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Subsection 7.2.2: Spaces of Bounded Functions
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We turn our attention away from weak convergence in general
metric spaces to the specific case Xn ∈ `∞(T ), the metric space of
all uniformly bounded functions on arbitrary index set T .

This is a useful restriction, since most statistical applications of
empirical process theory will occur within `∞(T ).
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Lemma 7.16

A useful property in this setting is that asymptotic measurability of
Xn follows from the asymptotic measurability of Xn(t) for each
t ∈ T :

Lemma 7.16

Let the sequence of maps Xn in `∞(T ) be asymptotically
tight. Then Xn is asymptotically measurable if and only if
Xn(t) is asymptotically measurable for each t ∈ T .
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Proof of Lemma 7.16

=⇒
Let ft : `∞(T ) 7→ R be the marginal projection at t ∈ T , i.e.,
ft(x) = x(t) for any x ∈ `∞(T ). Since ft is continuous, asymptotic
measurability of Xn implies asymptotic measurability of Xn(t) for
each t ∈ T .

⇐=
Now, assume that Xn(t) is asymptotically measurable for each
t ∈ T . Lemma 7.14 implies asymptotic measurability for all
finite-dimensional joint sequences of marginals, (X (t1), . . . ,X (tk)).
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Proof of Lemma 7.16

⇐= (cont.)
Consequently, all functions f ∈ F ⊂ Cb(`∞(T )) of the form
f (x) = g(x(t1), . . . , x(tk)) with g ∈ Cb(Rk) are asymptotically
measurable. Since F is a valid subalgebra that separates points in
`∞(T ), asymptotic measurability of Xn follows readily from lemma
7.9.
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Theorem 7.17

Theorem 7.17 yields a convenient result, that convergence of finite
dimensional distributions together with asymptotic tightness is
equivalent to weak convergence in `∞(T ):

Theorem 7.17

The sequence Xn converges to a tight limit in `∞(T ) iff Xn

is asymptotically tight, and all finite-dimensional marginals
converge weakly to limits.
Moreover, if Xn is asymptotically tight and all its finite di-
mensional marginals (Xn(t1), . . . ,Xn(tk)) converge weakly to
the marginals of a process (X (t1), . . . ,X (tk)), then there is
a version of X such that Xn  X and X resides in UC (T , ρ)
for some semimetric ρ making T totally bounded.
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Proof of Theorem 7.17

We begin with the first statement. A sketch of the proof follows:

⇐=
Define a vector lattice on a subset of continuous bounded
functions as in lemma 7.3. Applying lemma 7.9 yields asymptotic
measurability of Xn. Applying Prohorov’s theorem yields that Xn is
relatively compact, or that there is a weakly convergent
subsequence Xn′ which converges to a tight Borel law. By
convergence of finite-dimensional marginals, all of the
finite-dimensional marginals of Xn′ and Xn must converge weakly
to the same limits, and by consequence of lemma 7.3, the limiting
law of Xn is the limiting tight law of Xn′ .
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Proof of Theorem 7.17

The implication is simpler:

=⇒
Assume that Xn converges to a tight limit. Lemma 7.12 yields that
Xn is asymptotically tight. The continuous mapping theorem yields
that the finite-dimensional marginals of Xn converge to those of X .
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Proof of Theorem 7.17

The final implication:
=⇒

Assume that Xn is asymptotically tight and all of its
finite-dimensional marginals converge weakly to the marginals of a
process X . By the asymptotic tightness of Xn, X is tight, and
there is a version of X that lies in some σ-compact K ⊂ `∞(T )
with probability one. Application of of Arzelá-Ascoli gives that
K ⊂ UC (T , ρ) for some ρ making T totally bounded.
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Looking back to Theorem 2.1

We refer back to Theorem 2.1 from chapter 2.

Theorem 2.1

Xn converges weakly to a tight X in `∞(T ) if and only if:

(i) For all finite {t1, . . . , tk} ⊂ T , the multivariate
density of {Xn(t1), . . . ,Xn(tk)} converges to that of
{X (t1), . . . ,X (tk)}.

(ii) There exists a semimetric ρ for which T is totally bounded
and:

inf
δ↓0

lim sup
n→∞

P∗

{
sup

s,t∈T s.t. ρ(s,t)<δ
|Xn(s)− Xn(t)| > ε

}
= 0

When the second condition holds for all ε > 0, we say the sequence
Xn is asymptotically uniformly ρ-equicontinuous in probability.
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Looking back to Theorem 2.1

Theorem 2.1 is slightly informal in that the conditions imply
Xn  X

′
in `∞(T ) for some tight version X ′ of X rather than

Xn  X directly.

With the prior developments, we are adequately prepared to prove
Theorem 2.1.

First, recall that:

‖x‖T = supt∈T |x(t)|
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Proof of Theorem 2.1

=⇒
Begin by assuming Xn  X in `∞(T ) for tight X . Convergence of
all finite-dimensional distributions follows from CMT. Since X is
tight, theorem 7.2 guarantees that P(X ∈ UC (T , ρ)) = 1 for some
semimetric ρ making T totally bounded. Thus, for every η > 0,
there exists some compact subset K of UC (T , ρ) such that:

lim sup
n→∞

P∗(Xn ∈ K δ) ≥ 1− η, ∀δ > 0

Fix η > 0 and let the compact set K satisfy the above. For an
arbitrary fixed ε > 0, the first propostion of theorem 6.2 provides
the existence of a δ0 > 0 such that:

supx∈K sups,t:ρ(s,t)<δ0 |x(s)− x(t)| ≤ ε/3
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Proof of Theorem 2.1

=⇒ (cont.)
We now have:

P∗
[
sups,t:ρ(s,t)<δ0 |Xn(s)− Xn(t)| > ε

]
≤ P∗

[
sups,t:ρ(s,t)<δ0 |Xn(s)− Xn(t)| > ε,Xn ∈ K ε/3

]
+ P∗(Xn /∈ K ε/3)

≡ En

which satisfies lim supn→∞En ≤ η, since if x ∈ K ε/3 then
sups,t:ρ(s,t)<δ0 |x(s)− x(t)| < ε. Since η and ε were arbitrary, Xn is
asymptotically uniformly ρ-continuous in probability.
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Proof of Theorem 2.1

⇐=

To prove this direction, we rely on lemma 7.18. We will first state
lemma 7.18, then return to finish this direction of theorem 2.1:

Theorem 7.18

Assume that conditions (i) and (ii) of theorem 2.1 hold. Then
Xn is asymptotically tight.

Proof found in section 7.4 of the book.
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Return to Theorem 2.1

⇐= (cont.)

With lemma 7.18, the remainder of the proof of theorem 2.1 is
quite simple.

Assuming conditions (i) and (ii), asymptotic tightness of Xn holds
readily by lemma 7.18. Now, asymptotic tightness together with
convergence of all finite-dimensional marginals satisfies the premise
of lemma 7.17, and thus Xn converges weakly to a tight limit, as
required.
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Note on Theorem 2.1

So far, we’ve shown that for tight X and Xn  X , any semimetric
ρ which defines a σ-compact UC (T , ρ) such that
P(X ∈ UC (T , ρ) = 1 will also result in Xn being uniformly
ρ-equicontinuous in probability.

How about the converse? I.e., can any semimetric, say ρ∗, which
enables uniform asymptotic equicontinuity of Xn also be used to
define a σ-compact UC (T , ρ∗) wherein X resides with probability
1? Theorem 7.19 shows that the two statements are
interchangeable when considering `∞(T ).
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Theorem 7.19

Theorem 7.19

Assume Xn  X in `∞(T ), and let ρ be a semimetric
making (T , ρ) totally bounded. Then the following are
equivalent:

(i) Xn is asymptotically uniformly ρ-equicontinuous in
probability

(ii) P(X ∈ UC (T , ρ)) = 1.

We prove Theorem 7.19 in the following slides.

19 / 43 Stochastic Convergence



Proof of Theorem 7.19

(ii) =⇒ (i)
As mentioned, this direction is readily proven by the arguments in
our proof of 2.1.

(i) =⇒ (ii) Assuming (i). For any x ∈ `∞(T ), for δ > 0, define
the function Mδ(x) ≡ sups,t:ρ(s,t)<δ|x(s)− x(t)|.

Restricting δ ∈ (0, 1) yields that x 7→ M(·)(x), is a map from
`∞(T ) to `∞((0, 1)) which is continuous since
|Mδ(x)−Mδ(y)| ≤ 2||x − y ||T , ∀δ ∈ (0, 1).
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Proof of Theorem 7.19

(i) =⇒ (ii)(cont.)
Since this map is continuous for δ ∈ (0, 1), we have that
M(·)(Xn) M(·)(X ) in `∞((0, 1))

Since Xn is asymptotically uniformly ρ-equicontinuous in
probability, there exists a positive sequence δn ↓ 0 such that
P(Mδn(Xn) > ε)→ 0 for every ε > 0. Thus, Mδn(X ) 0.

A application of theorem 2.1 to X yields that X is tight, and thus
the desired result.
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Discussion of Theorem 7.19

Taking theorems 2.1 and 7.19 together with lemma 7.4 results in
an interesting consequence when Xn converges weakly in `∞(T ) to
a tight Gaussian process X .

Consider the semimetric ρp(s, t) = (E |X (s)− X (t)|p)1/(p∨1) for
any p ∈ (0,∞). Then for any p ∈ (0,∞), (T , ρp) is totally
bounded and the sample paths of X are ρp-equicontinuous, and Xn

is asymptotically uniformly ρp-equicontinuous in probability.

A special, convenient case, is found by taking p = 2, the “standard
deviation“ metric.
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Lemma 7.20

We conclude this section with an equivalent condition to Xn being
asymptotically uniformly ρ-equicontinuous in probability. This
condition, stated in lemma 7.20, is sometimes easier to verify in
certain settings.
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Lemma 7.20

Lemma 7.20

Let Xn be a sequence of stochastic processes indexed by T .
Then the following are equivalent:

(i) There exists a semimetric ρ making T totally bounded
and for which Xn is uniformly ρ-equicontinuous in probability.

(ii) For every ε, η > 0, there exists a finite partition T =
∪ki=1Ti such that:

lim sup
n→∞

P∗

(
sup

1≤i≤k
sup
s,t∈T

|Xn(s)− Xn(t)| > ε

)
< η

The proof is omitted here, but can be found in section 7.4.
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Section 7.3: Other Modes of Convergence
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Other Modes of Convergence

We begin by recalling the definitions of convergence in probability
and convergence outer almost surely.

We say that Xn converges to X in probability (denoted Xn
P→ X if

P {d(Xn,X )∗ > ε} → 0 for all ε > 0.

We say that Xn converges outer almost surely to X (denoted

Xn
as∗→ X ) if there exists a sequence of measurable random

variables ∆n, such that d(Xn,X ) ≤ ∆n for all n and
P {lim supn→∞∆n = 0} = 1.
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Other Modes of Convergence

We additionally define two other modes of convergence which can
be useful:

We say that Xn converges almost uniformly to X if for every ε > 0,
there exists a measurable set A such that P(A) ≥ 1− ε and
d(Xn,X )→ 0 uniformly on A.

We say that Xn converges almost surely to X if
P∗ (limn→∞d(Xn,X ) = 0) = 1
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Other Modes of Convergence

Note that the definitions of convergence almost surely and
convergence outer almost surely differ only in that for the latter,
d(Xn,X ) is required to be bounded above by a measurable random
variable which converges to 0.

This distinction is not trivial. It can be shown that almost sure
convergence does not, in general, imply convergence in probability
when d(Xn,X ) is not measurable.

Lemma 7.21 on the following slide describes the relationships
between the modes.
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Lemma 7.21

Lemma 7.21

Let Xn,X : Ω 7→ D be maps with X Borel measurable. Then:

(i) Xn
as∗→ X =⇒ Xn

P→ X

(ii) Xn
P→ X if and only if every subsequence Xn′ has a

further subsequence Xn′′ such that Xn′′
as∗→ X

(iii) Xn
as∗→ X if and only if Xn converges almost uniformly

to X if and only if supm≥n d(Xm,X )
P→ 0.

Note that for sequences of maps, almost uniform convergence and
outer almost sure convergence are equivalent. This is not true for
nets.
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Extending probability convergence

Thus far we have restricted ourselves to sequences Xn defined on a
fixed probability space Ω.

To allow for probability spaces which change in n, we need to
extend the definition of convergence in probability to the
convergence of a stochastic process to a constant.

This extended convergence mode is simply denoted Xn
P→ c , for a

constant c, and will be distinguished only by context.
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Proposition 7.22

The following proposition gives the connection between
convergence almost surely and convergence in probability. We
sketch the proof below.

Proposition 7.22

Let Xn,Yn : Ω 7→ D be maps with Yn measurable. Suppose
every subsequence n′ has a a further subsequence n′′ such that

Xn′′ → 0 almost surely. Suppose also that d(Xn,Yn)
P→ 0.

Then Xn
P→ 0.

The idea of the proof is recognizing that any the further
subsequence of any arbitrary subsequence of Yn, Yn′′ , converges to
0 almost surely. Measurability of Yn then implies that Yn′′

as∗→ 0.

This gives Yn
P→ 0, and Xn

P→ 0 follows directly.
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Lemma 7.23

Lemma 7.23 describes important relationships between weak
convergence and convergence in probability.

Lemma 7.23

Let Xn,Yn : Ωn 7→ D be maps, XΩ 7→ D be Borel measur-
able, and c ∈ D be a constant. Then:

(i) If Xn  X and d(Xn,Yn)
P→ 0, then Yn  X

(ii) Xn
P→ X implies Xn  X .

(iii) Xn
P→ c if and only if Xn  c.

Proof to follow.
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Proof of Lemma 7.23

Begin with (i). Let F ⊂ D be closed, and fix some ε > 0. Then

lim supn→∞P∗(Yn ∈ F )

= lim supn→∞P∗(Yn ∈ F , d(Xn,Yn)∗ ≤ ε)
≤ lim supn→∞P∗(Xn ∈ F ε)

≤ P(X ∈ F ε)

Letting ε ↓ 0 yields the result by the portmanteau theorem. For

(ii), assume that Xn
P→ X , thus d(X ,Xn)

P→ 0. Since X  X ,
direct application of (i) yields that Xn  X .
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Proof of Lemma 7.23

For (iii), the implication is simple. Xn
P→ c implies that Xn  c by

(ii).

For the converse, assume Xn  c and fix some ε > 0. It’s clear
that P∗(d(Xn, c) ≥ ε) = P∗(Xn /∈ B(c , ε)) where B(c , ε) is an
open ε-ball around c in D. By the portmanteau theorem,
lim supn→∞P∗(Xn /∈ B(c , ε)) ≤ P(X /∈ B(c , ε)) = 0. Thus

Xn
P→ c since ε is arbitrary.

34 / 43 Stochastic Convergence



Theorem 7.24: Extended CMT

Theorem 7.24: Extended continuous mapping

Let Dn ⊂ D and gn : Dn 7→ E satisfy the following. If xn → x
with xn ∈ Dn for all n ≥ 1 and x ∈ D0, then gn(xn)→ g(x),
where D0 ⊂ D and g : D0 7→ E. Let Xn be maps taking
values in Dn, and let X be Borel measurable and separable.
Then:

(i) Xn  X implies gn(Xn) g(X )

(ii) Xn
P→ X implies gn(Xn)

P→ g(X )

(iii) Xn
as∗→ implies gn(Xn)

as∗→ g(X ).

Note that we’ve generalized in that we are interested in the
convergence of a function gn which is dependent on n. Following
the book, we omit the proof here.
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Theorem 7.25

Theorem 7.25 gives another continuous mapping result for
convergence in probability and outer almost surely. Note that
theorem 7.25, unlike theorem 7.24, does not require X to be
separable.

Theorem 7.25

Let g : D 7→ E be continuous at all points in D0 ⊂ D, and
let X be Borel measurable with P∗(X ∈ D0) = 1. Then:

(i) Xn
P→ X implies g(Xn)

P→ g(X )

(ii) Xn
as∗→ implies g(Xn)

as∗→ g(X ).
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Theorem 7.26

Theorem 7.26 covers a outer almost sure representation result for
weak convergence. This allows certain weak convergence problems
to be represented as ones of convergence of fixed sequences.

Theorem 7.26

Let Xn : Ωn 7→ D be a sequence of maps, and let X∞ be Borel
measurable and separable. If Xn  X∞, then there exists a
probability space (Ω̃, Ã, P̃) with maps Xn : Ω̃ 7→ D with:

(i) X̃n
as∗→ X̃∞

(ii) E ∗f (X̃n) = E ∗f (Xn), for every bounded f : D 7→ R
and all 1 ≤ n ≤ ∞.

Moreover, X̃n can be chosen such that is equal to Xn ◦φn for
all 1 ≤ n ≤ ∞, where the φn : Ω̃ 7→ Ωn are measurable and
perfect maps, and Pn = P̃ ◦ φn

37 / 43 Stochastic Convergence



Proposition 7.27

Proposition 7.27 relies directly on theorem 7.26, and provides a
method for studying the weak convergence of certain statistics
which can be expressed as stochastic integrals, such as the
Wilcoxon statistic.

Proposition 7.27

Let Xn,Gn ∈ D[a, b] be stochastic processes with Xn  X

and Gn
P→ G in D[a, b], where X is bounded with continuous

sample paths, G is fixed, and Gn and G have total varia-

tion bounded by some K < ∞. Then
∫ (·)
a Xn(s)dGn(s)  ∫ (·)

a X (s)dG (s) in D[a, b].
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Proof of Proposition 7.27

Slutsky’s theorem and lemma 7.23 provide that (Xn,Gn) (X ,G ).
Next, we rely on theorem 7.26, which provides existence of a new
probability space with processes X̃n, X̃ , G̃n, and G̃ for which the
outer integrals are the same for all bounded functions as their
original counterparts, and also satisfy that (X̃n, G̃n)

as∗→ (X̃ , G̃ )

For each integer m ≥ 1, define tj = a + (b − a)j/m, j = 0, . . . ,m,
and let:

Mm ≡ max
1≤j≤m

sup
s,t∈(tj−1,tj ]

|X̃ (s)− X̃ (t)|

now, define X̃m ∈ D[a, b] such that X̃m(a) = X̃ (a), and
X̃m(t) ≡

∑m
j=1 1 {tj−1 < t ≤ tj} X̃ (tj) for t ∈ (a, b].
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Proof of Proposition 7.27

For integrals of the range (a, t] for t = a, we will define the value
over the integral to be 0. For any t ∈ [a, b], we have:

∣∣∣∣∣
∫ t

a
X̃n(s)dG̃n(s)−

∫ t

a
X̃ (s)dG̃ (s)

∣∣∣∣∣
≤
∫ b

a
|X̃n(s)− X̃ (s)| × |dG̃n(s)|+

∫ b

a
|X̃m(s)− X̃ (s)| × |dG̃n(s)|

+

∣∣∣∣∣
∫ t

a
X̃m(s)

{
dG̃n(s)− dG̃ (s)

}∣∣∣∣∣
≤ K

(
‖X̃n − X̃‖[a,b] + Mm

)
+

∣∣∣∣∣
m∑
j=1

X̃ (tj)

∫
(tj−1,tj ]∩(a,t])

{
dG̃n(s)− dG̃ (s)

}∣∣∣∣∣
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Proof of Proposition 7.27

(Continued from last slide)

K
(
‖X̃n − X̃‖[a,b] + Mm

)
+

∣∣∣∣∣
m∑
j=1

X̃ (tj)

∫
(tj−1,tj ]∩(a,t])

{
dG̃n(s)− dG̃ (s)

}∣∣∣∣∣
≤ K

(
‖X̃n − X̃‖[a,b] + Mm

)
+ m

(
‖X̃‖ × ‖G̃n − G̃‖∗[a,b]

)
≡ En(m)

Note that En(m) is measurable and converges to 0 almost surely.

Define Dn to be the infimum of En(m) over m. Since Dn
as∗→ 0 and

Dn is measurable, we have that:∫ (·)
a X̃n(s)dG̃n(s)

as∗→
∫ (·)
a X̃ (s)dG̃ (s)
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Proof of Proposition 7.27

Now, note that for any f ∈ Cb(D[a, b]), the map

(x , y) 7→ f

(∫ (·)

a
x(s)dy(s)

)
for x , y ∈ D[a, b] is bounded when the total variation of y is
bounded. Thus, by (ii) of theorem 7.26:

E∗f

(∫ (·)

a
Xn(s)dGn(s)

)
= E∗f

(∫ (·)

a
X̃n(s)dG̃n(s)

)

→ Ef

(∫ (·)

a
X̃ (s)dG̃ (s)

)

= Ef

(∫ (·)

a
X (s)dG (s)

)
which completes the proof, since f is arbitrary.
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Lemma 7.28

The final result of the section is useful when certain questions
about weakly convergent sequences are easier to answer for
measurable maps. The lemma shows that a nonmeasurable, weakly
convergent sequence Xn is usually close to a measurable sequence
Yn.

Proposition 7.28

Let Xn : Ωn 7→ D be a sequence of maps.If Xn  X , where X
is Borel measurable and separable, then there exists a Borel

measurable sequence Yn : Ωn 7→ D with d(Xn,Yn)
P→ 0.
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