficient: achieve the smallest asymptotic variance among all
regular estimators?.

@ Information: inverse of the asymptotic variance.

@ The information for estimation under P is worse than the
information under any parametric submodel Py.

@ Semiparametric efficient: attain minimum information over all
efficient estimators for all Py.

@ P with minimum information is called a least favorable
submodel.

@ Usually only need to consider one-dimensional parametric
submodels {P; : t € [0,¢)}.

2A regular sequence of estimators is one whose asymptotic distribution remains the same in shrinking
neighborhoods of the true parameter value.
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Semiparametric regression models in survival analysis

@ Right-censored survival data
» Proportional hazards model: \(t | X) = A(t) exp{B87" X}
» Proportional odds model: logit S(t | X) = h(t) + 87X
Accelerated failure time model: log T = 37X + ¢
Linear transformation model: log A(T) = 87X + ¢
Additive risk model: \(t | X) = A\(t) + BT X

v

v

v

@ Interval-censored survival data
Proportional hazards model
Proportional odds model
AFT model

Transformation models

v

v

v

v
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Mathematical tools

@ Martingale theory for counting process
@ Empirical process theory

@ Semiparametric efficiency theory
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Introduction

@ Data: (Y;=TinC;, Ri=1(T; <Cy), X)), i=1,....n

@ Assumptions:
@ 7 and C are independent given X

© At least a proportion of subjects survive up to the study end
time 7,i.e., Pr(T>7)>0>0

@ Model: Cox PH model
hrix(t | x) = A(t)e*"”

@ Parameters of interest: 5 and A(t) = fot A(8)ds
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Introduction (cont.)

@ Observed likelihhod function:

n 1R /
I1 { (2 () 7] e 0 gy (¥, | X0y e e gy (Xf>}

=1
@ Parameter space:
{(B,N) : B €RP, A(t) is an increasing function with A(0) = 0}

@ Nonparametric maximum likelihood approach:

n

(BN = {R,- [X/ B+ log AN (Y;)] — A(Y)) eX/ﬂ}

i=1
@ Facts:
@ A, is a step function with non-negative jumps only at ;.
@ Under Assumption 2, An(7) < oo.
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NPMLEs

Differentiating ¢, with respect to {5, AA(Y7),..., AA(Yy)} and
solving the resulting equations, we obtain

2v>y, Xjexj/ﬁn]

X/ Bn
2 vy, €7

)(I._

n
2R
i=1

and

An(t) =Y B

X! Bn
i<t ZYJ-EY,- e’

Here, j, is exactly the maximizer of thg partial likelihood
function proposed in Cox (1972), and An(t) is exactly the
Breslow estimator.
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Consistency

Theorem (Consistency)

Assume that X is bounded and has a continuous density, \q is
continuous and positive on [0, 7]. Then

18n = Boll + sup [An(t) = Ao(1)| 2 .
te[0,7]

Lemma (0 € R)

Suppose M,(0) and My(8) are strictly concave function and for any
compact set K C ©,

sup |Mn(8) — Mo(6)] 2 0.
0eK

Moreover, 0, and 6y are unique maximizer of M,(6) and Moy (6)
respectively. Then 8, > 6.
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Notations

Son(t,B) =Pal(Y > t)eX'?,
Sin(t, B) = P1(Y > t)XeX'P,
Sz,n(t7 5) = IP)n1(Y > t)XX/eXlB,
Ma(5) = PoRlog =S —
SO n(Y 5)
Ao(t) = B =D,
So,n(Ya /Bn)
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> t)eX's,
t)xeX'?,
> )XX/ X’B
eX's
o(Y,B)’

LRIY <1
So(Y,Bo)

Mo(8) = PRlog <

No(t) =
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Proof of consistency of 3,

@ Concavity of M,(3) and My(3).

Sen(Y,B)Son(Y,B8) — Sia (Y. )%
Son(Y,B)
S2(Y,B)Se (Y, 8) = Si(Y,B)*
So(Y,B)

VisMn(B) = —Pa[R I,

VEsMo(8) = ~P[R I

{1(Y > 1% 1Y > XX P A(Y > XX e¥P . BeK, te [0,7']}
is a GC class, for any compact set K C R.
= Sq.n(t, B) — Sq(t, B) uniformly in K x [0, 7].
= V3sMn(B) — V35 Mo(8) < 0 uniformly.
Q supsex [Mn(B) — Mo(B)] 5 0./
@ 5, is the unique maximizer of Ma(8). ./ (Ma(3) is essentially the PLL)
@ 5o is the unique maximizer of My(8). It suffices to show V3 Mo(50) = 0.
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Proof of consistency of A,

An(t) = No(t)
= Pa[1(Y < )R/Son(Y, Bn)] = PI(Y < )R/So(Y, Bo)]
= (Pn - P)“(Y < ZL)"q/'so,n( Y, Bn)]
+PA(Y < )R/Son(Y,Bn) — 1Y < )R/So(Y, Bn)]
+P[1(Y < )R/So(Y, Bn) —1(Y < )R/So(Y, Bo)]
= (i) + (i) + (iii)
— 0 uniformly over t € [0, 7].

(i): GC theorem.
(ii): So.n(t, B) — So(t, B) uniformly in K x [0,7] & Bn 5 fo.
(iii): So(t, B) is differentiable with respect to S.
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Asymptotic normality

Theorem (Asymptotic normality)
Under regularity conditions,

\/ﬁ(ﬂ/\n ,30, /\n > — G1 X GQ in RP x EOO[O,T],

where Gy is a normal distribution with mean zero and variance
Y 3, and G is a Brownian bridge with covariance Y A(t, s).
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Proof of asymptotic normality of 3,

Since VM, (Br) = VsMo(0) = 0, we can use telescopic expansion:

0 =P,[R(X — Srnl¥, n)

_ _ S1,n(Y; Bn)
so,n(Y,Bn))] FIR(X so,n(v,,én))]
Si.n(Y, Bn) Si(Y, 5n)
R(X - ——— )] - P[R(X - ————~
+ P[R( Son(Y. 5n))] P[R( So(Y. ) )]
_Si(Y.Bn)y _ Si(Y, o)
+P[R(X So(Y. ) )1 = P[R(X S(Y, ﬂo))]
(Bn— P)[A(X - gg > g; N ()
_ X/Bn
_]}D[R(Pn P)[;Ze(yg\)/ZY)“y:Y] ...... (ii)
n ]P’[ RS1(Ya Bn)(Pn - ]P))[-'(Y 2 y)eX,En”,V:Y] ...... (III)
Son(Y, Bn)So(Y, Bn)
* Y *\®2
- pp BSOS STy, — o)
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Proof of asymptotic normality of 3, (cont.)
(i)+(ii)+(iii) is an empirical process

(Bn— P)[R(X — M) xeXEnp 1Y 2R | s, SV, Ba)1(Y

Y)
So,n(Y, Bn) So,n(Y, Bn) So,n(Y, /Bn)so( Y, Bn b

Y)R
)
(1

By applying the functional central limit theorem?,

SUY.B0))  yoxaog 1Y 2R | gz SV Y = VA

R A SolY. o) SR )
+0p(1/V/n).

Thus,

Vn(Bn — Bo)
B S2(Y,B0)So(Y,B0) — S1(Y,50)®
- {MR So(Y, o) }

_S1(Y,,30) v X' BoT 1(Y > ) X/B ~S1(Y Bo)1(Y > Y)R
GolAX = Gy — XX B =2 oy TR ]+ op(1).

3 Theorem 2 of Section 4.3.4 in Zeng’s lecture notes
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Proof of asymptotic normality of A,,

From the consistency proof, by applying the functional central
limit theorem, we have

Vn(An(t) = No(1))

_ Gal1(Y < DR/So(Y. o)) — X SOV = V)R

SO( ?7 60)2

1l

1(Y < )RS (Y, bo)
So(Y,50)?

- IED[ ]\/F'(Bn - 50)

+ 0p(1).
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© Examples of theoretical justification

@ Transformation model with interval-censored data
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Introduction

@ Interval censoring: event occurs within an interval
e Data: (L;,R;, Xi), i=1,....n
@ Transformation models:

At X) = G { / t eﬁTxd/\(s)}

0

v

G(-): specific transformation function, strictly increasing
A(+): unknown increasing function

» G(x) = x = proportional hazards

G(x) = log(1 + x) = proportional odds

v

v
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Introduction (cont.)

@ Observed likelihood function (under PH model):

Ln(B,N) = H |:exp {—/OLI e/iTXi(S)dA(S)} — exp {— /OHj eBTXi(S)d/\(S)}]

i=1

@ Nonparametric maximum likelihood approach:

expd — Z PR I(DN Gy Z Ape? Xilt)
<L t<R;
n 1(Rj<o0)
Hexp — Z )\keBTka 1—exp | — Z )\keﬂTX"k
i=1 t<Lj <R

ty <--- < tpn:unique values of L; > 0 and R <
Ak jump size of A at f

—-

()

v

v
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Introduction (cont.)

@ Direct maximization of (2) is difficult.
@ Introduce latent independent Poisson random variables:

Wy ~ Poisson(\ce® %)

fori=1,....,nandk=1,....m
@ (2) is equivalent to observing

> Wx=0 and 1(Ri<oco) > Wy>0.

te<L; Li<t<R;

@ EM algorithm treating Wj, as missing data.
= NPMLEs (35, Ap)
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Asymptotic properties

Theorem (Consistency)
Under regularity conditions,

“Bn — Boll + sup |/A\n(t) - /A\O(t)| 0.
te[0,7]

Theorem (Asymptotic normality)
Under regularity conditions,

V(Bn — o) 2 N(O,5),

where ¥ attains the semiparametric efficiency bound.
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Proof of consistency

@ Define m(8,A) = log[{L(83,A) + L(B0, M)} /2]. Show that
M= {m(ﬂ,/\) . BEB, A€ BV[O,T]}
is a Donsker class.
@ Show limsup, An(7) < oo, s0 that m(53n, An) € M.

© By Helly’s selection lemma, for any subsequence of (ﬂn, An), there
exists a further subsequence such that 3, — 8* and A, — A* pointwise
on [0, 7].

@ Construct a step function A that converges uniformly to A¢. Use the fact
that P,m(fn, An) > Pnm(fo, A, together with the Donsker property of
M to show Pm(B*,A*) > Pm(Bo, No). Thus, by the properties of the
Kullback-Leibler information, L(8*,A") = L(5o, No).

© Verify identifiability of the model. Then 8* = Sy and A*(t) = Ao(¢) for
telo,r].

@ Pointwise convergence of A, to Ao can be strengthened to uniform
convergence since Ag is continuous.
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Convergence rate

Lemma (Convergence rate)
Under regularity conditions,

1/2

K Uk - N Uy . 2
E Z |:/ e’ X(s)d/\n(s) _/ eBOX(S)d/\o(S)] =0, (n—1/3) 7
k=1 0 0
where K is a random number of monitoring times, and (Uy, . .., Uk) is a

random sequence of monitoring times.

To prove the lemma, calculate the bracketing number for M. Ideally,

o(8) = /05 \/1 + log Ny (e, M, Lo(P)) de < O(6").

Then check each condition in Theorem 3.4.1 of van gerAVaart & Wellner and
obtain the order of the Hellinger distance between (55, As) and (5o, Ao).
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Proof of asymptotic normality of 3,

@ To obtain the score operator for A, consider a one-dimensional
submodel A , defined by dA., = (1 + €h) dA.

@ Consider the least favorable direction h* such that the corresponding
parametric submodel achieves the semiparametric efficient information.

© Apply Taylor expansion at (5o, Ao). By the previous lemma on
convergence rate, we obtain

—1 ~ ~ ~ ~
V(Bn—B0) = (ET{ts — tn (")}**1) " Gn{ls(Bn, An)—La(Bn, An) (M)} -0p(1).
@ Show the existence of h*. Need some functional theories.

© Show that £5(8n, An) — £a(Bn, Ar) (h*) belongs to a Donsker class and
converges in Lo(P)-norm to £z — £ (h*). This follows from the
continuous differentiability of h*(t) over [0, 7].

@ Show the nonsingularity of the matrix E[{¢s — £ (h*)}®?]. Prove by
contradiction.

@ Finally, we have v/n(f, — o) = Op(1) and
V(B - o) = (El{ts — ta (1)} ) Gn {£s —ta (h*)} + 0p(1).
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Extension: multivariate interval-censored data

@ Multiple types of events / clustering of study subjects
@ Need to account for potential dependence

@ Semiparametric transformation models with random effects
(i—cluster, j—subject, k—event):

t
Nijk(t) = Gk [/0 exp { BT Xij(S) + b} Zji(s) } d\(S)

@ Latent Poisson random variables + EM algorithm (treat
random effects as missing data)

@ Be careful with the random effects in the proofs.
Everything else is similar to the univariate setting!
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