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Introduction

Reference: Chapter 6, Introduction to Empirical Processes and Semiparametric Inference

(Kosorok)

This chapter presents mathematical and statistical concepts and basic ideas of empirical

process, and provides a foundation for technical development in later chapters.

Topics covered: metric space, outer expectation, linear operator and differentiation.
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Introduction

Metric space provides the descriptive language by which the most important results in

stochastic processes are derived and expressed.

Outer expectation helps to define and utilize outer modes of convergence for non-measurable

quantities.

Linear operators and differentiation are important in empirical process methods for functional

delta method and Z-estimator theory.
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Metric Space
Topological Space

Definition

A collection O of subsets of a set X is a topology in X if

1 ∅ ∈ O and X ∈ O;

2 If Uj ∈ O for j=1, ..., m, then
⋂m

j=1 Uj ∈ O;

3 For an arbitrary collection {Uα} ⊆ O, we have
⋃
α Uα ∈ O.

(X,O) is called a topological space, and members of O are called the open sets in X.
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Metric Space
Topological Space

Several relevant concepts:

(continuous map) A map f: X→ Y between topological spaces is continuous if f−1(U) is

open in X whenever U is open in Y.

(closed set) A set B in X is closed if and only if its complement in X is open.

(closure) The closure of an arbitrary set E ⊆ X is the smallest closed set containing E,

denoted by Ē.

(interior) The interior of an arbitrary set E ⊆ X is the largest open set contained in E,

denoted by E◦.

(dense set) A subset A of a topological space X is dense if Ā = X.

(separable space) A topological space X is separable if it has a countable dense subset.
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Metric Space
Topological Space

Several relevant concepts (continued):

(neighborhood) A neighborhood of a point x ∈ X is any open set that contains x.

(Hausdorff space) A topological space X is Hausdorff if distinct points have disjoint

neighborhoods.

(convergence) Say a sequence of points {xn} in a topological space X converges to x ∈ X, if

every neighborhood of x contains all but finitely many of the xn’s, denoted by xn → x.

(compactness) A subset K of a topological space is compact if for every covering⋃
α∈I Uα ⊇ K (where I is the index set and Uα are open sets), there exists a finite subset

I0 ⊆ I such that
⋃
α∈I0

Uα ⊇ K.

(σ-compactness) A σ-compact set is a countable union of compact sets.
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Metric Space
Topological Space

Propositions:

1 For a Hausdorff topological space X and a sequence {xn} ⊆ X, if xn → x ∈ X and

xn → y ∈ X, then x = y.

2 If f: X→ Y is a continuous map between topological spaces and xn → x in X, then

f(xn)→ f(x) in Y.

3 For a Hausdorff topological space X, a subset K ⊆ X is compact if and only if every sequence

in K has a subsequence converging to a point in K.

4 A compact subset of a Hausdorff topological space is closed.
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Metric Space
Measurable Space

Definition

A collection A of subsets of a set X is a σ-field in X if:

1 X ∈ A;

2 If U ∈ A, then UC = X− U ∈ A;

3 Any countable union
⋃∞

j=1 Uj ∈ A whenever Uj ∈ A for all j .

(X,A) is called a measurable space, and members in A are called measurable sets.

Definition

Suppose (X,A) is a measurable space, µ : A → R is called a measure if:

1 µ(A) ≥ 0 for any A ∈ A;

2 µ(∅) = 0;

3 For any disjoint countable collection {Aj}∞j=1 ⊆ A, µ(
⋃∞

j=1 Aj ) =
∑∞

j=1 µ(Aj ).

(X,A, µ) is called a measure space.
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Metric Space
Measurable Space

Relevant concepts:

Suppose X is a measurable space and Y is a topological space, then a map f : X→ Y is

measurable if f−1(U) is measurable in X whenever U is open in Y.

Suppose O is a collection of subsets of X, then the σ-field generated by O is defined as the

smallest σ-field containing O, which is equal to the intersection of all σ-field that contains O.

A σ-field is separable if it is generated by a countable collection of subsets.

Suppose X is a topological space, then the σ-field generated by the collection of all open sets

in X is called Borel σ-field of X, denoted by B. Members of B are called Borel sets.

A map f : X→ Y between topological spaces is Borel-measurable if it is measurable w.r.t.

the Borel σ-field of X, (i.e. f−1(U) is Borel-measurable in X for any open set U in Y).

(Thus, any continuous map between topological spaces is Borel-measurable.)
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Metric Space
Measurable Space

Relevant concepts (continued): For a measure space (X,A, µ)

µ is σ-finite if there exists a sequence {Aj}∞j=1 ⊆ A such that X =
⋃∞

j=1 Aj and µ(Aj ) <∞

for any j.

If the range of µ is extended to (−∞,∞] or [−∞,∞), then µ is called a signed measure.

When µ(X) = 1 so (X,A, µ) is a probability space, let

Ā = {A ∪N : A ∈ A,N ⊆ B,B ∈ A, µ(B) = 0} (1)

µ̄(A ∪N) = µ(A) (2)

Then (X, Ā) is a measurable space and µ̄ is a well-defined probability measure on it. Ā is

called the µ-completion of A.

Yilun Li Preliminaries for Empirical Processes June 9, 2021 13 / 43



Metric Space
Metric Space

Definition

A metric space (D, d) is a set D along with a metric d : D× D→ R that satisfies

1 d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;

2 d(x, y) = d(y, x);

3 d(x, y) ≥ d(x, z) + d(z, y).

for any x, y, z ∈ D.

Note: d is called a semimetric on D if it only satisfies [2][3] and

1’ d(x, y) ≥ 0 for any x, y ∈ D.
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Metric Space
Metric Space

A semimetric space is also a topological space with open sets generated by applying arbitrary

unions to the open r-balls

Br(x) = {y : d(x, y) < r}. (3)

where r > 0 and x ∈ D.

A metric space is also a Hausdorff space, and in this case, a sequence {xn} ⊆ D converges to

x ∈ D if d(xn, x)→ 0.

For a semimetric space, d(xn, x)→ 0 only ensures that xn converges to elements in the

equivalence class of x, where the equivalence class of x consists of all {y ∈ D : d(x, y) = 0}.
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Metric Space
Metric Space

Relevant concepts:

Two metrics d1 and d2 on D are strongly equivalent if there exists α, β > 0 such that

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y) (∀x, y ∈ D) (4)

Suppose (D, d) is a semimetric space, {xn} ⊆ D is called a Cauchy sequence if d(xm, xn)→ 0

as m, n→∞. (D, d) is complete if any Cauchy sequence converges to a point in D.

Two metric spaces are isometric if there is a distance-perseving bijection between them.

A map f : X→ Y between topological spaces is a homeomorphism if f is a continuous

bijection and f−1 is continuous.

A Polish space is a space which is homeomorphic to a separable and complete metric space.

A Suslin set is the image of a Polish space under continuous mapping. If a Suslin set is also

a Hausdorff topological space, then it is called a Suslin space.

A subset K is totally bounded (or precompact) if for any r > 0, K can be covered by finite

many open r-balls.
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Metric Space
Metric Space

Definition: Normed Space

A normed space (D, ‖ · ‖) is a vector space D equipped with a norm ‖ · ‖ which is a map D→ R

such that, for all x, y ∈ D and α ∈ R,

1 ‖ x ‖≥ 0, and ‖ x ‖= 0 if and only if x = 0;

2 ‖ αx ‖= |α| ‖ x ‖;

3 ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.

A seminorm is a map that only satisfies [2][3] and

1’ ‖ x ‖≥ 0 (∀x ∈ D).

A normed space is a metric space with d(x, y) =‖ x− y ‖.

A complete normed space is called a Banach space.
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Metric Space
Metric Space

Useful Conclusions:

A map f : D→ E between two semimetric space is continuous at x ∈ D if and only if for all

{xn} ⊆ D and xn → x, we have f(xn)→ f(x).

Suppose D is a metric space and f : D→ R, then the following are equivalent:

1 For any c ∈ R, {y : f(y) ≥ c} is a closed set.

2 For any y0 ∈ D, lim supy→y0
f(y) ≤ f(y0).

Every metric space D has a completion D̄ which has a dense subset isometric with D.

If a metric space D is separable, then the Borel σ-field of D is also separable.

Any open subset of a Polish space is also Polish.

Suppose (D, d) is a complete semimetric space, then

A subset K ⊆ D is compact if and only if K is closed and totally bounded.

K ⊆ D is totally bounded if and only if every sequence in K has a Cauchy subsequence.
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Metric Space
Examples

For an arbitrary set T , define `∞(T ) = {f : T → R : f is bounded}

For ∀f1, f2 ∈ `∞(T ) and ∀α1, α2 ∈ R, define

(α1f1 + α2f2)(t) = α1f1(t) + α2f2(t) (5)

then `∞(T ) is a linear space.

For f ∈ `∞(T ), define ‖ f ‖T = supt∈T |f(t)|, then (`∞(T ), ‖ · ‖T ) is a normed space. And

‖ f ‖T is called the uniform norm of f.

It can be proved that (`∞(T ), ‖ · ‖T ) is a Banach space, and is separable if and only if T is

countable.
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Metric Space
Examples (continued)

For a semimetric ρ on T , define

UC(T , ρ) = {f : T → R : f is bounded, uniformly ρ-continuous}

where uniformly ρ-continuous is defined as

lim
δ↓0

sup
ρ(s,t)<δ

|f(s)− f(t)| = 0 (6)

then UC(T , ρ) is a subspace of `∞(T ).

Theorem (Arzela-Ascoli)

1 Suppose ρ is a semimetric on T and (T , ρ) is totally bounded, K ⊆ UC(T , ρ), then K̄ is

compact if and only if

(1) ∃t0 ∈ T such that supx∈K |x(t0)| <∞;

(2) limδ↓0 supx∈K

(
sups,t∈T,ρ(s,t)<δ |x(s)− x(t)|

)
= 0

2 Suppose K ⊆ `∞(T ), then K̄ is σ-compact if and only if there exists a semimetric ρ such

that (T , ρ) is totally bounded and K ⊆ UC(T , ρ).
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Metric Space
Examples (Product Space)

Suppose (D, d) and (E, e) are two metric spaces.

For ∀x1, x2 ∈ D, ∀y1, y2 ∈ E, define

ρ ((x1, y1) , (x2, y2)) = d(x1, x2) ∨ e(y1, y2). (7)

Then (D× E, ρ) forms a metric space (Cartesian product space).

(xn, yn)→ (x0, y0) in D× E if and only if xn → x0 in D and yn → y0 in E.
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Outer Expectation

Suppose (Ω,A,P) is a probability space. In some statistical problems, the map of interest

T : Ω→ R̄ = [−∞,∞] may not be measurable. Hence, we need to introduce the concept of

outer expectation.

Definition (outer expectation and inner expectation)

Suppose T : Ω→ R̄ is an arbitrary map.

Define the outer expectation of T w.r.t. the probability measure P as

E∗(T ) = inf{E(U)| U : Ω→ R̄ measurable, U ≥ T , E(U) exists} (8)

Define the inner expectation of T w.r.t. the probability measure P as

E∗(T ) = −E∗(−T ) = sup{E(U)| U : Ω→ R̄ measurable, U ≤ T , E(U) exists} (9)

Here, E(U) exists means that at least one of E(U+) and E(U−) is finite.
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Outer Expectation

Lemma

For any T : Ω→ R̄, there exists a minimal measurable majorant T∗ : Ω→ R̄ with

(1) T∗ is measurable and T∗ ≥ T (a.s.);

(2) For every measurable U : Ω→ R̄ with U ≥ T (a.s.), U ≥ T∗ (a.s.)

(3) For any T∗ satisfying (1)(2), E∗(T ) = E(T∗) as long as E(T∗) exists. The last statement

is true if E∗(T ) <∞.

Thus if both T∗ and T∗∗ satisfy (1) and (2), then T∗ = T∗∗ (a.s.)

Similarly, define T∗ = −(−T )∗ as the maximal measurable majorant of T . Then

(1’) T∗ is measurable and T∗ ≤ T (a.s.);

(2’) For every measurable U : Ω→ R̄ with U ≤ T (a.s.), U ≤ T∗ (a.s.)

(3’) For any T∗ satisfying (1’)(2’), E∗(T ) = E(T∗) as long as E(T∗) exists. The last statement

is true if E∗(T ) > −∞.
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Outer Expectation

Definition (outer probability and inner probability)

For any B ⊆ Ω, define

the outer probability of B w.r.t. the probability measure P as

P∗(B) = inf{P(A) : A ∈ A,A ⊇ B};

the inner probability of B w.r.t. the probability measure P as

P∗(B) = 1− P∗(Bc ) = sup{P(A) : A ∈ A,A ⊆ B}

Then we can prove that for any B ⊆ Ω

P∗(B) = E∗(IB), P∗(B) = E∗(IB);

B∗ = {ω : (IB)∗(ω) ≥ 1} is measurable with B∗ ⊇ B, P∗(B) = P(B∗) and (IB)∗ = IB∗ ;

B∗ = [(Bc )∗]c with P∗(B) = P(B∗);

(IB)∗ + (IBc )∗ = 1.
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Outer Expectation

Properties of outer expectation: For arbitrary map S ,T : Ω→ R, the following statements are

true almost surely

S∗ + T∗ ≤ (S + T )∗ ≤ S∗ + T∗ with all equalities if S is measurable.

S∗ + T∗ ≤ (S + T )∗ ≤ S∗ + T∗ with all equalities if T is measurable.

(S − T )∗ ≥ S∗ − T∗

|S∗ − T∗| ≤ |S − T |∗

For any c ∈ R, [I(T>c)]∗ = I(T∗>c) and [I(T≥c)]∗ = I(T∗≥c)

(S ∨ T )∗ = S∗ ∨ T∗

(S ∧ T )∗ ≤ S∗ ∧ T∗ with equality if S or T is measurable.
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Outer Expectation

Properties of outer probability: For any A,B ⊆ Ω,

(A ∪ B)∗ = A∗ ∪ B∗, (A ∩ B)∗ = A∗ ∩ B∗.

(A ∩ B)∗ ⊆ A∗ ∩ B∗, (A ∪ B)∗ ⊇ A∗ ∪ B∗, with equality if either A or B is measurable.

If A ∩ B = ∅, then

P∗(A) + P∗(B) ≤ P∗(A ∪ B) ≤ P∗(A ∪ B) ≤ P∗(A) + P∗(B) (10)
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Outer Expectation
Outer Expectation Version of Jensen’s Inequality

Lemma

Let T : Ω→ R be an arbitrary map and suppose φ : R→ R is monotone with an extension to R̄.

Then the following statements are true almost surely, provided they are well-defined:

If φ is non-decreasing, then

φ(T∗) ≥ [φ(T )]∗, with equality if φ is left-continuous on [−∞,∞);

φ(T∗) ≤ [φ(T )]∗, with equality if φ is right-continuous on (−∞,∞];

If φ is non-increasing, then

φ(T∗) ≤ [φ(T )]∗, with equality if φ is left-continuous on [−∞,∞);

φ(T∗) ≥ [φ(T )]∗, with equality if φ is right-continuous on (−∞,∞];

Theorem (Jensen’s Inequality)

Let T : Ω→ R be an arbitrary map with E∗|T | <∞, and suppose φ : R→ R is convex, then

1 E∗[φ(T )] ≥ φ[E∗(T )] ∨ φ[E∗(T )]

2 If φ is also monotone, then E∗[φ(T )] ≥ φ[E∗(T )] ∧ φ[E∗(T )]
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Outer Expectation
Outer Expectation Version of other conclusion

Chebyshev’s Inequality

Let T : Ω→ R be an arbitrary map. φ : [0,∞)→ [0,∞) is positive on (0,∞) and

non-decreasing, then for any u > 0, P∗(|T | ≥ u) ≤ E∗[φ(|T |)]/φ(u)

Monotone Convergence

Let Tn,T : Ω→ R be arbitrary maps, with Tn ↑ T pointwise on a set of inner probability 1.

Then T∗n ↑ T∗ (a.s.). Additionally, if E∗(Tn) > −∞ for some n, then E∗(Tn) ↑ E∗(T ).

Dominated Convergence

Let Tn,T , S : Ω→ R be maps with |Tn − T |∗ → 0(a.s.), |Tn| ≤ S(∀n), and E∗(S) <∞, then

E∗(Tn)→ E∗(T ).
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Outer Expectation
Completion of Probability Space

Suppose (Ω, Ā, P̄) is the P-completion of probability space (Ω,A,P)

Ā = {A ∪N : A ∈ A,N ⊆ B,B ∈ A,P(B) = 0}

P̄(A ∪N) = P(A)

Then

for any Ā-measurable map S̄ : (Ω, Ā)→ R, there exists an A-measurable map

S : (Ω,A)→ R such that P∗(S 6= S̄) = 0.

For any T : (Ω,A,P)→ R̄, define T̄ : (Ω, Ā, P̄)→ R̄, ω 7→ T (ω).

Let T∗ be the minimal measurable majorant of T w.r.t. P.

Let T̄∗ be the minimal measurable majorant of T̄ w.r.t. P̄.

Then P∗(T∗ 6= T̄∗) = 0.
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Outer Expectation
Application in Product Space - Perfect Maps

Consider a measurable map φ : (Ω̃, Ã, P̃)→ (Ω,A,P) and any map T : (Ω,A,P)→ R where for

A ∈ A, P(A) , P̃ ◦ φ−1(A) = P̃(φ ∈ A).

T ◦ φ : (Ω̃, Ã, P̃)→ R

P is a probability measure on (Ω,A).

Let T∗ be the minimal measurable majorant of T w.r.t. P.

By definition, T∗ ◦ φ : (Ω̃, Ã, P̃)→ R is measurable and T∗ ◦ φ ≥ T ◦ φ.

Thus, T∗ ◦ φ ≥ (T ◦ φ)∗.

φ is perfect if T∗ ◦ φ = (T ◦ φ)∗ (a.s.) for any bounded map T : Ω→ R. In this case,

P̃∗(φ ∈ A) = (P̃ ◦ φ−1)∗(A) for any A ⊆ Ω.
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Outer Expectation
Application in Product Space - Perfect Maps

Example: coordinate projection in a product probability space is a perfect map.

Specifically, suppose (Ω1,A1,P1) and (Ω2,A2,P2) are two probability space.

Let T1 : (Ω1,A1,P1)→ R be a bounded map.

Define T : (Ω1 × Ω2,A1 ⊗ Ω2,P1 × P2)→ R, ω = (ω1, ω2) 7→ T1(ω1) to be a map from the

product space to the real line.

Also let π1 be the projection on the first coordinate. then T = T1 ◦ π1.

It can be proved that π1 is a perfect map. Thus T∗ = (T1 ◦ π1)∗ = T∗1 ◦ π1. Thus, to find

the image of any ω = (ω1, ω2) under T∗, we can ignore ω2 and find the image of ω1 under

T∗1 .
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Outer Expectation
Application in Product Space - Fubini’s Theorem

Fubini’s Theorem

Let T : (Ω1 × Ω2,A1 ⊗ Ω2,P1 × P2)→ R be an arbitrary map. For any fixed ω1 ∈ Ω1, define

E∗2 (T )(ω1) = inf{E2(U) =

∫
Ω2

U(ω2)dP2(ω2)| U : Ω2 → R̄ measurable,U(ω2) ≥ T (ω1, ω2), E2(U) exists}. (11)

Also, define

E∗1 [E∗2 (T )] = inf{E1(U) =

∫
Ω1

U(ω1)dP1(ω1)| U : Ω1 → R̄ measurable,U(ω1) ≥ E∗2 (T )(ω1), E1(U) exists}. (12)

E∗(T ) = inf{E(U) =

∫
Ω1×Ω2

U(ω1, ω2)d(P1 × P2)(ω1, ω2)| U : Ω1 × Ω2 → R measurable,U ≥ T , E(U) exists}.

(13)

We can also define E2∗(T )(ω1), E1∗[E2∗(T )] and E∗(T ) similarly. Then

E∗(T ) ≤ E1∗[E2∗(T )] ≤ E∗1 [E∗2 (T )] ≤ E∗(T ). (14)
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Linear Operators and Differentiation
Linear Operators

A linear operator is a map T : D→ E between normed spaces with the property that

T (ax + by) = aT (x) + bT (y) (∀a, b ∈ R, ∀x, y ∈ D).

If E = R, then T is called a linear functional.

T is bounded if ‖ T ‖, supx∈D,‖x‖=1 ‖ T (x) ‖<∞.

T is continuous at x0 ∈ D if T (xn)→ T (x0) in E whenever xn → x0 in D.

Lemma: T : D→ E is a linear operator between normed spaces. Then the following are

equivalent:

T is continuous at a point x0 ∈ D;

T is continuous at any point in D;

T is bounded
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Linear Operators and Differentiation
Linear Operators

For normed spaces D and E, let B(D,E) be the space of all bounded linear operators. For

∀T1,T2 ∈ B(D,E) and ∀α1, α2 ∈ R, define

(α1T1 + α2T2)(x) = α1T1(x) + α2T2(x) (15)

then B(D,E) is a linear space.

With ‖ T ‖, supx∈D,‖x‖=1 ‖ T (x) ‖, (B(D,E), ‖ · ‖) forms a normed space.

If E is a Banach space, then B(D,E) is also a Banach space.

Generally, when D is not a Banach space, T has a unique continuous extension T̄ : D̄→ Ē.
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Linear Operators and Differentiation
Linear Operators

For ∀T ∈ B(D,E),

the null space N(T ) , {x : T (x) = 0};

the range space R(T ) , {T (x) : x ∈ D}.

Both N(T ) and R(T ) are linear space.

T is one-to-one if and only if N(T ) = {0}.

Conclusions for inverse mapping: Let T ∈ B(D,E), then

1 T has a continuous inverse T−1 : R(T )→ D if and only if

∃c > 0s.t. ‖ T (x) ‖≥ c ‖ x ‖ (∀x ∈ D);

2 If D and E are complete, and T is a continuous injection, then T−1 is continuous if and only if

R(T ) is closed.
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Linear Operators and Differentiation
Compact Operators

Let U = {x ∈ D :‖ x ‖≤ 1} be the unit ball in a normed space D.

A linear operator T : D→ E between normed space is a compact operator if T (U) is

compact in E.

In later chapters, we will encounter linear operators in a form of (T + K), where T is

continuous and invertible, and K is compact.

Lemma

Let A = T + K : D→ E be a linear operator between Banach spaces, where T is continuous,

invertible and K is compact. If N(A) = 0, then A is also continuously invertible.
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Linear Operators and Differentiation
Contraction Operators

An operator A is a contraction operator if ‖ A ‖< 1.

Suppose D is a normed space and A : D→ D is a linear contraction operator. Then (I − A)

is continuous and invertible with (I − A)−1 =
∑∞

j=0 A
j . (Here, I is the identity map.)
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Linear Operators and Differentiation
Differentiation: Gateaux Differentiability

Let D and E be two normed spaces, and φ : Dφ ⊆ D→ E. φ is Gateaux differentiable at

θ ∈ Dφ in the direction h, if there exists a quantity φ
′
θ(h) ∈ E s.t.

φ(θ + tnh)− φ(θ)

tn
→ φ

′
θ(h) (16)

for any scalar sequence tn → 0.

Limitation: Gateaux-differentiability is usually not strong enough for the applications of

functional derivatives in Z-estimators and delta method.
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Linear Operators and Differentiation
Differentiation: Hadamard Differentiability

φ : Dφ ⊆ D→ E is Hadamard differentiable at θ ∈ Dφ if there exists a continuous linear

operator φ
′
θ : D→ E s.t. for any scalar sequence tn → 0 and hn → h ∈ D

φ(θ + tnhn)− φ(θ)

tn
→ φ

′
θ(h). (17)

If (17) is required only for hn → h ∈ D0 ⊆ D, then say φ is Hadamard differentiable

tangentially to D0.

φ : Dφ ⊆ D→ E is compact differentiable at θ ∈ Dφ if there exists a continuous linear

operator φ
′
θ : D→ E s.t. for any compact set K ⊆ D

sup
h∈K,(θ+th)∈Dφ

∣∣∣∣∣∣φ(θ + th)− φ(θ)

t
− φ
′
θ(h)

∣∣∣∣∣∣→ 0 (t → 0) (18)

Hadamard differentiability is equivalent to compact differentiability.
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Linear Operators and Differentiation
Differentiation: Hadamard Differentiability

Lemma: Chain Rule

Suppose

φ : Dφ ⊆ D→ Eψ ⊆ E is Hadamard differentiable at θ ∈ Dφ tangentially to D0 ⊆ D,

ψ : Eψ ⊆ E→ F is Hadamard differentiable at φ(θ) tangentially to φ
′
θ(D0).

Then ψ ◦ φ : Dφ → F is Hadamard differentiable at θ tangentially to D0 with derivative ψ
′
φ(θ)
◦ φ′θ
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Linear Operators and Differentiation
Differentiation: Frechet Differentiability

φ : Dφ ⊆ D→ E is Frechet differentiable if there exists a continuous linear operator

φ
′
θ : D→ E s.t. for any bounded set K ⊆ D

sup
h∈K,(θ+th)∈Dφ

∣∣∣∣∣∣φ(θ + th)− φ(θ)

t
− φ
′
θ(h)

∣∣∣∣∣∣→ 0 (t → 0), (19)

or equivalently,

‖ φ(θ + h)− φ(θ)− φ
′
θ(h) ‖= o(‖ h ‖) (‖ h ‖→ 0), (20)

Relationships:

Frechet differentiability implies Hadamard differentiability

Hadamard differentiability implies Gateaux differentiability

Frechet differentiability: important in Z-estimator theory.

Hadamard differentiability: important in functional delta method.
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