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Introduction

@ Reference: Chapter 6, Introduction to Empirical Processes and Semiparametric Inference
(Kosorok)

@ This chapter presents mathematical and statistical concepts and basic ideas of empirical

process, and provides a foundation for technical development in later chapters.

@ Topics covered: metric space, outer expectation, linear operator and differentiation.
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Introduction

@ Metric space provides the descriptive language by which the most important results in
stochastic processes are derived and expressed.

@ Outer expectation helps to define and utilize outer modes of convergence for non-measurable
quantities.

o Linear operators and differentiation are important in empirical process methods for functional

delta method and Z-estimator theory.
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© Metric Space
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Metric Space

Topological Space

Definition
A collection O of subsets of a set X is a topology in X if

1 e Oand X €0,

2 If U; € O for j=1, ..., m, then N, U; € O;

3 For an arbitrary collection {Un} C O, we have |, Us € O.

(X, O) is called a topological space, and members of O are called the open sets in X.
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Metric Space

Topological Space

Several relevant concepts:

o (continuous map) A map f: X — Y between topological spaces is continuous if f~1(U) is

open in X whenever U is open in Y.
o (closed set) A set B in X is closed if and only if its complement in X is open.

o (closure) The closure of an arbitrary set E C X is the smallest closed set containing E,

denoted by E.

(interior) The interior of an arbitrary set E C X is the largest open set contained in E,

denoted by E°.
o (dense set) A subset A of a topological space X is dense if A=X.

o (separable space) A topological space X is separable if it has a countable dense subset.
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Metric Space

Topological Space

Several relevant concepts (continued):
@ (neighborhood) A neighborhood of a point x € X is any open set that contains x.

o (Hausdorff space) A topological space X is Hausdorff if distinct points have disjoint

neighborhoods.

o (convergence) Say a sequence of points {x,} in a topological space X converges to x € X, if

every neighborhood of x contains all but finitely many of the x,'s, denoted by x, — x.

o (compactness) A subset K of a topological space is compact if for every covering
UaGI Uo 2 K (where Z is the index set and U, are open sets), there exists a finite subset

To C T such that J, 7, Ua 2 K.

@ (o-compactness) A o-compact set is a countable union of compact sets.
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Metric Space

Topological Space

Propositions:

1 For a Hausdorff topological space X and a sequence {x,} C X, if x, = x € X and
Xp — Yy € X, then x =y.

2 If f: X — Y is a continuous map between topological spaces and x, — x in X, then
f(xn) — f(x) in Y.
3 For a Hausdorff topological space X, a subset K C X is compact if and only if every sequence

in K has a subsequence converging to a point in K.

4 A compact subset of a Hausdorff topological space is closed.
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Metric Space

Measurable Space

Definition

A collection A of subsets of a set X is a o-field in X if:
1 XeA
2 IfU€EA then US =X -U€ A
3 Any countable union [J2; U; € A whenever U; € A for all j.

(X, A) is called a measurable space, and members in A are called measurable sets.

Definition

| \

Suppose (X, .A) is a measurable space, i : A — R is called a measure if:
1 p(A) >0 for any A € A;
2 p(@) =0;

3 For any disjoint countable collection {A;}?°; C A, n(UZ; Aj) = 3272, 1(Aj).

(X, A, ) is called a measure space.

A\
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Metric Space

Measurable Space

Relevant concepts:

Suppose X is a measurable space and Y is a topological space, then a map f: X — Y is

measurable if f~1(U) is measurable in X whenever U is open in Y.

Suppose O is a collection of subsets of X, then the o-field generated by O is defined as the
smallest o-field containing O, which is equal to the intersection of all o-field that contains O.
A o-field is separable if it is generated by a countable collection of subsets.

Suppose X is a topological space, then the o-field generated by the collection of all open sets

in X is called Borel o-field of X, denoted by 3. Members of B are called Borel sets.

A map f : X — Y between topological spaces is Borel-measurable if it is measurable w.r.t.
the Borel o-field of X, (i.e. f~1(U) is Borel-measurable in X for any open set U in Y).

(Thus, any continuous map between topological spaces is Borel-measurable.)
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Metric Space

Measurable Space

Relevant concepts (continued): For a measure space (X, A, p)

o p is o-finite if there exists a sequence {A;}2°; C A such that X = U1 Aj and p(A;) < oo

for any j.
o If the range of p is extended to (—o00, 00] or [—o0, 00), then p is called a signed measure.

o When p(X) =1 so (X, A, ) is a probability space, let
A={AUN:A € ANCB,Bc A uB)=0} (1)
fi(AUN) = u(A) )

Then (X,./T) is a measurable space and [i is a well-defined probability measure on it. A is

called the p-completion of A.
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Metric Space

Metric Space

Definition
A metric space (D, d) is a set D along with a metric d : D x D — R that satisfies

1 d(x,y) >0, and d(x,y) =0 if and only if x =y;
2 d(x,y) = d(y, x);

3 d(x,y) > d(x,z) + d(z,y).

for any x,y,z € D.

Note: d is called a semimetric on D if it only satisfies [2][3] and

1" d(x,y) > 0 for any x,y € D.
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Metric Space

Metric Space

@ A semimetric space is also a topological space with open sets generated by applying arbitrary

unions to the open r-balls
Br(x) ={y:d(x,y) <r}. (3)
where r > 0 and x € D.

o A metric space is also a Hausdorff space, and in this case, a sequence {x,} C D converges to

x € D if d(xp,x) — 0.

o For a semimetric space, d(xn,x) — 0 only ensures that x, converges to elements in the

equivalence class of x, where the equivalence class of x consists of all {y € D : d(x,y) = 0}.
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Metric Space

Metric Space

Relevant concepts:

o Two metrics di and dy on D are strongly equivalent if there exists a, 8 > 0 such that

adi(x,y) < da(x,y) < Bdi(x,y) (Vx,y € D) (4)

Suppose (D, d) is a semimetric space, {x,} C D is called a Cauchy sequence if d(xm,xn) — 0

as m,n — oo. (D, d) is complete if any Cauchy sequence converges to a point in D.

@ Two metric spaces are isometric if there is a distance-perseving bijection between them.

o A map f: X — Y between topological spaces is a homeomorphism if f is a continuous
bijection and f~! is continuous.

@ A Polish space is a space which is homeomorphic to a separable and complete metric space.

@ A Suslin set is the image of a Polish space under continuous mapping. If a Suslin set is also

a Hausdorff topological space, then it is called a Suslin space.

A subset K is totally bounded (or precompact) if for any r > 0, K can be covered by finite

many open r-balls.
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Metric Space

Metric Space

Definition: Normed Space
A normed space (I, || - ||) is a vector space D equipped with a norm || - || which is a map D — R

such that, for all x,y € D and a € R,

1| x||>0,and || x ||= 0 if and only if x = 0;
2 flaxl= el I x;
3ix+yl<lxl+1lyll

@ A seminorm is a map that only satisfies [2][3] and

1| x||>0(vx € D).

o A normed space is a metric space with d(x,y) =|| x—y |

A complete normed space is called a Banach space.
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Metric Space

Metric Space

Useful Conclusions:

o A map f: DD — E between two semimetric space is continuous at x € D if and only if for all
{xn} C D and x, — x, we have f(x,) — f(x).
@ Suppose D is a metric space and f : D — R, then the following are equivalent:

1 Forany c € R, {y: f(y) > c} is a closed set.
2 For any y, € D, limsup,_,, f(y) < f(y,)-

o Every metric space D has a completion D which has a dense subset isometric with I.
o If a metric space D is separable, then the Borel o-field of D is also separable.

@ Any open subset of a Polish space is also Polish.

Suppose (D, d) is a complete semimetric space, then

o A subset K C DD is compact if and only if K is closed and totally bounded.

o K C D is totally bounded if and only if every sequence in K has a Cauchy subsequence.
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Metric Space

Examples

o For an arbitrary set T, define £>°(T)={f: T — R : f is bounded}

o For Vf1,fo € £°°(T) and Yoy, ap € R, define

(a1f1 + agfz)(t) = Oqfl(t) + azfz(t) (5)

then ¢°°(T) is a linear space.

For f € £>°(T), define || f ||7= sup,c 7 [f(t)[, then (£>°(T),| - ||7) is a normed space. And

|| f |7 is called the uniform norm of f.

o |t can be proved that (£°°(T),|| - ||7) is a Banach space, and is separable if and only if T is

countable.
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Metric Space

Examples (continued)

o For a semimetric p on T, define
UC(T,p)={f: T — R :fis bounded, uniformly p-continuous}

where uniformly p-continuous is defined as

lim sup |f(s) —f(t)]=0 6
i sup_ 1)~ (0) (6)

then UC(T, p) is a subspace of £°°(T).

Theorem (Arzela-Ascoli)
1 Suppose p is a semimetric on T and (T, p) is totally bounded, K C UC(T, p), then K is
compact if and only if
(1) 3to € T such that sup, g [x(to)| < oo;
(2) limsyosupyek (SuPs et pie<s IX() = x(B)]) =0
2 Suppose K C ¢°°(T), then K is o-compact if and only if there exists a semimetric p such

that (T, p) is totally bounded and K C UC(T, p).
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Metric Space

Examples (Product Space)

@ Suppose (D, d) and (E, e) are two metric spaces.

o For Vx1,x2 € D, Vy;,y, € E, define

P((XI’Y1)7(X2’Y2)) =d(X1,X2)Ve(y1,y2). (7)

Then (D x E, p) forms a metric space (Cartesian product space).

@ (xp,¥,) — (x0,Y¥p) in D X E if and only if x, = x¢ in D and y, — y in E.
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Outer Expectation

© Outer Expectation
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Outer Expectation

@ Suppose (R, A, P) is a probability space. In some statistical problems, the map of interest
T :Q — R = [—00,00] may not be measurable. Hence, we need to introduce the concept of

outer expectation.

Definition (outer expectation and inner expectation)

Suppose T : Q — R is an arbitrary map.

o Define the outer expectation of T w.r.t. the probability measure P as
E*(T) = inf{E(U)| U:Q — R measurable, U > T, E(U) exists} (8)
@ Define the inner expectation of T w.r.t. the probability measure P as

E.(T)=—E*(—T) =sup{E(U)| U:Q — R measurable, U < T, E(U) exists} 9)

Here, E(U) exists means that at least one of E(U™) and E(U™) is finite.
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Outer Expectation

For any T : Q — R, there exists a minimal measurable majorant T* : Q — R with

(1) T* is measurable and T* > T (a.s.);
(2) For every measurable U: Q — R with U > T (a.s.), U> T* (ass.)

(3) For any T* satisfying (1)(2), E*(T) = E(T*) as long as E(T*) exists. The last statement
is true if E*(T) < co.

Thus if both T* and T** satisfy (1) and (2), then T* = T** (a.s.)

Similarly, define T, = —(—T)* as the maximal measurable majorant of T. Then
(1') T is measurable and T, < T (a.s.);
(2') For every measurable U: Q — R with U< T (ass.), U< Ty (as.)

(3') For any T, satisfying (1')(2"), E<(T) = E(Tx) as long as E(T.) exists. The last statement
is true if E«(T) > —oo.
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Outer Expectation

Definition (outer probability and inner probability)

For any B C Q, define
@ the outer probability of B w.r.t. the probability measure P as
P*(B) = inf{P(A) : A € A A D B};
@ the inner probability of B w.r.t. the probability measure P as
P.(B)=1— P*(B°) =sup{P(A): A€ A A C B}

Then we can prove that for any B C Q
o P*(B) = E*(lg), P«(B) = Ex(lg);
o B* = {w: (Ig)*(w) > 1} is measurable with B* O B, P*(B) = P(B*) and (lg)* = Ig~;
o B, = [(B)*]¢ with P.(B) = P(B.);

o (fg)" + (lge)« =1.
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Outer Expectation

Properties of outer expectation: For arbitrary map S, T : Q2 — R, the following statements are

true almost surely

0 S.+T*<(S+4 T)* <S5*+ T* with all equalities if S is measurable.

Si + T < (54 T)« < S« + T* with all equalities if T is measurable.

(S—T)*>5*—T*

|S* —T*| <|S—T|*
o Forany c €R, [[(750)]" = l7+5¢) and [[i7>0)]« = 1, >¢)
o (SVT)*=5*V T~

o (SAT)* <S*AT* with equality if S or T is measurable.
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Outer Expectation

Properties of outer probability: For any A,B C Q,
e (AUB)* =A*UB*, (ANB). =A.NB..
o (ANB)* C A*NB*, (AUB)« 2 A, UB., with equality if either A or B is measurable.

e IfANB =0, then

P.(A) + P.(B) < P.(AUB) < P*(AUB) < P*(A) + P*(B) (10)
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Outer Expectation

Outer Expectation Version of Jensen's Inequality

Lemma

Let T : Q — R be an arbitrary map and suppose ¢ : R — R is monotone with an extension to R.
Then the following statements are true almost surely, provided they are well-defined:
o If ¢ is non-decreasing, then
o ¢(T*) > [¢(T)]*, with equality if ¢ is left-continuous on [—oo, 00);
o ¢(Tx) < [¢(T)]«, with equality if ¢ is right-continuous on (—oo, oc];
o If ¢ is non-increasing, then
o ¢(T") < [¢(T)]«, with equality if ¢ is left-continuous on [—o0, 00);
o ¢(Tx) > [¢(T)]", with equality if ¢ is right-continuous on (—oo, oc];

A\

Theorem (Jensen's Inequality)

Let T : Q — R be an arbitrary map with E*|T| < oo, and suppose ¢ : R — R is convex, then
L EX[¢p(T)] = S[E*(T)]V $[E«(T)]
2 If ¢ is also monotone, then Ex[p(T)] > S[E*(T)] A ¢[E«(T)]

\
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Outer Expectation

Outer Expectation Version of other conclusion

Chebyshev's Inequality

Let T : Q — R be an arbitrary map. ¢ : [0, 00) — [0, 00) is positive on (0, c0) and
non-decreasing, then for any u > 0, P*(|T| > u) < E*[¢(| T|)]/¢(u)

Monotone Convergence
Let T, T : Q — R be arbitrary maps, with T, 1+ T pointwise on a set of inner probability 1.
Then T} 1+ T* (a.s.). Additionally, if E*(T,) > —oo for some n, then E*(T,) t E*(T).

| A\,

Dominated Convergence
Let Tp, T,S : 2 — R be maps with | T, — T|* — 0(a.s.), | Ta| < S(Vn), and E*(S) < oo, then
E*(T,) — E*(T).

Yilun Li Preliminaries for Empirical Processes June 9, 2021 29 /43



Outer Expectation

Completion of Probability Space

Suppose (R, A, P) is the P-completion of probability space (€, A, P)
o A={AUN:Ac ANCB,Bc A PB)=0}
e P(AUN) = P(A)

Then

o for any A-measurable map S : (R, A) — R, there exists an .A-measurable map
S: (R, A) — R such that P*(§ #5) = 0.

o Forany T:(Q,A,P)— R, define T:(Q,A4,P) = R,w— T(w).
Let T* be the minimal measurable majorant of T w.r.t. P.

Let T* be the minimal measurable majorant of T w.r.t. P.

Then P*(T* # T*) =0.
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Outer Expectation

Application in Product Space - Perfect Maps

Consider a measurable map ¢ : (2, 4, P) = (2, A, P) and any map T : (€, 4, P) — R where for
Ac A P(A)2 Pog l(A) = P(¢ € A).

Tog:(Q,4P) =R
@ P is a probability measure on (£, A).
o Let T* be the minimal measurable majorant of T w.r.t. P.
o By definition, T* o ¢ : (ﬁ,jl, f’) — R is measurable and T*o¢ > T o0 ¢.
Thus, T* o > (T 0 ¢)*.
o ¢ is perfect if T* o ¢p = (T o ¢)* (a.s.) for any bounded map T : 2 — R. In this case,
P*(¢ € A) = (P o¢~1)*(A) for any A C Q.
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Outer Expectation

Application in Product Space - Perfect Maps

@ Example: coordinate projection in a product probability space is a perfect map.

o Specifically, suppose (€1, .41, P1) and (2,42, P2) are two probability space.

o Let Ty : (91,41, P1) — R be a bounded map.
Define T : (21 x Q2,41 ® Q2, P1 X P2) = R,w = (w1,w2) — T1(w1) to be a map from the
product space to the real line.

o Also let 71 be the projection on the first coordinate. then T = T3 o 7.

@ It can be proved that m; is a perfect map. Thus T* = (Tyom)* = T} omy. Thus, to find

the image of any w = (w1, w2) under T*, we can ignore w> and find the image of wy under

Ty.
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Outer Expectation

Application in Product Space - Fubini's Theorem

Fubini’'s Theorem

Let T : (1 X Q2,41 ® Q2,P1 X P2) — R be an arbitrary map. For any fixed w1 € Q1, define

Ey (T)(w1) = inf{Ex(U) = /Q U(wa)dPy(w3)| U : Q5 — R measurable, U(wp) > T(w1, wa), Ea(U) exists}. (11)
2

Also, define

ES[ES(T)] = inf{E1(U) = /n U(wy)dPy(w1)| U : Q1 — R measurable, U(wy) > E; (T)(w1), Ey(U) exists}. (12)
i
E*(T) = inf{E(U) = /Q o U(wi, wp)d(P1 X P)(w1,w2)| U: Q1 X Q2 — R measurable, U > T, E(U) exists}.
1 2
(13)

We can also define Ep.(T)(w1), E1«[E2«(T)] and E«(T) similarly. Then

Ei(T) < Eru[Eou(T)] < Ef[E5(T)] < EX(T). (14) |
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@ Linear Operators and Differentiation
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Linear Operators and Differentiation

Linear Operators

@ A linear operator is a map T : D — [E between normed spaces with the property that

T(ax + by) = aT(x) + bT(y) (Va,b € R,Vx,y € D).
o IfE =R, then T is called a linear functional.
o T is bounded if | T ||& supPyep, ||xj=t Il T(x) |I< oco.

e T is continuous at xg € D if T(x,) = T(xo) in E whenever x, — xg in D.
o Lemma: T : D — E is a linear operator between normed spaces. Then the following are
equivalent:
o T is continuous at a point xg € D;

e T is continuous at any point in D;
o T is bounded
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Linear Operators and Differentiation

Linear Operators

o For normed spaces D and E, let B(DD, E) be the space of all bounded linear operators. For

VT1, T € B(D,E) and Vai, az € R, define
(a1T1 + a2 T2)(x) = a1 T1(x) + a2 To(x) (15)

then B(D,E) is a linear space.
e With || T ||& suPyep,|jx=1 || T(x) I (B(D,E), || - ||) forms a normed space.
o If E is a Banach space, then B(D,E) is also a Banach space.

o Generally, when D is not a Banach space, T has a unique continuous extension T : D — E.
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Linear Operators and Differentiation

Linear Operators

For VT € B(D,E),
the null space N(T) £ {x: T(x) = 0};
the range space R(T) 2 {T(x) : x € D}.

Both N(T) and R(T) are linear space.
o T is one-to-one if and only if N(T) = {0}.
Conclusions for inverse mapping: Let T € B(D,E), then

1 T has a continuous inverse T~ : R(T) — D if and only if
Je > 0s.t. || T(x) |> c | x| (vx € D)
2 If D and E are complete, and T is a continuous injection, then T ! is continuous if and only if

R(T) is closed.
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Linear Operators and Differentiation

Compact Operators

o Let U= {x €D :| x| <1} be the unit ball in a normed space D.

o A linear operator T : D — E between normed space is a compact operator if T(U) is
compact in E.
@ In later chapters, we will encounter linear operators in a form of (T + K), where T is

continuous and invertible, and K is compact.

Let A= T + K : D — E be a linear operator between Banach spaces, where T is continuous,

invertible and K is compact. If N(A) = 0, then A is also continuously invertible.
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Linear Operators and Differentiation

Contraction Operators

@ An operator A is a contraction operator if || A ||< 1.

@ Suppose D is a normed space and A: D — D is a linear contraction operator. Then (I — A)

is continuous and invertible with (/ — A)~t = 322, A/, (Here, [ is the identity map.)
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Linear Operators and Differentiation

Differentiation: Gateaux Differentiability

o Let D and E be two normed spaces, and ¢ : Dy, C D — E. ¢ is Gateaux differentiable at
0 € Dy in the direction h, if there exists a quantity ¢>/9(h) cEs.t.

¢(9 + tnh) — ¢(9)

. = g (h) (16)

for any scalar sequence t, — 0.

o Limitation: Gateaux-differentiability is usually not strong enough for the applications of

functional derivatives in Z-estimators and delta method.
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Linear Operators and Differentiation

Differentiation: Hadamard Differentiability

o ¢:Dy CD — E is Hadamard differentiable at 0 € Dy if there exists a continuous linear

operator d)le : D — E s.t. for any scalar sequence t, — 0 and h, > h€ D

(0 + tahn) — #(0)

tn

— y(h). (a7)

e If (17) is required only for h, — h € Dy C D, then say ¢ is Hadamard differentiable

tangentially to Dy.
o ¢:Dy CD — E is compact differentiable at § € Dy if there exists a continuous linear
operator (b; : D — E s.t. for any compact set KC DD

H¢(9 +th) —#(0)

sup

do(h)|| =0 (£~ 0) (18)
heK, (0+th €Dy

e Hadamard differentiability is equivalent to compact differentiability.
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Linear Operators and Differentiation

Differentiation: Hadamard Differentiability

Lemma: Chain Rule

Suppose

¢:Dy CD — Ey C E is Hadamard differentiable at § € Dy tangentially to Dy C D,

¢ :Ey CE — F is Hadamard differentiable at ¢() tangentially to qﬁ/e(]D)o).

Then 1o ¢ : Dy — IF is Hadamard differentiable at 6 tangentially to Do with derivative 1/1;5(9) o ¢/9
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Linear Operators and Differentiation

Differentiation: Frechet Differentiability

o ¢:Dy CD — E is Frechet differentiable if there exists a continuous linear operator
¢>,9 : D — E s.t. for any bounded set K C D
‘rﬂe+tm o(6)

oo (h)|| >0 (£ 0), (19)
heK, (0+th €Dy

or equivalently,
Il 60+ h) — &(8) — 3e(h) lI=o(ll A 1) (Il h[|=0), (20)

o Relationships:
o Frechet differentiability implies Hadamard differentiability
o Hadamard differentiability implies Gateaux differentiability
@ Frechet differentiability: important in Z-estimator theory.

Hadamard differentiability: important in functional delta method.
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