Introduction to Empirical Processes and Semiparametric Inference

Yu Gu

June 2, 2021

Yu Gu

- B

Outline

2 Introduction: semiparametric models

Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

Outline

Introduction: empirical processes

Introduction: semiparametric models

3 Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

What is an empirical process?

- A stochastic process is a collection of random variables {X(t), t ∈ T} on the same probability space, indexed by an arbitrary index set T.
- In general, an *empirical process* is a stochastic process based on a random sample, usually of *n* i.i.d. random variables X₁,..., X_n.

Example: empirical distribution function

Let X_1, \ldots, X_n be i.i.d. real-valued random variables with cumulative distribution function (c.d.f.) *F*. Then the *empirical distribution function* (e.d.f.) is defined as

$$\mathbb{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \leq t), \quad t \in \mathbb{R}.$$

 $\mathbb{F}_n(t)$ is one of the simplest examples of an empirical process.

Example: Kaplan-Meier estimator

Let $(X_1, \delta_1), \ldots, (X_n, \delta_n)$ be a sample of right-censored failure time observations. Then the *Kaplan-Meier estimator* of the survival function is given by

$$\widehat{S}(t) = \prod_{k: T_k^0 \leq t} \left\{ 1 - \frac{\sum_{i=1}^n \delta_i \mathbf{1}(X_i = T_k^0)}{\sum_{i=1}^n \mathbf{1}(X_i \geq T_k^0)} \right\},\,$$

where $T_1^0 < T_2^0 < \cdots < T_K^0$ are unique observed failure times.

A (10) A (10) A (10)

General features of an empirical process

- The i.i.d. sample X_1, \ldots, X_n is drawn from a probability measure *P* on an arbitrary sample space \mathcal{X} .
- Define the *empirical measure* to be $\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, where δ_x denotes the Dirac measure at x.
- For a measurable function $f : \mathcal{X} \mapsto \mathbb{R}$, define

$$\mathbb{P}_n f := \int f d\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

 For any class *F* of such real-valued functions on *X*, {ℙ_n*f* : *f* ∈ *F*} is the empirical process indexed by *F*.

Start with the classical e.d.f. \mathbb{F}_n

- Setting $\mathcal{X} = \mathbb{R}$, \mathbb{F}_n can be re-expressed as the empirical process $\{\mathbb{P}_n f : f \in \mathcal{F}\}$, where $\mathcal{F} = \{\mathbf{1}(x \le t), t \in \mathbb{R}\}$.
- By the law of large numbers, $\mathbb{F}_n(t) \stackrel{a.s.}{\rightarrow} F(t)$ for each $t \in \mathbb{R}$.
- By the central limit theorem, for each $t \in \mathbb{R}$,

$$\mathbb{G}_n(t) := \sqrt{n} \left(\mathbb{F}_n(t) - F(t) \right) \stackrel{d}{\to} N \Big(0, F(t)(1 - F(t)) \Big).$$

- From the functional perspective, uniform results over t ∈ ℝ would be more appealing.
 - Need theory of empirical processes

Strengthened results on \mathbb{F}_n and \mathbb{G}_n

 Glivenko (1933) and Cantelli (1933) demonstrated that the previous result could be strengthened to

$$\|\mathbb{F}_n - F\|_{\infty} = \sup_{t\in\mathbb{R}} |\mathbb{F}_n(t) - F(t)| \stackrel{a.s.}{\to} 0.$$

Donsker (1952) showed that

$$\mathbb{G}_n \stackrel{d}{\to} \mathbb{B}(F) \quad \text{in } \ell^{\infty}(\mathbb{R}),$$

where \mathbb{B} is the *standard Brownian bridge process* on [0, 1]; for any index set T, $\ell^{\infty}(T)$ denotes the space of all bounded functions $f : T \mapsto \mathbb{R}$.

Extend to general empirical processes

- Properties of the approximation of Pf by $\mathbb{P}_n f$, uniformly in \mathcal{F}
 - the random quantity $\|\mathbb{P}_n P\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathbb{P}_n f Pf|$
 - the empirical process $\mathbb{G}_n := \sqrt{n}(\mathbb{P}_n P)$
- Two special classes
 - Glivenko-Cantelli: F is P-Glivenko-Cantelli if

$$\|\mathbb{P}_n - P\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - Pf| \stackrel{a.s.}{\to} 0.$$

▶ Donsker: *F* is *P*-Donsker if

$$\mathbb{G}_n \stackrel{d}{\to} \mathbb{G} \quad \text{in } \ell^{\infty}(\mathcal{F}),$$

where $\mathbb G$ is a mean zero Gaussian process indexed by $\mathcal F.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remarks

- Glivenko-Cantelli: uniform almost surely convergence
- Donsker: uniform central limit theorem
- Donsker ⇒ Glivenko-Cantelli (GC)
- GC or Donsker properties depend crucially on the complexity (or entropy) of *F*.

Complexity of $(\mathcal{F}, \|\cdot\|)$

- Covering number
 - denoted by $N(\epsilon, \mathcal{F}, \|\cdot\|)$
 - ► minimum number of balls B(f; e) := {g : ||g f|| < e} needed to cover F
 - entropy: $\log N(\epsilon, \mathcal{F}, \|\cdot\|)$
- Bracketing number
 - denoted by $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$
 - ► minimum number of brackets [ℓ, u]¹ with ||ℓ − u|| < ε needed to cover F
 - entropy with bracketing: $\log N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$

¹ Given two functions $\ell(\cdot)$ and $u(\cdot)$, the bracket $[\ell, u]$ is the set of all functions $f \in \mathcal{F}$ with $\ell(x) \le f(x) \le u(x)$, for all $x \in \mathcal{X}$.

GC theorems

Theorem (GC by bracketing)

Let \mathcal{F} be a class of measurable functions such that $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|) < \infty$ for every $\epsilon > 0$. Then \mathcal{F} is a GC class.

Theorem (GC by entropy)

Let \mathcal{F} be a class of measurable functions with envelope^a F such that $PF < \infty$. Let \mathcal{F}_M be the class of functions $f\mathbf{1}\{F \leq M\}$ where f ranges over \mathcal{F} . Then $\|\mathbb{P}_n - P\|_{\mathcal{F}} \to 0$ both almost surely and in mean, if and only if

$$\frac{1}{n}\log N(\epsilon,\mathcal{F}_M,L_1(\mathbb{P}_n))\stackrel{p}{\to} 0,$$

for every $\epsilon > 0$ and M > 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

^aAn envelop function is any function that can bound every function in \mathcal{F} everywhere. That is, for each $f \in \mathcal{F}$, $|f(x)| \leq F(x)$ for any $x \in \mathcal{X}$.

Donsker theorems

Define the bracketing entropy integral as

$$J_{[]}(\delta,\mathcal{F},L_r(P)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{F},L_r(P))} d\epsilon.$$

Theorem (Donsker by bracketing entropy integral)

Suppose that \mathcal{F} is a class of measurable functions with square-integrable (measurable) envelope F and such that $J_{\Pi}(\infty, \mathcal{F}, L_2(P)) < \infty$. Then \mathcal{F} is P-Donsker.

Donsker theorems (cont.)

Define the uniform entropy integral as

$$J(\delta, \mathcal{F}, L_r) = \int_0^\delta \sup_Q \sqrt{\log N\left(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)\right)} d\epsilon.$$

Theorem (Donsker by uniform entropy integral)

Let \mathcal{F} be a pointwise-measurable class of measurable functions with (measurable) envelope F such that $PF^2 < \infty$. If $J(\infty, \mathcal{F}, L_2) < \infty$ then \mathcal{F} is P-Donsker.

Some useful results

Suppose \mathcal{F} is Donsker.

- Any subset of *F* is Donsker.
- ② $\overline{\mathcal{F}}$ is Donsker, where $\overline{\mathcal{F}}$ denotes the set of all *f* for which there exists a sequence *f_n* in \mathcal{F} with *f_n* → *f* both pointwise and in *L*₂(*P*).
- The symmetric convex hull of \mathcal{F} is Donsker, where sconv $\mathcal{F} = \left\{ \sum_{i} \lambda_{i} f_{i} : f_{i} \in \mathcal{F}, \sum_{i} |\lambda_{i}| \leq 1 \right\}.$
- Any Lipschitz-continuous transformation of \mathcal{F} is Donsker.

M-estimators

- Definition:
 - Metric space: (Θ, d)
 - $m_{\theta}: \mathcal{X} \to \mathbb{R}$, for each $\theta \in \Theta$
 - "Empirical gain": $M_n(\theta) = \mathbb{P}_n m_{\theta}$
 - *M*-estimator: $\hat{\theta}_n = \arg \max_{\theta \in \Theta} M_n(\theta)$
- Examples:
 - Maximum (penalized) likelihood estimator
 - Least squares estimator
 - Nonparametric maximum likelihood estimator, e.g., Grenander estimator, where Θ is the set of all non-increasing densities on [0,∞) and m_θ(x) = log θ(x)

4 **A b b b b b b**

Application: consistency of *M*-estimators

Two assumptions:

1
$$\mathcal{F} := \{ m_{\theta}(\cdot) : \ \theta \in \Theta \}$$
 is *P*-GC

2 θ_0 is a well-separated maximizer of $M(\theta) = Pm_{\theta}$, i.e., for every $\delta > 0$, $M(\theta_0) > \sup_{\theta \in \Theta: d(\theta, \theta_0) \ge \delta} M(\theta)$.

• For fixed $\delta > 0$, let $\psi(\delta) = M(\theta_0) - \sup_{\theta \in \Theta: d(\theta, \theta_0) \ge \delta} M(\theta)$

$$\begin{split} \left\{ d(\hat{\theta}_n, \theta_0) \geq \delta \right\} &\Rightarrow M(\hat{\theta}_n) \leq \sup_{\theta \in \Theta: d(\theta, \theta_0) \geq \delta} M(\theta) \\ &\Leftrightarrow M(\hat{\theta}_n) - M(\theta_0) \leq -\psi(\delta) \\ &\Rightarrow M(\hat{\theta}_n) - M(\theta_0) + \left(M_n(\theta_0) - M_n(\hat{\theta}_n) \right) \leq -\psi(\delta) \\ &\Rightarrow 2 \sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \geq \psi(\delta) \\ &\Rightarrow \mathbb{P} \left(d(\hat{\theta}_n, \theta_0) \geq \delta \right) \leq \mathbb{P} \left(\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \geq \psi(\delta)/2 \right) \to 0. \end{split}$$

Outline

Introduction: empirical processes

2 Introduction: semiparametric models

3 Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

General statistical models

- Collection of probability measures {*P* ∈ *P*} that specify the distribution of a random observation *X*.
- Parametric models: $\mathcal{P} = \{ \mathcal{P}_{\theta} : \theta \in \mathcal{R}^d \}$
- Nonparametric models: $\mathcal{P} = \{ \boldsymbol{P} : \boldsymbol{P} \text{ is any distribution} \}$
- Semiparametric models: $\mathcal{P} = \{ P_{\theta,\eta} : \theta \in R^d, \eta \in \mathcal{M} \}$
 - *M* is an infinite-dimensional space
 - θ : parameter of interest
 - η: nuisance parameter

Why semiparametric models?

- Only interested in some specific variable relationships: treatment effect, risk effect, etc.
- Not necessary to specify delicately those parameters that contribute to the probability distribution but are less interesting.
- Models are flexible and robust and parameters of interest are easy to be interpreted.

Primary goals of semiparametric inference

- Select an appropriate model for inference on X.
- Estimate (θ, η) (sometimes θ alone is the main focus).
- Conduct inference (e.g., confidence intervals or bands) for the parameters of interest.
 - Usually for θ only
 - Sometimes the convergence rate for η is not O_p(n^{-1/2})

Asymptotic properties of an estimator

- Consistency: $\hat{\theta}_n \xrightarrow{p} \theta_0$
- Asymptotic normality: $\sqrt{n}(\hat{\theta}_n \theta_0) \stackrel{d}{\rightarrow} G$
- Semiparametric efficiency

On semiparametric efficiency

- *Efficient:* achieve the smallest asymptotic variance among all *regular* estimators².
- Information: inverse of the asymptotic variance.
- The information for estimation under \mathcal{P} is **worse** than the information under any parametric submodel \mathcal{P}_0 .
- Semiparametric efficient: attain minimum information over all efficient estimators for all P₀.
- \mathcal{P}_0 with minimum information is called a *least favorable* submodel.
- Usually only need to consider one-dimensional parametric submodels {*P_t* : *t* ∈ [0, *ϵ*)}.

Introduction and Overview

² A regular sequence of estimators is one whose asymptotic distribution remains the same in shrinking neighborhoods of the true parameter value.

Semiparametric regression models in survival analysis

- Right-censored survival data
 - Proportional hazards model: $\lambda(t \mid X) = \lambda(t) \exp\{\beta^T X\}$
 - Proportional odds model: logit $S(t \mid X) = h(t) + \beta^T X$
 - Accelerated failure time model: log $T = \beta^T X + \epsilon$
 - Linear transformation model: $\log \Lambda(T) = \beta^T X + \epsilon$
 - Additive risk model: $\lambda(t \mid X) = \lambda(t) + \beta^T X$
- Interval-censored survival data
 - Proportional hazards model
 - Proportional odds model
 - AFT model
 - Transformation models

Mathematical tools

- Martingale theory for counting process
- Empirical process theory
- Semiparametric efficiency theory

4 A N

Outline

Introduction: empirical processes

2 Introduction: semiparametric models

3 Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

Outline

Introduction: empirical processes

2 Introduction: semiparametric models

Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

Introduction

• Data: $(Y_i = T_i \land C_i, R_i = 1 (T_i \le C_i), X_i), i = 1, ..., n$

- Assumptions:
 - T and C are independent given X
 - At least a proportion of subjects survive up to the study end time τ, i.e., Pr(T > τ) > δ > 0
- Model: Cox PH model

$$h_{T|X}(t \mid x) = \lambda(t) e^{x'\beta}$$

• Parameters of interest: β and $\Lambda(t) = \int_0^t \lambda(s) ds$

イロト イポト イラト イラト

Introduction (cont.)

Observed likelihhod function:

$$\prod_{i=1}^{n} \left\{ \left[\lambda\left(Y_{i}\right) e^{X_{i}^{\prime}\beta} \right]^{R_{i}} e^{-\Lambda\left(Y_{i}\right) e^{X_{i}^{\prime}\beta}} h_{C|X}\left(Y_{i} \mid X_{i}\right)^{1-R_{i}} e^{-H_{C|X}\left(Y_{i}\mid X_{i}\right)} f_{X}\left(X_{i}\right) \right\}$$

Parameter space:

 $\{(\beta, \Lambda): \ \beta \in \mathbb{R}^{p}, \ \Lambda(t) \text{ is an increasing function with } \Lambda(0) = 0\}$

Nonparametric maximum likelihood approach:

$$\ell_n(\beta, \Lambda) = \sum_{i=1}^n \left\{ R_i \left[X'_i \beta + \log \Delta \Lambda(Y_i) \right] - \Lambda(Y_i) e^{X'_i \beta} \right\}$$

Facts:

- $\hat{\mathbf{O}}$ $\hat{\mathbf{A}}_n$ is a step function with non-negative jumps only at Y_i .
- 2 Under Assumption 2, $\hat{\Lambda}_n(\tau) < \infty$.

NPMLEs

Differentiating ℓ_n with respect to $\{\beta, \Delta \Lambda(Y_1), \dots, \Delta \Lambda(Y_n)\}$ and solving the resulting equations, we obtain

$$\sum_{i=1}^{n} R_{i} \left[X_{i} - \frac{\sum_{Y_{j} \geq Y_{i}} X_{j} e^{X_{j}^{\prime} \hat{\beta}_{n}}}{\sum_{Y_{j} \geq Y_{i}} e^{X_{j}^{\prime} \hat{\beta}_{n}}} \right] = 0$$

and

$$\hat{\Lambda}_n(t) = \sum_{\mathbf{Y}_i \leq t} \frac{R_i}{\sum_{\mathbf{Y}_j \geq \mathbf{Y}_i} e^{\mathbf{X}_j' \hat{\beta}_n}}.$$

Here, $\hat{\beta}_n$ is exactly the maximizer of the *partial likelihood function* proposed in Cox (1972), and $\hat{\Lambda}_n(t)$ is exactly the *Breslow estimator*.

Consistency

Theorem (Consistency)

Assume that X is bounded and has a continuous density, λ_0 is continuous and positive on $[0, \tau]$. Then

$$\|\hat{\beta}_n - \beta_0\| + \sup_{t \in [0,\tau]} |\hat{\Lambda}_n(t) - \Lambda_0(t)| \stackrel{p}{\rightarrow} 0.$$

Lemma ($\theta \in \mathbb{R}^k$)

Suppose $M_n(\theta)$ and $M_0(\theta)$ are strictly concave function and for any compact set $K \subset \Theta$,

$$\sup_{\theta\in K} |M_n(\theta) - M_0(\theta)| \stackrel{p}{\to} 0.$$

Moreover, $\hat{\theta}_n$ and θ_0 are unique maximizer of $M_n(\theta)$ and $M_0(\theta)$ respectively. Then $\hat{\theta}_n \xrightarrow{p} \theta_0$.

Notations

$$\begin{split} & S_{0,n}(t,\beta) = \mathbb{P}_n \mathbf{1}(Y \ge t) e^{X'\beta}, \quad S_0(t,\beta) = \mathbb{P} \mathbf{1}(Y \ge t) e^{X'\beta}, \\ & S_{1,n}(t,\beta) = \mathbb{P}_n \mathbf{1}(Y \ge t) X e^{X'\beta}, \quad S_1(t,\beta) = \mathbb{P} \mathbf{1}(Y \ge t) X e^{X'\beta}, \\ & S_{2,n}(t,\beta) = \mathbb{P}_n \mathbf{1}(Y \ge t) X X' e^{X'\beta}, \quad S_2(t,\beta) = \mathbb{P} \mathbf{1}(Y \ge t) X X' e^{X'\beta}, \\ & M_n(\beta) = \mathbb{P}_n R \log \frac{e^{X'\beta}}{S_{0,n}(Y,\beta)}, \quad M_0(\beta) = \mathbb{P} R \log \frac{e^{X'\beta}}{S_0(Y,\beta)}, \\ & \hat{\Lambda}_n(t) = \mathbb{P}_n \frac{R \mathbf{1}(Y \le t)}{S_{0,n}(Y,\hat{\beta}_n)}, \quad \Lambda_0(t) = \mathbb{P} \frac{R \mathbf{1}(Y \le t)}{S_0(Y,\beta_0)}. \end{split}$$

イロト イヨト イヨト イヨト

Proof of consistency of $\hat{\beta}_n$

(1) Concavity of $M_n(\beta)$ and $M_0(\beta)$.

$$\nabla_{\beta\beta}^{2} M_{n}(\beta) = -\mathbb{P}_{n} \left[R \frac{S_{2,n}(Y,\beta) S_{0,n}(Y,\beta) - S_{1,n}(Y,\beta)^{\otimes 2}}{S_{0,n}(Y,\beta)^{2}} \right],$$
$$\nabla_{\beta\beta}^{2} M_{0}(\beta) = -\mathbb{P} \left[R \frac{S_{2}(Y,\beta) S_{0}(Y,\beta) - S_{1}(Y,\beta)^{\otimes 2}}{S_{0}(Y,\beta)^{2}} \right].$$

$$\left\{\mathbf{1}(Y \ge t)\boldsymbol{e}^{X'\beta}, \mathbf{1}(Y \ge t)X\boldsymbol{e}^{X'\beta}, \mathbf{1}(Y \ge t)XX'\boldsymbol{e}^{X'\beta}: \beta \in K, t \in [0,\tau]\right\}$$

is a GC class, for any compact set $K \subset \mathbb{R}$.

$$\Rightarrow S_{q,n}(t,\beta) \to S_q(t,\beta) \text{ uniformly in } K \times [0,\tau]. \\ \Rightarrow \nabla^2_{\beta\beta} M_n(\beta) \to \nabla^2_{\beta\beta} M_0(\beta) < 0 \text{ uniformly.}$$

$$2 \operatorname{sup}_{\beta \in K} |M_n(\beta) - M_0(\beta)| \stackrel{p}{\to} 0. \sqrt{2}$$

- (a) $\hat{\beta}_n$ is the unique maximizer of $M_n(\beta)$. $\sqrt{(M_n(\beta))}$ is essentially the PLL)
- (4) $\hat{\beta}_0$ is the unique maximizer of $M_0(\beta)$. It suffices to show $\nabla_{\beta} M_0(\beta_0) = 0$.

Proof of consistency of $\hat{\Lambda}_n$

$$\begin{split} \hat{\Lambda}_n(t) &- \Lambda_0(t) \\ &= \mathbb{P}_n[\mathbf{1}(Y \leq t)R/S_{0,n}(Y, \hat{\beta}_n)] - \mathbb{P}[\mathbf{1}(Y \leq t)R/S_0(Y, \beta_0)] \\ &= (\mathbb{P}_n - \mathbb{P})[\mathbf{1}(Y \leq t)R/S_{0,n}(Y, \hat{\beta}_n)] \\ &+ \mathbb{P}[\mathbf{1}(Y \leq t)R/S_{0,n}(Y, \hat{\beta}_n) - \mathbf{1}(Y \leq t)R/S_0(Y, \hat{\beta}_n)] \\ &+ \mathbb{P}[\mathbf{1}(Y \leq t)R/S_0(Y, \hat{\beta}_n) - \mathbf{1}(Y \leq t)R/S_0(Y, \beta_0)] \\ &= : (\mathbf{i}) + (\mathbf{ii}) + (\mathbf{iii}) \\ &\rightarrow \mathbf{0} \text{ uniformly over } t \in [0, \tau]. \end{split}$$

(i): GC theorem.

(ii): $S_{0,n}(t,\beta) \to S_0(t,\beta)$ uniformly in $K \times [0,\tau]$ & $\hat{\beta}_n \xrightarrow{p} \beta_0$.

(iii): $S_0(t,\beta)$ is differentiable with respect to β .

• • • • • • • • • • • •

Asymptotic normality

Theorem (Asymptotic normality)

Under regularity conditions,

$$\sqrt{n}\left(\hat{\beta}_n-\beta_0,\,\hat{\Lambda}_n-\Lambda_0
ight)\stackrel{d}{
ightarrow} G_1 imes G_2 \quad \textit{in } \mathbb{R}^{p} imes\ell^{\infty}[0,\tau],$$

where G_1 is a normal distribution with mean zero and variance Σ_{β} , and G_2 is a Brownian bridge with covariance $\Sigma_{\Lambda}(t, s)$.

Proof of asymptotic normality of $\hat{\beta}_n$

Since $\nabla_{\beta} M_n(\hat{\beta}_n) = \nabla_{\beta} M_0(\beta_0) = 0$, we can use telescopic expansion:

$$0 = \mathbb{P}_{n}[R(X - \frac{S_{1,n}(Y, \hat{\beta}_{n})}{S_{0,n}(Y, \hat{\beta}_{n})})] - \mathbb{P}[R(X - \frac{S_{1,n}(Y, \hat{\beta}_{n})}{S_{0,n}(Y, \hat{\beta}_{n})})] + \mathbb{P}[R(X - \frac{S_{1,n}(Y, \hat{\beta}_{n})}{S_{0,n}(Y, \hat{\beta}_{n})})] - \mathbb{P}[R(X - \frac{S_{1}(Y, \hat{\beta}_{n})}{S_{0}(Y, \hat{\beta}_{n})})] + \mathbb{P}[R(X - \frac{S_{1}(Y, \hat{\beta}_{n})}{S_{0}(Y, \hat{\beta}_{n})})] - \mathbb{P}[R(X - \frac{S_{1}(Y, \beta_{0})}{S_{0}(Y, \beta_{0})})] = (\mathbb{P}_{n} - \mathbb{P})[R(X - \frac{S_{1,n}(Y, \hat{\beta}_{n})}{S_{0,n}(Y, \hat{\beta}_{n})})] \cdots (i) - \mathbb{P}[\frac{R(\mathbb{P}_{n} - \mathbb{P})[Xe^{X'\hat{\beta}_{n}}\mathbf{1}(Y \ge y)]|_{y=Y}}{S_{0,n}(Y, \hat{\beta}_{n})}] \cdots (ii) + \mathbb{P}[\frac{RS_{1}(Y, \hat{\beta}_{n})(\mathbb{P}_{n} - \mathbb{P})[\mathbf{1}(Y \ge y)e^{X'\hat{\beta}_{n}}]|_{y=Y}}{S_{0,n}(Y, \hat{\beta}_{n})}] \cdots (iii) - \mathbb{P}[R\frac{S_{2}(Y, \beta^{*})S_{0}(Y, \beta^{*}) - S_{1}(Y, \beta^{*})^{\otimes 2}}{S_{0}(Y, \beta^{*})^{2}}](\hat{\beta}_{n} - \beta_{0})$$

4 A N 4 E

Proof of asymptotic normality of $\hat{\beta}_n$ (cont.)

(i)+(ii)+(iii) is an empirical process

$$(\mathbb{P}_{n}-\mathbb{P})[R(X-\frac{S_{1,n}(Y,\hat{\beta}_{n})}{S_{0,n}(Y,\hat{\beta}_{n})})-Xe^{X'\beta_{n}}\widetilde{\mathbb{P}}\frac{\mathbf{1}(Y\geq\widetilde{Y})\widetilde{R}}{S_{0,n}(\widetilde{Y},\hat{\beta}_{n})}+e^{X'\beta_{n}}\widetilde{\mathbb{P}}\frac{S_{1}(\widetilde{Y},\hat{\beta}_{n})\mathbf{1}(Y\geq\widetilde{Y})\widetilde{R}}{S_{0,n}(\widetilde{Y},\hat{\beta}_{n})S_{0}(\widetilde{Y},\hat{\beta}_{n})}].$$

$$(1)$$

By applying the functional central limit theorem³,

$$(1) = (\mathbb{P}_n - \mathbb{P})[R(X - \frac{S_1(Y, \beta_0)}{S_0(Y, \beta_0)}) - Xe^{X'\beta_0}\widetilde{\mathbb{P}}\frac{\mathbf{1}(Y \ge \widetilde{Y})\widetilde{R}}{S_0(\widetilde{Y}, \beta_0)} + e^{X'\beta_0}\widetilde{\mathbb{P}}\frac{S_1(\widetilde{Y}, \beta_0)\mathbf{1}(Y \ge \widetilde{Y})\widetilde{R}}{S_0(\widetilde{Y}, \beta_0)^2}] + o_p(1/\sqrt{n}).$$

Thus,

$$\begin{split} &\sqrt{n}(\hat{\beta}_n - \beta_0) \\ &= \left\{ \mathbb{P}[R\frac{S_2(Y,\beta_0)S_0(Y,\beta_0) - S_1(Y,\beta_0)^{\otimes 2}}{S_0(Y,\beta_0)^2}] \right\}^{-1} \times \\ & \mathbb{G}_n[R(X - \frac{S_1(Y,\beta_0)}{S_0(Y,\beta_0)}) - Xe^{X'\beta_0}\widetilde{\mathbb{P}}\frac{\mathbf{1}(Y \ge \widetilde{Y})\widetilde{R}}{S_0(\widetilde{Y},\beta_0)} + e^{X'\beta_0}\widetilde{\mathbb{P}}\frac{S_1(\widetilde{Y},\beta_0)\mathbf{1}(Y \ge \widetilde{Y})\widetilde{R}}{S_0(\widetilde{Y},\beta_0)^2}] + o_p(1). \end{split}$$

³ Theorem 2 of Section 4.3.4 in Zeng's lecture notes

4 D N 4 B N 4 B N 4 B

Proof of asymptotic normality of $\hat{\Lambda}_n$

From the consistency proof, by applying the functional central limit theorem, we have

$$\begin{split} &\sqrt{n}(\hat{\lambda}_n(t) - \Lambda_0(t)) \\ &= \mathbb{G}_n[\mathbf{1}(Y \leq t)R/S_0(Y,\beta_0)] - e^{X'\beta_0} \widetilde{\mathbb{P}}[\frac{\mathbf{1}(\widetilde{Y} \leq t)\mathbf{1}(Y \geq \widetilde{Y})\widetilde{R}}{S_0(\widetilde{Y},\beta_0)^2}]] \\ &- \mathbb{P}[\frac{\mathbf{1}(Y \leq t)RS_1(Y,\beta_0)}{S_0(Y,\beta_0)^2}]\sqrt{n}(\hat{\beta}_n - \beta_0) \\ &+ o_p(1). \end{split}$$

A (1) > A (2) > A

Outline

Introduction: empirical processes

2 Introduction: semiparametric models

3 Examples of theoretical justification

- Cox model with right-censored data
- Transformation model with interval-censored data

Introduction

- Interval censoring: event occurs within an interval
- Data: $(L_i, R_i, X_i), i = 1, ..., n$
- Transformation models:

$$\Lambda(t;X) = G\left\{\int_0^t e^{\beta^T X} d\Lambda(s)\right\}$$

- $G(\cdot)$: specific transformation function, strictly increasing
- Λ(·): unknown increasing function
- $G(x) = x \Rightarrow$ proportional hazards
- $G(x) = \log(1 + x) \Rightarrow$ proportional odds

Introduction (cont.)

• Observed likelihood function (under PH model):

$$L_n(\beta, \Lambda) = \prod_{i=1}^n \left[\exp\left\{ -\int_0^{L_i} e^{\beta^{\mathrm{T}} X_i(s)} \mathrm{d}\Lambda(s) \right\} - \exp\left\{ -\int_0^{R_i} e^{\beta^{\mathrm{T}} X_i(s)} \mathrm{d}\Lambda(s) \right\} \right]$$

Nonparametric maximum likelihood approach:

$$\prod_{i=1}^{n} \left[\exp\left\{ -\sum_{t_k \leq L_i} \lambda_k e^{\beta^{\mathrm{T}} X_i(t_k)} \right\} - \exp\left\{ -\sum_{t_k \leq R_i} \lambda_k e^{\beta^{\mathrm{T}} X_i(t_k)} \right\} \right]$$
$$= \prod_{i=1}^{n} \exp\left(-\sum_{t_k \leq L_i} \lambda_k e^{\beta^{\mathrm{T}} X_{ik}} \right) \left\{ 1 - \exp\left(-\sum_{t_k \leq R_i} \lambda_k e^{\beta^{\mathrm{T}} X_{ik}} \right) \right\}^{1(R_i < \infty)}$$
(2)

- $t_1 < \cdots < t_m$: unique values of $L_i > 0$ and $R_i < \infty$
- λ_k : jump size of Λ at t_k

Introduction (cont.)

- Direct maximization of (2) is difficult.
- Introduce latent independent Poisson random variables:

$$W_{ik} \sim \text{Poisson}(\lambda_k e^{\beta^T X_{ik}})$$

for i = 1, ..., n and k = 1, ..., m.

• (2) is equivalent to observing

$$\sum_{t_k \leq L_i} W_{ik} = 0 \quad \text{and} \quad \mathbf{1}(R_i < \infty) \sum_{L_i < t_k \leq R_i} W_{ik} > 0.$$

• EM algorithm treating W_{ik} as missing data. \Rightarrow NPMLEs $(\hat{\beta}_n, \hat{\Lambda}_n)$

Asymptotic properties

Theorem (Consistency)

Under regularity conditions,

$$\|\hat{\beta}_n - \beta_0\| + \sup_{t \in [0,\tau]} |\hat{\Lambda}_n(t) - \hat{\Lambda}_0(t)| \stackrel{a.s.}{\rightarrow} 0.$$

Theorem (Asymptotic normality)

Under regularity conditions,

$$\sqrt{n}(\hat{\beta}_n - \beta_0) \stackrel{d}{\rightarrow} N(0, \Sigma),$$

where Σ attains the semiparametric efficiency bound.

A b

Proof of consistency

Define
$$m(\beta, \Lambda) = \log[\{L(\beta, \Lambda) + L(\beta_0, \Lambda_0)\} / 2]$$
. Show that
 $\mathcal{M} := \left\{ m(\beta, \Lambda) : \beta \in \mathcal{B}, \Lambda \in BV[0, \tau] \right\}$

is a Donsker class.

- 2 Show $\limsup_n \hat{\Lambda}_n(\tau) < \infty$, so that $m(\hat{\beta}_n, \hat{\Lambda}_n) \in \mathcal{M}$.
- Sy Helly's selection lemma, for any subsequence of (β̂_n, Λ̂_n), there exists a further subsequence such that β̂_n → β^{*} and Λ̂_n → Λ^{*} pointwise on [0, τ].
- Construct a step function Λ that converges uniformly to Λ_0 . Use the fact that $\mathbb{P}_n m(\hat{\beta}_n, \hat{\Lambda}_n) \geq \mathbb{P}_n m(\beta_0, \tilde{\Lambda})$, together with the Donsker property of \mathcal{M} to show $\mathbb{P}m(\beta^*, \Lambda^*) \geq \mathbb{P}m(\beta_0, \Lambda_0)$. Thus, by the properties of the Kullback-Leibler information, $L(\beta^*, \Lambda^*) = L(\beta_0, \Lambda_0)$.
- Solution Verify identifiability of the model. Then β^{*} = β₀ and Λ^{*}(t) = Λ₀(t) for t ∈ [0, τ].
- Pointwise convergence of Â_n to Λ₀ can be strengthened to uniform convergence since Λ₀ is continuous.

Convergence rate

Lemma (Convergence rate)

Under regularity conditions,

$$\mathsf{E}\left(\sum_{k=1}^{K}\left[\int_{0}^{U_{k}}e^{\hat{\beta}^{\mathrm{T}}X(s)}\mathrm{d}\hat{\Lambda}_{n}(s)-\int_{0}^{U_{k}}e^{\beta_{0}^{\mathrm{T}}X(s)}\mathrm{d}\Lambda_{0}(s)\right]^{2}\right)^{1/2}=O_{P}\left(n^{-1/3}\right),$$

where K is a random number of monitoring times, and (U_1, \ldots, U_K) is a random sequence of monitoring times.

To prove the lemma, calculate the bracketing number for \mathcal{M} . Ideally,

$$\varphi(\delta) = \int_0^{\delta} \sqrt{1 + \log N_{[]}(\epsilon, \mathcal{M}, L_2(\mathbb{P}))} \, \mathrm{d}\epsilon \leq O(\delta^{1/2}).$$

Then check each condition in Theorem 3.4.1 of van der Vaart & Wellner and obtain the order of the Hellinger distance between $(\hat{\beta}_n, \hat{\Lambda}_n)$ and (β_0, Λ_0) .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proof of asymptotic normality of $\hat{\beta}_n$

- To obtain the score operator for Λ, consider a one-dimensional submodel Λ_{ε,h} defined by dΛ_{ε,h} = (1 + εh) dΛ.
- Consider the least favorable direction h^{*} such that the corresponding parametric submodel achieves the semiparametric efficient information.
- **3** Apply Taylor expansion at (β_0, Λ_0) . By the previous lemma on convergence rate, we obtain

 $\sqrt{n}(\hat{\beta}_n-\beta_0)=\left(E[\{\ell_\beta-\ell_\Lambda(h^*)\}^{\otimes 2}]\right)^{-1}\mathbb{G}_n\{\ell_\beta(\hat{\beta}_n,\hat{\Lambda}_n)-\ell_\Lambda(\hat{\beta}_n,\hat{\Lambda}_n)(h^*)\}+o_p(1).$

- 4 Show the existence of h^* . Need some functional theories.
- Show that ℓ_β(β̂_n, Λ̂_n) − ℓ_Λ(β̂_n, Λ̂_n) (h^{*}) belongs to a Donsker class and converges in L₂(P)-norm to ℓ_β − ℓ_Λ (h^{*}). This follows from the continuous differentiability of h^{*}(t) over [0, τ].
- Show the nonsingularity of the matrix $E[\{\ell_{\beta} \ell_{\Lambda}(h^*)\}^{\otimes 2}]$. Prove by contradiction.
- **7** Finally, we have $\sqrt{n}(\hat{\beta}_n \beta_0) = O_p(1)$ and

$$\sqrt{n}(\hat{\beta}_n - \beta_0) = \left(E[\{\ell_\beta - \ell_\Lambda(h^*)\}^{\otimes 2}] \right)^{-1} \mathbb{G}_n \left\{ \ell_\beta - \ell_\Lambda(h^*) \right\} + o_p(1).$$

A D A A B A A B A A B A B B

Extension: multivariate interval-censored data

- Multiple types of events / clustering of study subjects
- Need to account for potential dependence
- Semiparametric transformation models with random effects (*i*—cluster, *j*—subject, *k*—event):

$$\Lambda_{ijk}(t) = G_k \left[\int_0^t \exp \left\{ \beta^{\mathrm{T}} X_{ijk}(s) + b_i^{\mathrm{T}} Z_{ijk}(s) \right\} \mathrm{d}\Lambda_k(s) \right]$$

- Latent Poisson random variables + EM algorithm (treat random effects as missing data)
- Be careful with the random effects in the proofs. Everything else is similar to the univariate setting!