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What is an empirical process?

A stochastic process is a collection of random variables
{X (t), t ∈ T} on the same probability space, indexed by an
arbitrary index set T .

In general, an empirical process is a stochastic process
based on a random sample, usually of n i.i.d. random
variables X1, . . . ,Xn.
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Example: empirical distribution function

Let X1, . . . ,Xn be i.i.d. real-valued random variables with
cumulative distribution function (c.d.f.) F . Then the empirical
distribution function (e.d.f.) is defined as

Fn(t) :=
1
n

n∑
i=1

1(Xi ≤ t), t ∈ R.

Fn(t) is one of the simplest examples of an empirical process.
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Example: Kaplan-Meier estimator

Let (X1, δ1), . . . , (Xn, δn) be a sample of right-censored failure
time observations. Then the Kaplan-Meier estimator of the
survival function is given by

Ŝ(t) =
∏

k :T 0
k≤t

{
1−

∑n
i=1 δi1(Xi = T 0

k )∑n
i=1 1(Xi ≥ T 0

k )

}
,

where T 0
1 < T 0

2 < · · · < T 0
K are unique observed failure times.
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General features of an empirical process

The i.i.d. sample X1, . . . ,Xn is drawn from a probability
measure P on an arbitrary sample space X .

Define the empirical measure to be Pn = 1
n
∑n

i=1 δXi , where
δx denotes the Dirac measure at x .

For a measurable function f : X 7→ R, define

Pnf :=

∫
fdPn =

1
n

n∑
i=1

f (Xi).

For any class F of such real-valued functions on X ,
{Pnf : f ∈ F} is the empirical process indexed by F .
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Start with the classical e.d.f. Fn

Setting X = R, Fn can be re-expressed as the empirical
process {Pnf : f ∈ F}, where F = {1(x ≤ t), t ∈ R}.

By the law of large numbers, Fn(t) a.s.→ F (t) for each t ∈ R.

By the central limit theorem, for each t ∈ R,

Gn(t) :=
√

n (Fn(t)− F (t))
d→ N

(
0,F (t)(1− F (t))

)
.

From the functional perspective, uniform results over t ∈ R
would be more appealing.

I Need theory of empirical processes
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Strengthened results on Fn and Gn

Glivenko (1933) and Cantelli (1933) demonstrated that the
previous result could be strengthened to

‖Fn − F‖∞ = sup
t∈R
|Fn(t)− F (t)| a.s.→ 0.

Donsker (1952) showed that

Gn
d→ B(F ) in `∞(R),

where B is the standard Brownian bridge process on [0, 1];
for any index set T , `∞(T ) denotes the space of all
bounded functions f : T 7→ R.
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Extend to general empirical processes

Properties of the approximation of Pf by Pnf , uniformly in F
I the random quantity ‖Pn − P‖F := supf∈F |Pnf − Pf |
I the empirical process Gn :=

√
n(Pn − P)

Two special classes

I Glivenko-Cantelli: F is P-Glivenko-Cantelli if

‖Pn − P‖F := sup
f∈F
|Pnf − Pf | a.s.→ 0.

I Donsker: F is P-Donsker if

Gn
d→ G in `∞(F),

where G is a mean zero Gaussian process indexed by F .
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Remarks

Glivenko-Cantelli: uniform almost surely convergence

Donsker: uniform central limit theorem

Donsker⇒ Glivenko-Cantelli (GC)

GC or Donsker properties depend crucially on the
complexity (or entropy) of F .
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Complexity of (F , ‖ · ‖)

Covering number
I denoted by N(ε,F , ‖ · ‖)

I minimum number of balls B(f ; ε) := {g : ‖g − f‖ < ε}
needed to cover F

I entropy: log N(ε,F , ‖ · ‖)

Bracketing number
I denoted by N[](ε,F , ‖ · ‖)

I minimum number of brackets [`,u]1 with ‖`− u‖ < ε
needed to cover F

I entropy with bracketing: log N[](ε,F , ‖ · ‖)

1Given two functions `(·) and u(·), the bracket [`, u] is the set of all functions f ∈ F with `(x) ≤ f (x) ≤ u(x),
for all x ∈ X .

Yu Gu Introduction and Overview June 2, 2021 12 / 48



GC theorems

Theorem (GC by bracketing)
Let F be a class of measurable functions such that N[](ε,F , ‖ · ‖) <∞
for every ε > 0. Then F is a GC class.

Theorem (GC by entropy)
Let F be a class of measurable functions with envelopea F such that
PF <∞. Let FM be the class of functions f1{F ≤ M} where f ranges
over F . Then ‖Pn − P‖F → 0 both almost surely and in mean, if and
only if

1
n

log N(ε,FM ,L1(Pn))
p→ 0,

for every ε > 0 and M > 0.

aAn envelop function is any function that can bound every function in F everywhere. That is, for each f ∈ F ,
|f (x)| ≤ F (x) for any x ∈ X .
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Donsker theorems

Define the bracketing entropy integral as

J[] (δ,F ,Lr (P)) :=

∫ δ

0

√
log N[] (ε,F ,Lr (P))dε.

Theorem (Donsker by bracketing entropy integral)
Suppose that F is a class of measurable functions with
square-integrable (measurable) envelope F and such that
J[] (∞,F ,L2(P)) <∞. Then F is P-Donsker.
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Donsker theorems (cont.)

Define the uniform entropy integral as

J(δ,F ,Lr ) =

∫ δ

0
sup

Q

√
log N

(
ε‖F‖Q,r ,F ,Lr (Q)

)
dε.

Theorem (Donsker by uniform entropy integral)
Let F be a pointwise-measurable class of measurable functions
with (measurable) envelope F such that PF 2 <∞. If
J(∞,F ,L2) <∞ then F is P-Donsker.
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Some useful results

Suppose F is Donsker.

1 Any subset of F is Donsker.

2 F is Donsker, where F denotes the set of all f for which
there exists a sequence fn in F with fn → f both pointwise
and in L2(P).

3 The symmetric convex hull of F is Donsker, where
sconvF =

{∑
i λi fi : fi ∈ F ,

∑
i |λi | ≤ 1

}
.

4 Any Lipschitz-continuous transformation of F is Donsker.
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M-estimators

Definition:
I Metric space: (Θ,d)

I mθ : X → R, for each θ ∈ Θ

I “Empirical gain”: Mn(θ) = Pnmθ

I M-estimator: θ̂n = arg maxθ∈Θ Mn(θ)

Examples:
I Maximum (penalized) likelihood estimator

I Least squares estimator

I Nonparametric maximum likelihood estimator, e.g.,
Grenander estimator, where Θ is the set of all
non-increasing densities on [0,∞) and mθ(x) = log θ(x)
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Application: consistency of M-estimators

Two assumptions:

1 F := {mθ(·) : θ ∈ Θ} is P-GC
2 θ0 is a well-separated maximizer of M(θ) = Pmθ, i.e., for every
δ > 0, M (θ0) > supθ∈Θ:d(θ,θ0)≥δ M(θ).

For fixed δ > 0, let ψ(δ) = M (θ0)− supθ∈Θ:d(θ,θ0)≥δ M(θ){
d(θ̂n, θ0) ≥ δ

}
⇒ M(θ̂n) ≤ sup

θ∈Θ:d(θ,θ0)≥δ
M(θ)

⇔ M(θ̂n)−M (θ0) ≤ −ψ(δ)

⇒ M(θ̂n)−M (θ0) +
(

Mn (θ0)−Mn(θ̂n)
)
≤ −ψ(δ)

⇒ 2 sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(δ)

⇒ P
(

d(θ̂n, θ0) ≥ δ
)
≤ P

(
sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(δ)/2

)
→ 0.
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General statistical models

Collection of probability measures {P ∈ P} that specify the
distribution of a random observation X .

Parametric models: P =
{

Pθ : θ ∈ Rd}
Nonparametric models: P = {P : P is any distribution}

Semiparametric models: P =
{

Pθ,η : θ ∈ Rd , η ∈M
}

I M is an infinite-dimensional space

I θ: parameter of interest

I η: nuisance parameter
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Why semiparametric models?

Only interested in some specific variable relationships:
treatment effect, risk effect, etc.

Not necessary to specify delicately those parameters that
contribute to the probability distribution but are less
interesting.

Models are flexible and robust and parameters of interest
are easy to be interpreted.
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Primary goals of semiparametric inference

Select an appropriate model for inference on X.

Estimate (θ, η) (sometimes θ alone is the main focus).

Conduct inference (e.g., confidence intervals or bands) for
the parameters of interest.

I Usually for θ only

I Sometimes the convergence rate for η is not Op(n−1/2)
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Asymptotic properties of an estimator

Consistency: θ̂n
p→ θ0

Asymptotic normality:
√

n(θ̂n − θ0)
d→ G

Semiparametric efficiency
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On semiparametric efficiency

Efficient: achieve the smallest asymptotic variance among all
regular estimators2.

Information: inverse of the asymptotic variance.

The information for estimation under P is worse than the
information under any parametric submodel P0.

Semiparametric efficient: attain minimum information over all
efficient estimators for all P0.

P0 with minimum information is called a least favorable
submodel.

Usually only need to consider one-dimensional parametric
submodels {Pt : t ∈ [0, ε)}.

2A regular sequence of estimators is one whose asymptotic distribution remains the same in shrinking
neighborhoods of the true parameter value.
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Semiparametric regression models in survival analysis

Right-censored survival data
I Proportional hazards model: λ(t | X ) = λ(t) exp{βT X}
I Proportional odds model: logit S(t | X ) = h(t) + βT X
I Accelerated failure time model: log T = βT X + ε

I Linear transformation model: log Λ(T ) = βT X + ε

I Additive risk model: λ(t | X ) = λ(t) + βT X

Interval-censored survival data
I Proportional hazards model
I Proportional odds model
I AFT model
I Transformation models
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Mathematical tools

Martingale theory for counting process

Empirical process theory

Semiparametric efficiency theory
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Introduction

Data: (Yi = Ti ∧ Ci , Ri = 1 (Ti ≤ Ci) , Xi) , i = 1, . . . ,n

Assumptions:
1 T and C are independent given X
2 At least a proportion of subjects survive up to the study end

time τ , i.e., Pr(T > τ) > δ > 0

Model: Cox PH model

hT |X (t | x) = λ(t)ex ′β

Parameters of interest: β and Λ(t) =
∫ t

0 λ(s)ds
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Introduction (cont.)

Observed likelihhod function:
n∏

i=1

{[
λ (Yi ) eX ′

i β
]Ri

e−Λ(Yi )eX′
i β hC|X (Yi | Xi )

1−Ri e−HC|X (Yi |Xi )fX (Xi )

}
Parameter space:{

(β,Λ) : β ∈ Rp, Λ(t) is an increasing function with Λ(0) = 0
}

Nonparametric maximum likelihood approach:

`n(β,Λ) =
n∑

i=1

{
Ri
[
X ′i β + log ∆Λ (Yi )

]
− Λ (Yi ) eX ′

i β
}

Facts:

1 Λ̂n is a step function with non-negative jumps only at Yi .
2 Under Assumption 2, Λ̂n(τ) <∞.
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NPMLEs

Differentiating `n with respect to {β,∆Λ(Y1), . . . ,∆Λ(Yn)} and
solving the resulting equations, we obtain

n∑
i=1

Ri

Xi −
∑

Yj≥Yi
Xje

X ′j β̂n∑
Yj≥Yi

eX ′j β̂n

 = 0

and
Λ̂n(t) =

∑
Yi≤t

Ri∑
Yj≥Yi

eX ′j β̂n
.

Here, β̂n is exactly the maximizer of the partial likelihood
function proposed in Cox (1972), and Λ̂n(t) is exactly the
Breslow estimator.
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Consistency

Theorem (Consistency)
Assume that X is bounded and has a continuous density, λ0 is
continuous and positive on [0, τ ]. Then

‖β̂n − β0‖+ sup
t∈[0,τ ]

|Λ̂n(t)− Λ0(t)| p→ 0.

Lemma (θ ∈ Rk )
Suppose Mn(θ) and M0(θ) are strictly concave function and for any
compact set K ⊂ Θ,

sup
θ∈K
|Mn(θ)−M0(θ)| p→ 0.

Moreover, θ̂n and θ0 are unique maximizer of Mn(θ) and M0(θ)

respectively. Then θ̂n
p→ θ0.
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Notations

S0,n(t , β) = Pn1(Y ≥ t)eX ′β, S0(t , β) = P1(Y ≥ t)eX ′β,

S1,n(t , β) = Pn1(Y ≥ t)XeX ′β, S1(t , β) = P1(Y ≥ t)XeX ′β,

S2,n(t , β) = Pn1(Y ≥ t)XX ′eX ′β, S2(t , β) = P1(Y ≥ t)XX ′eX ′β,

Mn(β) = PnR log
eX ′β

S0,n(Y , β)
, M0(β) = PR log

eX ′β

S0(Y , β)
,

Λ̂n(t) = Pn
R1(Y ≤ t)
S0,n(Y , β̂n)

, Λ0(t) = P
R1(Y ≤ t)
S0(Y , β0)

.
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Proof of consistency of β̂n

1 Concavity of Mn(β) and M0(β).

∇2
ββMn(β) = −Pn[R

S2,n (Y , β) S0,n (Y , β)− S1,n (Y , β)⊗2

S0,n (Y , β)2 ],

∇2
ββM0(β) = −P[R

S2 (Y , β) S0 (Y , β)− S1 (Y , β)⊗2

S0 (Y , β)2 ].

{
1(Y ≥ t)eX ′β , 1(Y ≥ t)XeX ′β , 1(Y ≥ t)XX ′eX ′β : β ∈ K , t ∈ [0, τ ]

}
is a GC class, for any compact set K ⊂ R.

⇒ Sq,n(t , β)→ Sq(t , β) uniformly in K × [0, τ ].

⇒ ∇2
ββMn(β)→ ∇2

ββM0(β) < 0 uniformly.

2 supβ∈K |Mn(β)−M0(β)| p→ 0.
√

3 β̂n is the unique maximizer of Mn(β).
√

(Mn(β) is essentially the PLL)
4 β̂0 is the unique maximizer of M0(β). It suffices to show ∇βM0(β0) = 0.
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Proof of consistency of Λ̂n

Λ̂n(t)− Λ0(t)

= Pn[1(Y ≤ t)R/S0,n(Y , β̂n)]− P[1(Y ≤ t)R/S0(Y , β0)]

= (Pn − P)[1(Y ≤ t)R/S0,n(Y , β̂n)]

+ P[1(Y ≤ t)R/S0,n(Y , β̂n)− 1(Y ≤ t)R/S0(Y , β̂n)]

+ P[1(Y ≤ t)R/S0(Y , β̂n)− 1(Y ≤ t)R/S0(Y , β0)]

= : (i) + (ii) + (iii)
→ 0 uniformly over t ∈ [0, τ ].

(i): GC theorem.
(ii): S0,n(t , β)→ S0(t , β) uniformly in K × [0, τ ] & β̂n

p→ β0.
(iii): S0(t , β) is differentiable with respect to β.
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Asymptotic normality

Theorem (Asymptotic normality)
Under regularity conditions,

√
n
(
β̂n − β0, Λ̂n − Λ0

)
d→ G1 ×G2 in Rp × `∞[0, τ ],

where G1 is a normal distribution with mean zero and variance
Σβ, and G2 is a Brownian bridge with covariance ΣΛ(t , s).
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Proof of asymptotic normality of β̂n

Since ∇βMn(β̂n) = ∇βM0(β0) = 0, we can use telescopic expansion:

0 = Pn[R(X − S1,n(Y , β̂n)

S0,n(Y , β̂n)
)]− P[R(X − S1,n(Y , β̂n)

S0,n(Y , β̂n)
)]

+ P[R(X − S1,n(Y , β̂n)

S0,n(Y , β̂n)
)]− P[R(X − S1(Y , β̂n)

S0(Y , β̂n)
)]

+ P[R(X − S1(Y , β̂n)

S0(Y , β̂n)
)]− P[R(X − S1(Y , β0)

S0(Y , β0)
)]

= (Pn − P)[R(X − S1,n(Y , β̂n)

S0,n(Y , β̂n)
)] · · · · · · (i)

− P[
R(Pn − P)[XeX ′β̂n 1(Y ≥ y)]|y=Y

S0,n(Y , β̂n)
] · · · · · · (ii)

+ P[
RS1(Y , β̂n)(Pn − P)[1(Y ≥ y)eX ′β̂n ]|y=Y

S0,n(Y , β̂n)S0(Y , β̂n)
] · · · · · · (iii)

− P[R
S2(Y , β∗)S0(Y , β∗)− S1(Y , β∗)⊗2

S0(Y , β∗)2 ](β̂n − β0)
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Proof of asymptotic normality of β̂n (cont.)
(i)+(ii)+(iii) is an empirical process

(Pn − P)[R(X −
S1,n(Y , β̂n)

S0,n(Y , β̂n)
)− XeX ′β̂n P̃

1(Y ≥ Ỹ )R̃

S0,n(Ỹ , β̂n)
+ eX ′β̂n P̃

S1(Ỹ , β̂n)1(Y ≥ Ỹ )R̃

S0,n(Ỹ , β̂n)S0(Ỹ , β̂n)
].

(1)
By applying the functional central limit theorem3,

(1) = (Pn − P)[R(X −
S1(Y , β0)

S0(Y , β0)
)− XeX ′β0 P̃

1(Y ≥ Ỹ )R̃

S0(Ỹ , β0)
+ eX ′β0 P̃

S1(Ỹ , β0)1(Y ≥ Ỹ )R̃

S0(Ỹ , β0)2
]

+op(1/
√

n).

Thus,
√

n(β̂n − β0)

=

{
P[R

S2(Y , β0)S0(Y , β0)− S1(Y , β0)⊗2

S0(Y , β0)2
]

}−1

×

Gn[R(X −
S1(Y , β0)

S0(Y , β0)
)− XeX ′β0 P̃

1(Y ≥ Ỹ )R̃

S0(Ỹ , β0)
+ eX ′β0 P̃

S1(Ỹ , β0)1(Y ≥ Ỹ )R̃

S0(Ỹ , β0)2
] + op(1).

3Theorem 2 of Section 4.3.4 in Zeng’s lecture notes
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Proof of asymptotic normality of Λ̂n

From the consistency proof, by applying the functional central
limit theorem, we have
√

n(Λ̂n(t)− Λ0(t))

= Gn[1(Y ≤ t)R/S0(Y , β0)]− eX ′β0P̃[
1(Ỹ ≤ t)1(Y ≥ Ỹ )R̃

S0(Ỹ , β0)2
]]

− P[
1(Y ≤ t)RS1(Y , β0)

S0(Y , β0)2 ]
√

n(β̂n − β0)

+ op(1).
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Introduction

Interval censoring: event occurs within an interval

Data: (Li ,Ri ,Xi), i = 1, . . . ,n

Transformation models:

Λ(t ; X ) = G
{∫ t

0
eβ

T X dΛ(s)

}
I G(·): specific transformation function, strictly increasing
I Λ(·): unknown increasing function
I G(x) = x ⇒ proportional hazards
I G(x) = log(1 + x)⇒ proportional odds
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Introduction (cont.)

Observed likelihood function (under PH model):

Ln(β,Λ) =
n∏

i=1

[
exp

{
−
∫ Li

0
eβ

TXi (s)dΛ(s)

}
− exp

{
−
∫ Ri

0
eβ

TXi (s)dΛ(s)

}]

Nonparametric maximum likelihood approach:

n∏
i=1

exp

−∑
tk≤Li

λk eβ
TXi (tk )

− exp

− ∑
tk≤Ri

λk eβ
TXi (tk )




=
n∏

i=1

exp

−∑
tk≤Li

λk eβ
TXik

1− exp

− ∑
tk≤Ri

λk eβ
TXik


1(Ri<∞)

(2)

I t1 < · · · < tm: unique values of Li > 0 and Ri <∞
I λk : jump size of Λ at tk
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Introduction (cont.)

Direct maximization of (2) is difficult.

Introduce latent independent Poisson random variables:

Wik ∼ Poisson(λk eβ
T Xik )

for i = 1, . . . ,n and k = 1, . . . ,m.

(2) is equivalent to observing∑
tk≤Li

Wik = 0 and 1(Ri <∞)
∑

Li<tk≤Ri

Wik > 0.

EM algorithm treating Wik as missing data.
⇒ NPMLEs (β̂n, Λ̂n)
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Asymptotic properties

Theorem (Consistency)
Under regularity conditions,

‖β̂n − β0‖+ sup
t∈[0,τ ]

|Λ̂n(t)− Λ̂0(t)| a.s.→ 0.

Theorem (Asymptotic normality)
Under regularity conditions,

√
n(β̂n − β0)

d→ N(0,Σ),

where Σ attains the semiparametric efficiency bound.
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Proof of consistency

1 Define m(β,Λ) = log[{L(β,Λ) + L(β0,Λ0)} /2]. Show that

M :=
{

m(β,Λ) : β ∈ B, Λ ∈ BV [0, τ ]
}

is a Donsker class.
2 Show lim supn Λ̂n(τ) <∞, so that m(β̂n, Λ̂n) ∈M.
3 By Helly’s selection lemma, for any subsequence of (β̂n, Λ̂n), there

exists a further subsequence such that β̂n → β∗ and Λ̂n → Λ∗ pointwise
on [0, τ ].

4 Construct a step function Λ̃ that converges uniformly to Λ0. Use the fact
that Pnm(β̂n, Λ̂n) ≥ Pnm(β0, Λ̃), together with the Donsker property of
M to show Pm(β∗,Λ∗) ≥ Pm(β0,Λ0). Thus, by the properties of the
Kullback-Leibler information, L(β∗,Λ∗) = L(β0,Λ0).

5 Verify identifiability of the model. Then β∗ = β0 and Λ∗(t) = Λ0(t) for
t ∈ [0, τ ].

6 Pointwise convergence of Λ̂n to Λ0 can be strengthened to uniform
convergence since Λ0 is continuous.
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Convergence rate

Lemma (Convergence rate)
Under regularity conditions,

E

(
K∑

k=1

[∫ Uk

0
eβ̂

TX(s)dΛ̂n(s)−
∫ Uk

0
eβ

T
0 X(s)dΛ0(s)

]2
)1/2

= Op

(
n−1/3

)
,

where K is a random number of monitoring times, and (U1, . . . ,UK ) is a
random sequence of monitoring times.

To prove the lemma, calculate the bracketing number forM. Ideally,

ϕ(δ) =

∫ δ

0

√
1 + log N[] (ε,M, L2(P)) dε ≤ O(δ1/2).

Then check each condition in Theorem 3.4.1 of van der Vaart & Wellner and
obtain the order of the Hellinger distance between (β̂n, Λ̂n) and (β0,Λ0).
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Proof of asymptotic normality of β̂n

1 To obtain the score operator for Λ, consider a one-dimensional
submodel Λε,h defined by dΛε,h = (1 + εh) dΛ.

2 Consider the least favorable direction h∗ such that the corresponding
parametric submodel achieves the semiparametric efficient information.

3 Apply Taylor expansion at (β0,Λ0). By the previous lemma on
convergence rate, we obtain
√

n(β̂n−β0) =
(

E [
{
`β − `Λ (h∗)

}⊗2
]
)−1

Gn{`β(β̂n, Λ̂n)−`Λ(β̂n, Λ̂n) (h∗)}+op(1).

4 Show the existence of h∗. Need some functional theories.
5 Show that `β(β̂n, Λ̂n)− `Λ(β̂n, Λ̂n) (h∗) belongs to a Donsker class and

converges in L2(P)-norm to `β − `Λ (h∗). This follows from the
continuous differentiability of h∗(t) over [0, τ ].

6 Show the nonsingularity of the matrix E [{`β − `Λ (h∗)}⊗2]. Prove by
contradiction.

7 Finally, we have
√

n(β̂n − β0) = Op(1) and
√

n(β̂n − β0) =
(

E [
{
`β − `Λ (h∗)

}⊗2
]
)−1

Gn
{
`β − `Λ (h∗)

}
+ op(1).
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Extension: multivariate interval-censored data

Multiple types of events / clustering of study subjects

Need to account for potential dependence

Semiparametric transformation models with random effects
(i—cluster, j—subject, k—event):

Λijk (t) = Gk

[∫ t

0
exp

{
βTXijk (s) + bT

i Zijk (s)
}

dΛk (s)

]
Latent Poisson random variables + EM algorithm (treat
random effects as missing data)

Be careful with the random effects in the proofs.
Everything else is similar to the univariate setting!
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