Preliminaries for Empirical Processes

Yilun Li

June 9, 2021

・ロト ・ 日 ト ・ 日 ト ・ 日

2 Metric Space

Outer Expectation

4 Linear Operators and Differentiation

・ロト ・回ト ・ヨト ・ヨト

Introduction

2 Metric Space

Outer Expectation

Inear Operators and Differentiation

・ロト ・回ト ・ヨト ・ヨト

- Reference: Chapter 6, Introduction to Empirical Processes and Semiparametric Inference (Kosorok)
- This chapter presents mathematical and statistical concepts and basic ideas of empirical process, and provides a foundation for technical development in later chapters.
- Topics covered: metric space, outer expectation, linear operator and differentiation.

イロト イヨト イヨト イヨト

- Metric space provides the descriptive language by which the most important results in stochastic processes are derived and expressed.
- Outer expectation helps to define and utilize outer modes of convergence for non-measurable quantities.
- Linear operators and differentiation are important in empirical process methods for functional delta method and Z-estimator theory.

イロト イヨト イヨト イヨト

Introduction

2 Metric Space

Outer Expectation

Inear Operators and Differentiation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Topological Space

Definition

A collection ${\mathcal O}$ of subsets of a set ${\boldsymbol X}$ is a topology in ${\boldsymbol X}$ if

- 1 $\emptyset \in \mathcal{O}$ and $\mathbf{X} \in \mathcal{O}$;
- 2 If $U_j \in \mathcal{O}$ for j=1, ..., m, then $\bigcap_{j=1}^m U_j \in \mathcal{O}$;
- 3 For an arbitrary collection $\{U_{\alpha}\} \subseteq \mathcal{O}$, we have $\bigcup_{\alpha} U_{\alpha} \in \mathcal{O}$.

 (X, \mathcal{O}) is called a topological space, and members of \mathcal{O} are called the open sets in X.

・ロト ・回ト ・ヨト ・ヨト

Several relevant concepts:

- (continuous map) A map $f: X \to Y$ between topological spaces is continuous if $f^{-1}(U)$ is open in X whenever U is open in Y.
- (closed set) A set B in X is closed if and only if its complement in X is open.
- (closure) The closure of an arbitrary set $E\subseteq X$ is the smallest closed set containing E, denoted by $\bar{E}.$
- (interior) The interior of an arbitrary set E ⊆ X is the largest open set contained in E, denoted by E°.
- (dense set) A subset A of a topological space X is dense if $\overline{A} = X$.
- (separable space) A topological space X is separable if it has a countable dense subset.

イロト イヨト イヨト イヨト

Several relevant concepts (continued):

- \bullet (neighborhood) A neighborhood of a point $x\in X$ is any open set that contains x.
- (Hausdorff space) A topological space **X** is Hausdorff if distinct points have disjoint neighborhoods.
- (convergence) Say a sequence of points $\{x_n\}$ in a topological space X converges to $x \in X$, if every neighborhood of x contains all but finitely many of the x_n 's, denoted by $x_n \to x$.
- (compactness) A subset K of a topological space is compact if for every covering $\bigcup_{\alpha \in \mathcal{I}} \mathbf{U}_{\alpha} \supseteq \mathbf{K} \text{ (where } \mathcal{I} \text{ is the index set and } \mathbf{U}_{\alpha} \text{ are open sets), there exists a finite subset}$ $\mathcal{I}_0 \subseteq \mathcal{I} \text{ such that } \bigcup_{\alpha \in \mathcal{I}_0} \mathbf{U}_{\alpha} \supseteq \mathbf{K}.$
- (σ -compactness) A σ -compact set is a countable union of compact sets.

<ロ> (日) (日) (日) (日) (日)

Propositions:

- 1 For a Hausdorff topological space X and a sequence $\{x_n\} \subseteq X$, if $x_n \to x \in X$ and
 - $\mathbf{x}_n \rightarrow \mathbf{y} \in \mathbf{X}$, then $\mathbf{x} = \mathbf{y}$.
- 2 If f: $X \to Y$ is a continuous map between topological spaces and $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.
- 3 For a Hausdorff topological space X, a subset $K \subseteq X$ is compact if and only if every sequence in K has a subsequence converging to a point in K.
- 4 A compact subset of a Hausdorff topological space is closed.

(ロ) (回) (三) (三)

Metric Space

Measurable Space

Definition

A collection \mathcal{A} of subsets of a set **X** is a σ -field in **X** if:

- 1 $X \in A$;
- 2 If $U \in A$, then $U^C = X U \in A$;
- 3 Any countable union $\bigcup_{i=1}^{\infty} \mathbf{U}_i \in \mathcal{A}$ whenever $\mathbf{U}_i \in \mathcal{A}$ for all j.

(X, A) is called a measurable space, and members in A are called measurable sets.

Definition

Suppose $(\mathbf{X}, \mathcal{A})$ is a measurable space, $\mu : \mathcal{A} \to \mathbb{R}$ is called a measure if:

- 1 $\mu(\mathbf{A}) \geq 0$ for any $\mathbf{A} \in \mathcal{A}$;
- **2** $\mu(\emptyset) = 0;$
- 3 For any disjoint countable collection $\{A_j\}_{j=1}^{\infty} \subseteq A$, $\mu(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu(A_j)$.

 $(\mathbf{X}, \mathcal{A}, \mu)$ is called a measure space.

Relevant concepts:

- Suppose X is a measurable space and Y is a topological space, then a map $f : X \to Y$ is measurable if $f^{-1}(U)$ is measurable in X whenever U is open in Y.
- Suppose O is a collection of subsets of X, then the σ-field generated by O is defined as the smallest σ-field containing O, which is equal to the intersection of all σ-field that contains O.
- A σ -field is separable if it is generated by a countable collection of subsets.
- Suppose X is a topological space, then the σ-field generated by the collection of all open sets in X is called Borel σ-field of X, denoted by B. Members of B are called Borel sets.
- A map f : X → Y between topological spaces is Borel-measurable if it is measurable w.r.t. the Borel σ-field of X, (i.e. f⁻¹(U) is Borel-measurable in X for any open set U in Y). (Thus, any continuous map between topological spaces is Borel-measurable.)

イロト イヨト イヨト イヨ

Measurable Space

Relevant concepts (continued): For a measure space $(\mathbf{X}, \mathcal{A}, \mu)$

- μ is σ -finite if there exists a sequence $\{\mathbf{A}_j\}_{j=1}^{\infty} \subseteq \mathcal{A}$ such that $\mathbf{X} = \bigcup_{j=1}^{\infty} \mathbf{A}_j$ and $\mu(\mathbf{A}_j) < \infty$ for any j.
- If the range of μ is extended to $(-\infty,\infty]$ or $[-\infty,\infty),$ then μ is called a signed measure.
- When $\mu(\mathbf{X}) = 1$ so $(\mathbf{X}, \mathcal{A}, \mu)$ is a probability space, let

$$\bar{\mathcal{A}} = \{ \mathbf{A} \cup \mathbf{N} : \mathbf{A} \in \mathcal{A}, \mathbf{N} \subseteq \mathbf{B}, \mathbf{B} \in \mathcal{A}, \mu(\mathbf{B}) = 0 \}$$
(1)

$$\bar{\mu}(\mathbf{A} \cup \mathbf{N}) = \mu(\mathbf{A}) \tag{2}$$

イロト イヨト イヨト イヨト

Then $(\mathbf{X}, \overline{A})$ is a measurable space and $\overline{\mu}$ is a well-defined probability measure on it. \overline{A} is called the μ -completion of A.

Metric Space

Definition

A metric space (\mathbb{D}, d) is a set \mathbb{D} along with a metric $d : \mathbb{D} \times \mathbb{D} \to \mathbb{R}$ that satisfies

```
1 \mathbf{d}(\mathbf{x}, \mathbf{y}) \ge 0, and \mathbf{d}(\mathbf{x}, \mathbf{y}) = 0 if and only if \mathbf{x} = \mathbf{y};
```

2 d(x, y) = d(y, x);

$$3 \ \mathbf{d}(\mathbf{x},\mathbf{y}) \geq \mathbf{d}(\mathbf{x},\mathbf{z}) + \mathbf{d}(\mathbf{z},\mathbf{y}).$$

for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{D}$.

Note: d is called a semimetric on \mathbb{D} if it only satisfies [2][3] and

```
1' \mathbf{d}(\mathbf{x}, \mathbf{y}) \geq 0 for any \mathbf{x}, \mathbf{y} \in \mathbb{D}.
```

イロト イヨト イヨト イヨト

• A semimetric space is also a topological space with open sets generated by applying arbitrary unions to the open r-balls

$$Br(\mathbf{x}) = \{\mathbf{y} : \mathbf{d}(\mathbf{x}, \mathbf{y}) < r\}.$$
(3)

・ロト ・回ト ・ヨト ・ヨト

where r > 0 and $\mathbf{x} \in \mathbb{D}$.

- A metric space is also a Hausdorff space, and in this case, a sequence $\{\mathbf{x}_n\} \subseteq \mathbb{D}$ converges to $\mathbf{x} \in \mathbb{D}$ if $\mathbf{d}(\mathbf{x}_n, \mathbf{x}) \to 0$.
- For a semimetric space, $\mathbf{d}(\mathbf{x}_n, \mathbf{x}) \to 0$ only ensures that \mathbf{x}_n converges to elements in the equivalence class of \mathbf{x} , where the equivalence class of \mathbf{x} consists of all $\{\mathbf{y} \in \mathbb{D} : \mathbf{d}(\mathbf{x}, \mathbf{y}) = 0\}$.

Metric Space

Metric Space

Relevant concepts:

• Two metrics d_1 and d_2 on \mathbb{D} are strongly equivalent if there exists $\alpha, \beta > 0$ such that

$$\alpha \mathbf{d}_1(\mathbf{x}, \mathbf{y}) \le \mathbf{d}_2(\mathbf{x}, \mathbf{y}) \le \beta \mathbf{d}_1(\mathbf{x}, \mathbf{y}) \quad (\forall \mathbf{x}, \mathbf{y} \in \mathbb{D})$$
(4)

- Suppose (D, d) is a semimetric space, {x_n} ⊆ D is called a Cauchy sequence if d(x_m, x_n) → 0 as m, n → ∞. (D, d) is complete if any Cauchy sequence converges to a point in D.
- Two metric spaces are isometric if there is a distance-perseving bijection between them.
- A map $f:X\to Y$ between topological spaces is a homeomorphism if f is a continuous bijection and f^{-1} is continuous.
- A Polish space is a space which is homeomorphic to a separable and complete metric space.
- A Suslin set is the image of a Polish space under continuous mapping. If a Suslin set is also a Hausdorff topological space, then it is called a Suslin space.
- A subset K is totally bounded (or precompact) if for any r > 0, K can be covered by finite many open r-balls.

Metric Space

Definition: Normed Space

A normed space $(\mathbb{D}, \|\cdot\|)$ is a vector space \mathbb{D} equipped with a norm $\|\cdot\|$ which is a map $\mathbb{D} \to \mathbb{R}$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathbb{D}$ and $\alpha \in \mathbb{R}$,

1
$$|| \mathbf{x} || \ge 0$$
, and $|| \mathbf{x} || = 0$ if and only if $\mathbf{x} = 0$;

```
2 \parallel \alpha \mathbf{x} \parallel = |\alpha| \parallel \mathbf{x} \parallel;
```

```
3 \parallel \mathbf{x} + \mathbf{y} \parallel \leq \parallel \mathbf{x} \parallel + \parallel \mathbf{y} \parallel.
```

• A seminorm is a map that only satisfies [2][3] and

1' $\| \mathbf{x} \| \ge 0 \ (\forall \mathbf{x} \in \mathbb{D}).$

- A normed space is a metric space with $\mathbf{d}(\mathbf{x}, \mathbf{y}) = \parallel \mathbf{x} \mathbf{y} \parallel$.
- A complete normed space is called a Banach space.

<ロト <四ト < 回ト < 回 > < 回

Useful Conclusions:

- A map $f : \mathbb{D} \to \mathbb{E}$ between two semimetric space is continuous at $x \in \mathbb{D}$ if and only if for all $\{x_n\} \subseteq \mathbb{D}$ and $x_n \to x$, we have $f(x_n) \to f(x)$.
- \bullet Suppose $\mathbb D$ is a metric space and $f:\mathbb D\to\mathbb R,$ then the following are equivalent:
 - 1 For any $c \in \mathbb{R}$, $\{\mathbf{y} : \mathbf{f}(y) \ge c\}$ is a closed set.
 - 2 For any $\mathbf{y}_0 \in \mathbb{D}$, $\limsup_{\mathbf{y} \to \mathbf{y}_0} \mathbf{f}(\mathbf{y}) \leq \mathbf{f}(\mathbf{y}_0)$.
- Every metric space \mathbb{D} has a completion $\overline{\mathbb{D}}$ which has a dense subset isometric with \mathbb{D} .
- If a metric space $\mathbb D$ is separable, then the Borel $\sigma\text{-field}$ of $\mathbb D$ is also separable.
- Any open subset of a Polish space is also Polish.
- Suppose (\mathbb{D}, d) is a complete semimetric space, then
 - $\bullet\,$ A subset $K\subseteq \mathbb{D}$ is compact if and only if K is closed and totally bounded.
 - $\bullet~K\subseteq\mathbb{D}$ is totally bounded if and only if every sequence in K has a Cauchy subsequence.

<ロ> (日) (日) (日) (日) (日)

- For an arbitrary set T, define $\ell^{\infty}(T) = \{ \mathbf{f} : T \to \mathbb{R} : \mathbf{f} \text{ is bounded} \}$
- For $\forall \mathbf{f}_1, \mathbf{f}_2 \in \ell^\infty(\mathcal{T})$ and $\forall \alpha_1, \alpha_2 \in \mathbb{R}$, define

$$(\alpha_1 \mathbf{f}_1 + \alpha_2 \mathbf{f}_2)(t) = \alpha_1 \mathbf{f}_1(t) + \alpha_2 \mathbf{f}_2(t)$$
(5)

then $\ell^{\infty}(T)$ is a linear space.

- For $\mathbf{f} \in \ell^{\infty}(T)$, define $\| \mathbf{f} \|_{T} = \sup_{\mathbf{t} \in T} |\mathbf{f}(\mathbf{t})|$, then $(\ell^{\infty}(T), \| \cdot \|_{T})$ is a normed space. And $\| \mathbf{f} \|_{T}$ is called the uniform norm of \mathbf{f} .
- It can be proved that (ℓ[∞](T), || · ||_T) is a Banach space, and is separable if and only if T is countable.

・ロト ・回ト ・ヨト ・ヨト

Metric Space

Examples (continued)

• For a semimetric ρ on T, define

 $UC(T, \rho) = \{ \mathbf{f} : T \to \mathbb{R} : \mathbf{f} \text{ is bounded}, \text{ uniformly } \rho \text{-continuous} \}$

where uniformly ρ -continuous is defined as

$$\lim_{\delta \downarrow 0} \sup_{\rho(\mathbf{s}, \mathbf{t}) < \delta} |\mathbf{f}(\mathbf{s}) - \mathbf{f}(\mathbf{t})| = 0 \tag{6}$$

then $UC(T, \rho)$ is a subspace of $\ell^{\infty}(T)$.

Theorem (Arzela-Ascoli)

1 Suppose ρ is a semimetric on T and (T, ρ) is totally bounded, $\mathbf{K} \subseteq UC(T, \rho)$, then \mathbf{K} is compact if and only if

(1)
$$\exists t_0 \in T$$
 such that $\sup_{x \in K} |x(t_0)| < \infty$;
(2) $\lim_{\delta \downarrow 0} \sup_{x \in K} \left(\sup_{s,t \in T, \rho(s,t) < \delta} |x(s) - x(t)| \right) = 0$

2 Suppose $\mathbf{K} \subseteq \ell^{\infty}(T)$, then $\bar{\mathbf{K}}$ is σ -compact if and only if there exists a semimetric ρ such that (T, ρ) is totally bounded and $\mathbf{K} \subseteq UC(T, \rho)$.

Examples (Product Space)

- Suppose (\mathbb{D}, d) and (\mathbb{E}, e) are two metric spaces.
- For $\forall x_1, x_2 \in \mathbb{D}$, $\forall y_1, y_2 \in \mathbb{E}$, define

$$\rho\left(\left(\mathbf{x}_{1},\mathbf{y}_{1}\right),\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right) = \mathbf{d}(\mathbf{x}_{1},\mathbf{x}_{2}) \lor \mathbf{e}(\mathbf{y}_{1},\mathbf{y}_{2}). \tag{7}$$

Then $(\mathbb{D} \times \mathbb{E}, \rho)$ forms a metric space (Cartesian product space).

• $(\mathbf{x}_n, \mathbf{y}_n) \to (\mathbf{x}_0, \mathbf{y}_0)$ in $\mathbb{D} \times \mathbb{E}$ if and only if $\mathbf{x}_n \to \mathbf{x}_0$ in \mathbb{D} and $\mathbf{y}_n \to \mathbf{y}_0$ in \mathbb{E} .

◆□ > ◆□ > ◆臣 > ◆臣 >

Introduction

2 Metric Space

Outer Expectation

4 Linear Operators and Differentiation

イロト イヨト イヨト イヨ

Suppose (Ω, A, P) is a probability space. In some statistical problems, the map of interest
 T : Ω → ℝ = [-∞, ∞] may not be measurable. Hence, we need to introduce the concept of outer expectation.

Definition (outer expectation and inner expectation)

Suppose $\mathcal{T}: \Omega \to \overline{\mathbb{R}}$ is an arbitrary map.

• Define the outer expectation of T w.r.t. the probability measure P as

$$E^*(T) = \inf\{E(U) \mid U : \Omega \to \overline{\mathbb{R}} \text{ measurable}, \ U \ge T, \ E(U) \text{ exists}\}$$
(8)

• Define the inner expectation of T w.r.t. the probability measure P as

$$\mathsf{E}_*(T) = -\mathsf{E}^*(-T) = \sup\{\mathsf{E}(U) \mid U : \Omega o \overline{\mathbb{R}} \text{ measurable}, \ U \leq T, \ \mathsf{E}(U) \text{ exists}\}$$
 (9)

Here, E(U) exists means that at least one of $E(U^+)$ and $E(U^-)$ is finite.

<ロト <四ト < 回ト < 回 > < 回

Lemma

For any $T: \Omega \to \overline{\mathbb{R}}$, there exists a minimal measurable majorant $T^*: \Omega \to \overline{\mathbb{R}}$ with

- (1) T^* is measurable and $T^* \geq T$ (a.s.);
- (2) For every measurable $U: \Omega \to \overline{\mathbb{R}}$ with $U \ge T$ (a.s.), $U \ge T^*$ (a.s.)
- (3) For any T* satisfying (1)(2), E*(T) = E(T*) as long as E(T*) exists. The last statement is true if E*(T) < ∞.</p>

Thus if both T^* and T^{**} satisfy (1) and (2), then $T^* = T^{**}$ (a.s.)

Similarly, define $T_* = -(-T)^*$ as the maximal measurable majorant of T. Then

(1) T_* is measurable and $T_* \leq T$ (a.s.);

(2') For every measurable $U: \Omega \to \overline{\mathbb{R}}$ with $U \leq T$ (a.s.), $U \leq T_*$ (a.s.)

(3') For any T_{*} satisfying (1')(2'), E_{*}(T) = E(T_{*}) as long as E(T_{*}) exists. The last statement is true if E_{*}(T) > -∞.

イロン イ団 とくほと くほとう

Definition (outer probability and inner probability)

For any $\mathbf{B} \subseteq \Omega$, define

• the outer probability of ${\bf B}$ w.r.t. the probability measure P as

 $P^*(\mathbf{B}) = \inf\{P(\mathbf{A}) : \mathbf{A} \in \mathcal{A}, \mathbf{A} \supseteq \mathbf{B}\};\$

• the inner probability of \mathbf{B} w.r.t. the probability measure P as

 $P_*(\mathbf{B}) = 1 - P^*(\mathbf{B}^c) = \sup\{P(\mathbf{A}) : \mathbf{A} \in \mathcal{A}, \mathbf{A} \subseteq \mathbf{B}\}$

Then we can prove that for any $\boldsymbol{B}\subseteq \Omega$

•
$$P^*(\mathbf{B}) = E^*(I_{\mathbf{B}}), P_*(\mathbf{B}) = E_*(I_{\mathbf{B}});$$

• $\mathbf{B}^* = \{\omega : (I_{\mathbf{B}})^*(\omega) \ge 1\}$ is measurable with $\mathbf{B}^* \supseteq \mathbf{B}$, $P^*(\mathbf{B}) = P(\mathbf{B}^*)$ and $(I_{\mathbf{B}})^* = I_{\mathbf{B}^*}$;

•
$$\mathbf{B}_* = [(\mathbf{B}^c)^*]^c$$
 with $P_*(\mathbf{B}) = P(\mathbf{B}_*)$;

• $(I_{\mathsf{B}})^* + (I_{\mathsf{B}^c})_* = 1.$

・ロト ・回ト ・ヨト ・ヨト

Properties of outer expectation: For arbitrary map $S, T : \Omega \to \mathbb{R}$, the following statements are true almost surely

- $S_* + T^* \leq (S + T)^* \leq S^* + T^*$ with all equalities if S is measurable.
- $S_* + T_* \leq (S + T)_* \leq S_* + T^*$ with all equalities if T is measurable.
- $(S T)^* \ge S^* T^*$
- $|S^* T^*| \le |S T|^*$
- For any $c \in \mathbb{R}$, $[I_{(T>c)}]^* = I_{(T^*>c)}$ and $[I_{(T\geq c)}]_* = I_{(T_*\geq c)}$
- $(S \lor T)^* = S^* \lor T^*$
- $(S \wedge T)^* \leq S^* \wedge T^*$ with equality if S or T is measurable.

イロン イロン イヨン イヨン

Properties of outer probability: For any $\mathbf{A}, \mathbf{B} \subseteq \Omega$,

- $(\mathbf{A} \cup \mathbf{B})^* = \mathbf{A}^* \cup \mathbf{B}^*$, $(\mathbf{A} \cap \mathbf{B})_* = \mathbf{A}_* \cap \mathbf{B}_*$.
- $(A \cap B)^* \subseteq A^* \cap B^*$, $(A \cup B)_* \supseteq A_* \cup B_*$, with equality if either A or B is measurable.
- If $\mathbf{A} \cap \mathbf{B} = \emptyset$, then

$$P_*(\mathbf{A}) + P_*(\mathbf{B}) \le P_*(\mathbf{A} \cup \mathbf{B}) \le P^*(\mathbf{A} \cup \mathbf{B}) \le P^*(\mathbf{A}) + P^*(\mathbf{B})$$
(10)

・ロト ・回ト ・ヨト ・ヨ

Outer Expectation

Outer Expectation Version of Jensen's Inequality

Lemma

Let $T: \Omega \to \mathbb{R}$ be an arbitrary map and suppose $\phi: \mathbb{R} \to \mathbb{R}$ is monotone with an extension to \mathbb{R} .

Then the following statements are true almost surely, provided they are well-defined:

- If ϕ is non-decreasing, then
 - $\phi(T^*) \ge [\phi(T)]^*$, with equality if ϕ is left-continuous on $[-\infty, \infty)$;
 - $\phi(T_*) \leq [\phi(T)]_*$, with equality if ϕ is right-continuous on $(-\infty, \infty]$;
- If ϕ is non-increasing, then
 - $\phi(T^*) \leq [\phi(T)]_*$, with equality if ϕ is left-continuous on $[-\infty, \infty)$;
 - $\phi(T_*) \ge [\phi(T)]^*$, with equality if ϕ is right-continuous on $(-\infty, \infty]$;

Theorem (Jensen's Inequality)

Let $T: \Omega \to \mathbb{R}$ be an arbitrary map with $E^*|T| < \infty$, and suppose $\phi : \mathbb{R} \to \mathbb{R}$ is convex, then

- 1 $E^*[\phi(T)] \ge \phi[E^*(T)] \lor \phi[E_*(T)]$
- 2 If ϕ is also monotone, then $E_*[\phi(\mathsf{T})] \geq \phi[E^*(\mathsf{T})] \wedge \phi[E_*(\mathsf{T})]$

Outer Expectation Version of other conclusion

Chebyshev's Inequality

Let $\mathcal{T}:\Omega \to \mathbb{R}$ be an arbitrary map. $\phi:[0,\infty) \to [0,\infty)$ is positive on $(0,\infty)$ and

non-decreasing, then for any u > 0, $P^*(|T| \ge u) \le E^*[\phi(|T|)]/\phi(u)$

Monotone Convergence

Let $T_n, T : \Omega \to \mathbb{R}$ be arbitrary maps, with $T_n \uparrow T$ pointwise on a set of inner probability 1.

Then $T_n^* \uparrow T^*$ (a.s.). Additionally, if $E^*(T_n) > -\infty$ for some *n*, then $E^*(T_n) \uparrow E^*(T)$.

Dominated Convergence

Let $T_n, T, S : \Omega \to \mathbb{R}$ be maps with $|T_n - T|^* \to 0(a.s.), |T_n| \le S(\forall n)$, and $E^*(S) < \infty$, then $E^*(T_n) \to E^*(T)$.

<ロ> (日) (日) (日) (日) (日)

Completion of Probability Space

Suppose $(\Omega, \overline{A}, \overline{P})$ is the *P*-completion of probability space (Ω, A, P)

•
$$\bar{\mathcal{A}} = \{\mathbf{A} \cup \mathbf{N} : \mathbf{A} \in \mathcal{A}, \mathbf{N} \subseteq \mathbf{B}, \mathbf{B} \in \mathcal{A}, P(\mathbf{B}) = 0\}$$

•
$$\bar{P}(\mathbf{A} \cup \mathbf{N}) = P(\mathbf{A})$$

Then

- for any \overline{A} -measurable map $\overline{S} : (\Omega, \overline{A}) \to \mathbb{R}$, there exists an A-measurable map $S : (\Omega, A) \to \mathbb{R}$ such that $P^*(S \neq \overline{S}) = 0$.
- For any T : (Ω, A, P) → R̄, define T̄ : (Ω, Ā, P̄) → R̄, ω ↦ T(ω).
 Let T* be the minimal measurable majorant of T w.r.t. P.
 Let T̄* be the minimal measurable majorant of T̄ w.r.t. P̄.
 Then P*(T* ≠ T̄*) = 0.

イロト イヨト イヨト イヨ

Application in Product Space - Perfect Maps

Consider a measurable map $\phi : (\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P}) \to (\Omega, \mathcal{A}, P)$ and any map $\mathcal{T} : (\Omega, \mathcal{A}, P) \to \mathbb{R}$ where for $\mathbf{A} \in \mathcal{A}, \ P(\mathbf{A}) \triangleq \tilde{P} \circ \phi^{-1}(\mathbf{A}) = \tilde{P}(\phi \in \mathbf{A}).$

- $T \circ \phi : (\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P}) \to \mathbb{R}$
- *P* is a probability measure on (Ω, A) .
- Let T^* be the minimal measurable majorant of T w.r.t. P.
- By definition, $T^* \circ \phi : (\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P}) \to \mathbb{R}$ is measurable and $T^* \circ \phi \ge T \circ \phi$. Thus, $T^* \circ \phi \ge (T \circ \phi)^*$.
- ϕ is perfect if $T^* \circ \phi = (T \circ \phi)^*$ (a.s.) for any bounded map $T : \Omega \to \mathbb{R}$. In this case, $\tilde{P}^*(\phi \in \mathbf{A}) = (\tilde{P} \circ \phi^{-1})^*(\mathbf{A})$ for any $\mathbf{A} \subseteq \Omega$.

イロト イヨト イヨト イヨト

Application in Product Space - Perfect Maps

- Example: coordinate projection in a product probability space is a perfect map.
- Specifically, suppose $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$ are two probability space.
- Let T₁: (Ω₁, A₁, P₁) → ℝ be a bounded map.
 Define T : (Ω₁ × Ω₂, A₁ ⊗ Ω₂, P₁ × P₂) → ℝ, ω = (ω₁, ω₂) ↦ T₁(ω₁) to be a map from the product space to the real line.
- Also let π_1 be the projection on the first coordinate. then $T = T_1 \circ \pi_1$.
- It can be proved that π_1 is a perfect map. Thus $T^* = (T_1 \circ \pi_1)^* = T_1^* \circ \pi_1$. Thus, to find the image of any $\omega = (\omega_1, \omega_2)$ under T^* , we can ignore ω_2 and find the image of ω_1 under T_1^* .

・ロト ・回ト ・ヨト ・ヨト

Outer Expectation

Application in Product Space - Fubini's Theorem

Fubini's Theorem

Let $T : (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \Omega_2, \mathcal{P}_1 \times \mathcal{P}_2) \to \mathbb{R}$ be an arbitrary map. For any fixed $\omega_1 \in \Omega_1$, define

$$\mathbb{F}_{2}^{*}(T)(\omega_{1}) = \inf\{E_{2}(U) = \int_{\Omega_{2}} U(\omega_{2})dP_{2}(\omega_{2}) | \ U : \Omega_{2} \to \mathbb{\bar{R}} \text{ measurable, } U(\omega_{2}) \ge T(\omega_{1}, \omega_{2}), E_{2}(U) \text{ exists}\}.$$
(11)

Also, define

$$E_1^*[E_2^*(T)] = \inf\{E_1(U) = \int_{\Omega_1} U(\omega_1)dP_1(\omega_1) | \ U : \Omega_1 \to \overline{\mathbb{R}} \text{ measurable}, \ U(\omega_1) \ge E_2^*(T)(\omega_1), \ E_1(U) \text{ exists}\}.$$
(12)
$$E^*(T) = \inf\{E(U) = \int_{\Omega_1 \times \Omega_2} U(\omega_1, \omega_2)d(P_1 \times P_2)(\omega_1, \omega_2) | \ U : \Omega_1 \times \Omega_2 \to \mathbb{R} \text{ measurable}, \ U \ge T, \ E(U) \text{ exists}\}.$$

We can also define $E_{2*}(T)(\omega_1)$, $E_{1*}[E_{2*}(T)]$ and $E_*(T)$ similarly. Then

$$E_*(T) \le E_{1*}[E_{2*}(T)] \le E_1^*[E_2^*(T)] \le E^*(T).$$
(14)

イロト イヨト イヨト イヨト

Introduction

2 Metric Space

Outer Expectation

4 Linear Operators and Differentiation

・ロト ・回ト ・ヨト ・ヨ

Linear Operators

- A linear operator is a map $T : \mathbb{D} \to \mathbb{E}$ between normed spaces with the property that $T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}) \; (\forall a, b \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{D}).$
- If $\mathbb{E} = \mathbb{R}$, then T is called a linear functional.
- T is bounded if $|| T || \triangleq \sup_{\mathbf{x} \in \mathbb{D}, ||\mathbf{x}|| = 1} || T(x) || < \infty$.
- T is continuous at $\mathbf{x}_0 \in \mathbb{D}$ if $T(\mathbf{x}_n) \to T(\mathbf{x}_0)$ in \mathbb{E} whenever $\mathbf{x}_n \to \mathbf{x}_0$ in \mathbb{D} .
- Lemma: $T : \mathbb{D} \to \mathbb{E}$ is a linear operator between normed spaces. Then the following are equivalent:
 - T is continuous at a point x₀ ∈ D;
 - T is continuous at any point in D;
 - T is bounded

イロト イヨト イヨト イヨト

Linear Operators

 For normed spaces D and E, let B(D, E) be the space of all bounded linear operators. For ∀T₁, T₂ ∈ B(D, E) and ∀α₁, α₂ ∈ R, define

$$(\alpha_1 T_1 + \alpha_2 T_2)(\mathbf{x}) = \alpha_1 T_1(\mathbf{x}) + \alpha_2 T_2(\mathbf{x})$$
(15)

then $B(\mathbb{D}, \mathbb{E})$ is a linear space.

- With $|| T || \triangleq \sup_{x \in \mathbb{D}, ||x||=1} || T(x) ||, (B(\mathbb{D}, \mathbb{E}), || \cdot ||)$ forms a normed space.
- If \mathbb{E} is a Banach space, then $B(\mathbb{D}, \mathbb{E})$ is also a Banach space.
- Generally, when \mathbb{D} is not a Banach space, \mathcal{T} has a unique continuous extension $\overline{\mathcal{T}}: \overline{\mathbb{D}} \to \overline{\mathbb{E}}$.

イロト イヨト イヨト イヨ

Linear Operators

• For $\forall T \in B(\mathbb{D}, \mathbb{E})$,

the null space $N(T) \triangleq \{\mathbf{x} : T(\mathbf{x}) = \mathbf{0}\};$ the range space $R(T) \triangleq \{T(\mathbf{x}) : \mathbf{x} \in \mathbb{D}\}.$

- Both N(T) and R(T) are linear space.
- T is one-to-one if and only if $N(T) = \{0\}$.
- Conclusions for inverse mapping: Let $T \in B(\mathbb{D}, \mathbb{E})$, then
 - 1 *T* has a continuous inverse $T^{-1} : R(T) \to \mathbb{D}$ if and only if $\exists c > 0s.t. \parallel T(\mathbf{x}) \parallel \geq c \parallel \mathbf{x} \parallel (\forall \mathbf{x} \in \mathbb{D});$
 - 2 If \mathbb{D} and \mathbb{E} are complete, and T is a continuous injection, then T^{-1} is continuous if and only if R(T) is closed.

イロト イヨト イヨト イヨト

- Let $U = \{ \mathbf{x} \in \mathbb{D} : || \mathbf{x} || \le 1 \}$ be the unit ball in a normed space \mathbb{D} .
- A linear operator T : D → E between normed space is a compact operator if T(U) is compact in E.
- In later chapters, we will encounter linear operators in a form of (T + K), where T is continuous and invertible, and K is compact.

Lemma

Let $A = T + K : \mathbb{D} \to \mathbb{E}$ be a linear operator between Banach spaces, where T is continuous, invertible and K is compact. If $N(A) = \mathbf{0}$, then A is also continuously invertible.

イロト イヨト イヨト イヨ

Contraction Operators

- An operator A is a contraction operator if || A || < 1.
- Suppose \mathbb{D} is a normed space and $A : \mathbb{D} \to \mathbb{D}$ is a linear contraction operator. Then (I A) is continuous and invertible with $(I A)^{-1} = \sum_{i=0}^{\infty} A^{i}$. (Here, I is the identity map.)

・ロト ・回ト ・ヨト ・ヨ

Differentiation: Gateaux Differentiability

• Let \mathbb{D} and \mathbb{E} be two normed spaces, and $\phi : \mathbb{D}_{\phi} \subseteq \mathbb{D} \to \mathbb{E}$. ϕ is Gateaux differentiable at $\theta \in \mathbb{D}_{\phi}$ in the direction h, if there exists a quantity $\phi'_{\theta}(h) \in \mathbb{E}$ s.t.

$$\frac{\phi(\theta + t_n h) - \phi(\theta)}{t_n} \to \phi_{\theta}^{'}(h)$$
(16)

イロト イヨト イヨト イヨ

for any scalar sequence $t_n \rightarrow 0$.

• Limitation: Gateaux-differentiability is usually not strong enough for the applications of functional derivatives in Z-estimators and delta method.

Differentiation: Hadamard Differentiability

• $\phi : \mathbb{D}_{\phi} \subseteq \mathbb{D} \to \mathbb{E}$ is Hadamard differentiable at $\theta \in \mathbb{D}_{\phi}$ if there exists a continuous linear operator $\phi'_{\theta} : \mathbb{D} \to \mathbb{E}$ s.t. for any scalar sequence $t_n \to 0$ and $h_n \to h \in \mathbb{D}$

$$\frac{\phi(\theta + t_n h_n) - \phi(\theta)}{t_n} \to \phi'_{\theta}(h).$$
(17)

- If (17) is required only for h_n → h ∈ D₀ ⊆ D, then say φ is Hadamard differentiable tangentially to D₀.
- $\phi : \mathbb{D}_{\phi} \subseteq \mathbb{D} \to \mathbb{E}$ is compact differentiable at $\theta \in \mathbb{D}_{\phi}$ if there exists a continuous linear operator $\phi'_{\theta} : \mathbb{D} \to \mathbb{E}$ s.t. for any compact set $\mathbf{K} \subseteq \mathbb{D}$

$$\sup_{h\in\mathbf{K},(\theta+th)\in\mathbb{D}_{\phi}}\left|\left|\frac{\phi(\theta+th)-\phi(\theta)}{t}-\phi_{\theta}^{'}(h)\right|\right|\to0\ (t\to0)$$
(18)

Hadamard differentiability is equivalent to compact differentiability.

イロン イ団 と イヨン イヨン

Differentiation: Hadamard Differentiability

Lemma: Chain Rule

Suppose

 $\phi: \mathbb{D}_{\phi} \subseteq \mathbb{D} \to \mathbb{E}_{\psi} \subseteq \mathbb{E} \text{ is Hadamard differentiable at } \theta \in \mathbb{D}_{\phi} \text{ tangentially to } \mathbb{D}_{0} \subseteq \mathbb{D},$

 $\psi : \mathbb{E}_{\psi} \subseteq \mathbb{E} \to \mathbb{F}$ is Hadamard differentiable at $\phi(\theta)$ tangentially to $\phi'_{\theta}(\mathbb{D}_0)$.

Then $\psi \circ \phi : \mathbb{D}_{\phi} \to \mathbb{F}$ is Hadamard differentiable at θ tangentially to \mathbb{D}_0 with derivative $\psi'_{\phi(\theta)} \circ \phi'_{\theta}$

イロン イ部ン イヨン イヨ

Differentiation: Frechet Differentiability

• $\phi : \mathbb{D}_{\phi} \subseteq \mathbb{D} \to \mathbb{E}$ is Frechet differentiable if there exists a continuous linear operator $\phi'_{\theta} : \mathbb{D} \to \mathbb{E}$ s.t. for any bounded set $\mathbf{K} \subseteq \mathbb{D}$

$$\sup_{h\in\mathbf{K},(\theta+th)\in\mathbb{D}_{\phi}}\left|\left|\frac{\phi(\theta+th)-\phi(\theta)}{t}-\phi_{\theta}^{'}(h)\right|\right|\to0\ (t\to0),\tag{19}$$

or equivalently,

$$\| \phi(\theta+h) - \phi(\theta) - \phi_{\theta}'(h) \| = o(\| h \|) (\| h \| \to 0),$$

$$(20)$$

- Relationships:
 - Frechet differentiability implies Hadamard differentiability
 - Hadamard differentiability implies Gateaux differentiability
- Frechet differentiability: important in Z-estimator theory.

Hadamard differentiability: important in functional delta method.

イロン イロン イヨン イヨ