Stochastic convergence

Xinjie Qian

June 16, 2021

Xinjie Qian

Stochastic convergence

 Image: boot of the second s

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

< □ > < 同 > < 回 > < 回 > < 回 >

Stochastic Processes in Metric Spaces

- A stochastic process $\{X(t), t \in T\}$ is a measurable real random variable for each $t \in T$ on a probability space (Ω, \mathscr{A}, P) .
- The sample paths of such a process typically reside in the metric space $\mathbb{D} = l^{\infty}(T)$ with the uniform metric.
- However, in many cases, when X is viewed as a map from Ω to D, it is no longer Borel measurable.
- An example is given from Billingsley.

Example

- Fact: there exists a set $H \subset [0,1]$ which is not a Borel set.
- Define $X(t) = 1\{U \le t\}$, where $t \in [0, 1]$ and U is uniformly distributed on [0, 1].
- Let $\Omega = [0, 1]$, \mathscr{B} are the Borel sets on [0, 1], P is the uniform probability measure on [0, 1] and \mathbb{D} is $l^{\infty}([0, 1])$.
- Define the set

$$A = \bigcup_{s \in H} B_s(1/2),$$

where $B_s(1/2)$ is the uniform open ball of radius 1/2 around the function

$$t \mapsto f_s(t) \equiv 1\{t \le s\}.$$

Example

- A is an open set in $l^{\infty}([0,1])$ The uniform distance between f_{s_1} and f_{s_2} is 1 whenever $s_1 \neq s_2$ $\implies X(t) \in B_s(1/2)$ if and only if U = s.
- So the set $\{\omega \in \Omega : X(\omega \in A)\}$ equals H.
- Thus, X is not Borel measurable.

- The example shown above is the usual state for most of the empirical processes we are interested in.
- Many of the associated technical difficulties can be resolved by using outer measure and outer expectation in the context of weak convergence.
- In contrast, most of the limiting processes we will be studying are Borel measurable.

- Define a vector lattice $\mathscr{F} \subset C_b(\mathbb{D})$ to be a vector space for which if $f \in \mathscr{F}$ then $f \lor 0 \in \mathscr{F}$.
- Define a set 𝔅 of real functions on D separates points of D if, for any x, y ∈ D with x ≠ y, there exists f ∈ 𝔅 such that f(x) ≠ f(y).

Lemma 1

Let L_1 and L_2 be Borel probability measures on a metric space \mathbb{D} . The following are equivalent:

(i) $L_1 = L_2$. (ii) $\int f dL_1 = \int f dL_2$ for all $f \in C_b(\mathbb{D})$. If L_1 and L_2 are also separable, then (i) and (ii) are both equivalent to (iii) $\int f dL_1 = \int f dL_2$ for all $f \in BL_1$. Moreover, if L_1 and L_2 are also tight, then (i)-(iii) are all equivalent to (iv) $\int f dL_1 = \int f dL_2$ for all f in a vector lattice $\mathscr{F} \subset C_b(\mathbb{D})$ that both contains the constant functions and separates points in \mathbb{D} .

Note: This lemma, provides two ways of establishing equivalence between Borel probability measures.

イロト 不得 トイラト イラト 一日

Tight and separable

Definition

A Borel probability measure L on a metric space \mathbb{D} is tight if for every $\epsilon > 0$, there exists a compact $K \subset \mathbb{D}$ so that $L(K) \ge 1 - \epsilon$. A Borel random map $X : \Omega \mapsto \mathbb{D}$ is tight if its law L is tight.

Definition

L or X is separable if there is a measurable and separable set which has probability 1.

Definition

L or X is Polish if there is a measurable Polish set having probability 1.

Note: separability is the weakest of the three properties.

For a stochastic process $\{X(t), t \in T\}$, where (T, ρ) is a separable, semimetric space, there is another meaning for separable.

Definition

X is separable (as a stochastic process) if there exists a countable subset $S \subset T$ and a null set N so that, for each $\omega \notin N$ and $t \in T$, there exists a sequence $\{s_m\} \in S$ with $\rho(s_m, t) \to 0$ and $|X(s_m, \omega) - X(t, \omega)| \to 0$.

Note: Many of the empirical processes we will study are separable in this sense, even though they are not Borel measurable and therefore cannot satisfy the other meaning for separable.

Lemma 2

Let X be a Borel measurable random element in $l^{\infty}(T)$. Then the following are equivalent:

(i) X is tight.

(ii) There exists a semimetric ρ making T totally bounded and for which $X \in UC(T, \rho)$ with probability 1.

Furthermore, if (ii) holds for any ρ , then it also holds for the semimetric $\rho_0(s,t) \equiv Earctan|X(s) - X(t)|$.

Lemma 3

Let X and Y be tight, Borel measurable stochastic processes in $l^{\infty}(T)$. Then the Borel laws of X and Y are equal if and only if all corresponding finite-dimensional marginal distributions are equal.

Tight processes are completely defined by their finite-dimensional marginal distributions $(X(t_1), ..., X(t_k))$, where $t_1, ..., t_k \in T$ and $k \ge 1$ is an integer.

Definition

For a process X in $l^{\infty}(T)$ and a semimetric ρ on T, we say that X is uniformly ρ -continuous in pth mean if $E ||X(s_n) - X(t_n)||^p \to 0$, whenever $\rho(s_n, t_n) \to 0$

Gaussian process

Definition

A stochastic process $\{X(t), t \in T\}$ is Gaussian if all finite-dimensional marginals $\{X(t_1), ..., X(t_k)\}$ are multivariate normal.

If a Gaussian process X is tight, then by Lemma 2, there is a semimetric ρ making T totally bounded and for which the sample paths $t \to X(t)$ are uniformly ρ -continuous.

Definition

For a general Banach space \mathbb{D} , a Borel measurable random element X on \mathbb{D} is Gaussian if and only if f(X) is Gaussian for every continuous, linear map $f: \mathbb{D} \to \mathbb{R}$.

イロト イポト イヨト イヨト

Proposition 4

Let X be a tight, Borel measurable map into $l^{\infty}(T)$. Then the following are equivalent:

(i) The vector $(X_{t_1},...,X_{t_k})$ is multivariate normal for every finite set $\{t_1,...,t_k\} \subset T$. (ii) $\phi(X)$ is Gaussian for every continuous, linear map $\phi: l^{\infty}(T) \mapsto \mathbb{R}$. (iii) $\phi(X)$ is Gaussian for every continuous, linear map $\phi: l^{\infty}(T) \mapsto \mathbb{D}$ into any Banach space \mathbb{D} .

Note: when the process in question is tight, the two definitions are equivalent.

Proof.

 $(ii) \Rightarrow (iii)$:

1. Fix any Banach space \mathbb{D} and any continuous, linear map $\phi : l^{\infty}(T) \mapsto \mathbb{D}$. 2. For any continuous, linear map $\psi : \mathbb{D} \mapsto \mathbb{R}$, the composition map $\psi \circ \phi : l^{\infty}(T) \mapsto \mathbb{R}$ is continuous and linear.

3. Thus, by (ii), we have that $\psi(\phi(X))$ is Gaussian.

4.Since ψ is arbitrary, and by the definition of a Gaussian process on a Banach space, we can get that $\phi(X)$ is Gaussian.

Since both $\mathbb D$ and ϕ were also arbitrary, conclusion (iii) follows.

 $(iii) \Rightarrow (i):$

Multivariate coordinate projections are special examples of continuous, linear maps into Banach spaces.

A D F A B F A B F A B

Weak Convergence

Let $(\Omega_n, \mathscr{A}_n, P_n)$ be a sequence of probability spaces and $X_n : \Omega_n \mapsto \mathbb{D}$ a sequence of maps.

Definition

 X_n converges weakly to a Borel measurable $X: \Omega \mapsto \mathbb{D}$ if

$$E^*f(X_n) \to Ef(X), for every f \in C_b(\mathbb{D}).$$

If L is the law of X, (1) can be reexpressed as

$$E^*f(X_n) \to \int_{\Omega} f(x)dL(x), \text{ for every } f \in C_b(\mathbb{D}).$$
 (2)

This weak convergence is denoted $X_n \rightsquigarrow x$ or, equivalently, $X_n \rightsquigarrow L$.

< □ > < □ > < □ > < □ > < □ > < □ >

(1)

Theorem 5 (Portmanteau)

The following are equivalent:

(i) $X_n \rightsquigarrow L$; (ii) $lim inf P_*(X_n \in G) \ge L(G)$ for every open G; (iii) $\lim \sup P^*(X_n \in F) \le L(F)$ for every closed F; (iv) $\lim \inf E_* f(X_n) \ge \int_{\Omega} f(x) dL(x)$ for every lower semicontinuous f bounded below: (v) $\lim \sup E^* f(X_n) \leq \int_{\Omega} f(x) dL(x)$ for every upper semicontinuous f bounded above: (vi) $limP^*(X_n \in B) = limP_*(X_n \in B) = L(B)$ for every Borel B with $L(\delta B) = 0$: (vii) $\lim \inf E_* f(X_n) \geq \int_{\Omega} f(x) dL(x)$ for every bounded, Lipschitz continuous, nonnegative f. Furthermore, if L is separable, then (i)-(vii) are also equivalent to (viii) $\sup_{f \in BL_1} \|E^*f(X_n) - Ef(X)\| \to 0.$

Note: depending on the setting, one or more of these alternative definitions will prove more useful than the others.

Xinjie Qian

Stochastic convergence

Theorem 6 (Continuous mapping)

Let $g: \mathbb{D} \mapsto \mathbb{E}$ be continuous at all points in $\mathbb{D}_0 \subset \mathbb{D}$, where \mathbb{D} and \mathbb{E} are metric spaces. Then if $X_n \rightsquigarrow X$ in \mathbb{D} , with $P_*(X \in \mathbb{D}_0) = 1$, then $g(X_n) \rightsquigarrow g(X)$.

Problem: a potential issue is that there may sometimes be more than one choice of metric space \mathbb{D} to work with.

Example: when considering weak convergence of the usual empirical process $\sqrt{n}(\hat{F}_n(t) - F(t))$ based on data in [0, 1], we could let \mathbb{D} be either $l^{\infty}([0, 1])$ or D[0, 1].

Lemma 7

Let the metric spaces $\mathbb{D}_0 \subset \mathbb{D}$ have the same metric, and assume X and X_n reside in \mathbb{D}_0 . Then $X_n \rightsquigarrow X$ in \mathbb{D}_0 if and only if $X_n \rightsquigarrow X$ in \mathbb{D} .

Proof. Since any set $B_0 \in \mathbb{D}_0$ is open if and only if it is of the form $B \cap \mathbb{D}_0$ for some open B in \mathbb{D} , the result follows from Part (ii) of the portmanteau theorem.

Note: this lemma tells us that the choice of metric space is generally not a problem.

イロト 不得下 イヨト イヨト 二日

Asymptotic Measureability and Asymptotic Tightness

Recall: a sequence X_n is asymptotically measurable if and only if $E^*f(X_n) - E_*f(X_n) \to 0$, for all $f \in C_b(\mathbb{D})$.

Definition

A sequence X_n is asymptotically tight if for every $\epsilon > 0$, there is a compact K so that $\lim \inf P_*(X_n \in K^{\delta}) \ge 1 - \epsilon$, for every $\delta > 0$, where for a set $A \subset \mathbb{D}$, $A^{\delta} = \{x \in \mathbb{D} : d(x, A) < \delta\}$ is the " δ -enlargement" around A.

Properties of asymptotic tightness :

- It does not depend on the metric chosen.
- Weak convergence often implies asymptotic tightness.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

These two lemmas show the properties of asymptotic tightness:

Lemma 8

 X_n is asymptotically tight if and only if for every $\epsilon > 0$ there exists a compact K so that $\lim \inf P_*(X_n \in G) \ge 1 - \epsilon$ for every open $G \supset K$.

Lemma 9

Assume $X_n \rightsquigarrow X$. Then (i) X_n is asymptotically measurable. (ii) X_n is asymptotically tight if and only if X is tight.

Proof of Lemma 8

Proof.

First assume that X_n is asymptotically tight.(\Rightarrow) 1. Fix $\epsilon > 0$, and let the compact set K satisfy $\lim \inf P_*(X_n \in K^{\delta}) \ge 1 - \epsilon$, for every $\delta > 0$. 2. If $G \supset K$ is open, then there exists a $\delta_0 > 0$ so that $G \supset K^{\delta_0}$. (If this were not true, then there would exist a sequence $\{x_n\} \notin G$ so that $d(x_n, K) \to 0$. This implies the existence of a sequence $\{y_n\} \in K$ so that $d(x_n, y_n) \to 0$. Thus, since K is compact and the complement of G is closed, there is a subsequence n' and a point $y \notin G$ so that $d(y_{n'}, y) \to 0$, but this is impossible.)

 Hence lim infP_{*}(X_n ∈ G) ≥ 1 − ε.
Now assume that X_n satisfies the alternative definition.(⇐)
Fix ε > 0, and let the compact set K satisfy lim infP_{*}(X_n ∈ G) ≥ 1 − ε, for every open G ⊃ K.
For every δ > 0, K^δ is an open set. 3. Thus lim infP_{*}(X_n ∈ K^δ) ≥ 1 − ε, for every δ > 0.

Proof of Lemma 9

Proof.

(i): Fix $f \in C_b(\mathbb{D})$. Note that weak convergence implies both $E^*f(X_n) \to Ef(X)$ and $E_* f(X_n) = -E^*[-f(X_n)] \to -E[-f(X)] = Ef(X).$ (ii): Assume X is tight.(\Rightarrow) 1. Fix $\epsilon > 0$. Assume X is tight, and choose a compact K so that $P(X \in K) > 1 - \epsilon.$ 2. By Part(ii) of the portmanteau theorem, $\lim \inf P_*(X_n \in K^{\delta}) > P(X \in K^{\delta}) > 1 - \epsilon$ for every $\delta > 0$. 3. Hence X_n is asymptotically tight. Now assume that X_n is asymptotically tight. (\Leftarrow) 1. Fix $\epsilon > 0$, and choose a compact K so that $\lim \inf P_*(X \in K^{\delta}) \ge 1 - \epsilon$ for every $\delta \ge 0$. 2. By Part (iii) of the portmanteau theorem, $P(X \in K^{\delta}) > \lim \sup P^*(X_n \in K^{\delta}) > \lim \inf P_*(X_n \in K^{\delta}) > 1 - \epsilon.$ Xinjie Qian June 16, 2021

22 / 26

Theorem 10 (Prohorov's theorem)

If the sequence X_n is asymptotically measurable and asymptotically tight, then it has a subsequence $X_{n'}$ that converges weakly to a tight Borel law.

Note: Prohorov's theorem shows that asymptotic measurability and asymptotic tightness together almost gives us weak convergence, which is *relative compactness*.

Definition

A sequence X_n is relatively compact if every subsequence $X_{n'}$ has a further subsequence $X_{n''}$ which converges weakly to a tight Borel law.

Question: under what circumstances does asymptotic measurability or tightness of the marginal sequences X_n and Y_n imply asymptotic measurability or tightness of the joint sequence (X_n, Y_n) ?

Lemma 11

Let $X_n : \Omega_n \mapsto \mathbb{D}$ and $Y_n : \Omega_n \mapsto \mathbb{E}$ be sequences of maps. Then the following are true:

(i) X_n and Y_n are both asymptotically tight if and only if the same is true for the joint sequence $(X_n, Y_n) : \Omega_n \mapsto \mathbb{D} \times \mathbb{E}$.

(ii) Asymptotically tight sequences X_n and Y_n are both asymptotically measurable if and only if $(X_n, Y_n) : \Omega_n \mapsto \mathbb{D} \times \mathbb{E}$ is asymptotically measurable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 12 (Slutsky's theorem)

Suppose $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$, where X is separable and c is a fixed constant. Then the following are true:

(i) $(X_n, Y_n) \rightsquigarrow (X, c)$. (ii) If X_n and Y_n are in the same metric space, then $X_n + Y_n \rightsquigarrow X + c$. (iii) Assume in addition that the Y_n are scalars. Then whenever $c \in \mathbb{R}$, $Y_n X_n \rightsquigarrow cX$. Also, whenever $c \neq 0, X_n/Y_n \rightsquigarrow X/c$.

Note: We can use Prohorov's theorem and the continuous mapping theorem to prove Slutsky's theorem.

Theorem 12 (Slutsky's theorem)

Suppose $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$, where X is separable and c is a fixed constant. Then the following are true:

(i) $(X_n, Y_n) \rightsquigarrow (X, c)$. (ii) If X_n and Y_n are in the same metric space, then $X_n + Y_n \rightsquigarrow X + c$. (iii) Assume in addition that the Y_n are scalars. Then whenever $c \in \mathbb{R}$, $Y_n X_n \rightsquigarrow cX$. Also, whenever $c \neq 0, X_n/Y_n \rightsquigarrow X/c$.

Proof.

(i):

1.By completing the metric space for X, we can without loss of generality assume that X is tight.

2. By Lemma 11, (X_n, Y_n) is asymptotically tight and asymptotically measurable.

3. By Prohorov's theorem, all subsequences of (X_n, Y_n) have further subsequences which converge to tight limits.

(ii) and (iii): Continuous mapping theorem.