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Overview

The main goal of Chapter 8 is to present the empirical process techniques

needed to prove the Glivenko-Cantelli and Donsker theorems. The most

difficult step in these proof is going from point-wise convergence to

uniform convergence. Maximal inequalities are very useful tools for

accomplishing this step.

Jianqiao Wang Empirical Process Methods July 7, 2021 3 / 38



Orlicz Norms and Maxima

Orlicz norms are useful for controlling the size of the maximum of a finite

collection of random variables.

Definition

For a nondecreasing, nonzero convex function ψ : [0,∞] 7→ [0,∞], with

ψ(0) = 0, the Orlicz norm of a real random variable X , also called

ψ-norm, is

‖X‖ψ ≡ inf

{
c > 0 : Eψ

(
|X |
c

)
≤ 1

}
,

where the norm takes the value∞ if no finite c exists with Eψ(|X |/c) ≤ 1.
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Orlicz Norms and Maxima

With the convexity of ψ, exercise 8.5.1 verifies that ‖·‖ψ is indeed norm on

the space of random variables with ‖X‖ψ <∞.

When ψ is of the form x 7→ xp, where p ≥ 1, the corresponding Orlicz

norm is Lp-norm

‖X‖p = (E|X |p)1/p

For maximal inequalities, Orlicz norms defined with ψp(x) ≡ ex
p − 1, for

p ≥ 1, are of greater interest because of their sensitivity to behavior in the

tails. Since xp ≤ ψp(x), we have ‖X‖p ≤ ‖X‖ψp
.

By the series representation of exponentiation, ‖X‖p ≤ (p!)1/p‖X‖ψ1 for

all p ≥ 1.
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Orlicz Norms and Maxima

Orlicz norms based on ψp relate fairly precisely to the tail probabilities:

Lemma (8.1)

For a real random variable X and any p ∈ [1,∞), the following are

equivalent:

1 ‖X‖ψp
<∞.

2 There exist constants 0 < C ,K <∞ such that

P(|X | > x) ≤ Ke−Cx
p

(8.1)

Moreover, if either condition holds, then K = 2 and C = ‖X‖−pψp
satisfies

(8.1), and , for any C ,K ∈ (0,∞) satisfying (8.1), ‖X‖ψp
≤
(
1+K
C

)1/p
.
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Proof of Lemma 8.1

(1) =⇒ (2)

Assume (1). By Markov inequalities,

P(|X | > x) = P
(
ψp(|X |/ ‖X‖ψp

) ≥ ψp(x/ ‖X‖ψp
)
)
≤ 1 ∧ (

1

ψp(x/ ‖X‖ψp
)

)

By exercise 8.5.2, 1 ∧ (eu − 1)−1 ≤ 2eu for all u > 0. Thus,

P(|X | > x) ≤ 1 ∧ (
1

ψp(x/ ‖X‖ψp
)

) ≤ 2e
− xp

‖X‖p
ψp
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Proof of Lemma 8.1

(2) =⇒ (1) Assume (2). For any c ∈ (0,C ), by Fubini’s theorem,

E(ec|X |
p − 1) =E

∫ |X |p
0

cecsds

=

∫ ∞
0

P(|X | > s1/p)cecsds

≤
∫ ∞
0

Ke−Cscecsds

=
Kc

C − c

Kc/(C − c) ≤ 1 whenever c ≤ C/(1 + K ), or equivalently,

c−1/p ≥ ((1 + K )/C )1/p. This implies ‖X‖ψp
≤ ((1 + K )/C )1/p <∞.
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Orlicz Norms and Maxima

An important use for Orlicz norms is to control the behavior of maxima.

This control is an extension of the following result for Lp-norms:

For any random variables X1, . . . ,Xm,

‖ max
1≤i≤m

Xi‖p =

(
E max

1≤i≤m
|Xi |p

)1/p

≤

(
E

m∑
i=1

|Xi |p
)1/p

≤m1/p max
1≤i≤m

‖Xi‖p
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Orlicz Norms and Maxima

Lemma (8.2)

Let ψ : [0,∞) 7→ [0,∞) be convex, nondecreasing and nonzero, with

ψ(0) = 0 and

lim sup
x ,y→∞

ψ(x)ψ(y)

ψ(cxy)
<∞

for some constant c <∞. Then, for any random variables X1, . . . ,Xm,∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ

where the constant K depends only on ψ.
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Proof of Lemma 8.2

First make the stronger assumption that ψ(1) ≤ 1/2 and that

ψ(x)ψ(y) ≤ ψ(cxy) for all x , y ≥ 1.

Under this assumption, ψ(x/y) ≤ ψ(cx)/ψ(y) for all x ≥ y ≥ 1. Hence,

for any y ≥ 1 and k > 0,

max
1≤i≤m

ψ

(
|Xi |
ky

)
≤max

i

[
ψ(c |Xi |/k)

ψ(y)
1

{
|Xi |
ky
≥ 1

}
+ ψ

(
|Xi |
ky

)
1

{
|Xi |
ky

< 1

}]
≤max

i

[
ψ(c |Xi |/k)

ψ(y)
1

{
|Xi |
ky
≥ 1

}
+ ψ(1)

]
≤

m∑
i=1

ψ(c |Xi |/k)

ψ(y)
+ ψ(1)
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Proof of Lemma 8.2

Set k = c maxi ‖Xi‖ψ and take expectations of both sides,

E[ψ

(
maxi |Xi |

ky

)
] ≤

m∑
i=1

E[
ψ(c|Xi |/k)

ψ(y)
] + ψ(1)

≤ m

ψ(y)
+

1

2

With y = ψ−1(2m), the right-hand-side is ≤ 1. Thus

‖maxi |Xi |‖ψ ≤ ky = cψ−1(2m) maxi ‖Xi‖ψ.

Since ψ is convex and ψ(0) = 0, x 7→ ψ−1(x) is concave and one-to-one

for x > 0. Thus ψ−1(2m) ≤ 2ψ−1(m). The result of Lemma 8.2 follows

with K = 2c .
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Proof of Lemma 8.2

By exercise 8.5.3, for any ψ satisfying the conditions of the lemma, that

there exists constants 0 < σ ≤ 1 and τ > 0 such that φ(x) ≡ σψ(τx)

satisfies φ(1) ≤ 1/2 and φ(x)φ(y) ≤ φ(cxy) for all x , y ≥ 1.

Furthermore, for this φ, φ−1(u) ≤ ψ−1(u)/(στ), for all u > 0, and for any

random variable X , ‖X‖ψ ≤ ‖X‖φ/(στ) ≤ ‖X‖ψ /σ. Hence

στ

∥∥∥∥max
i

Xi

∥∥∥∥
ψ

≤‖max
i

Xi‖φ

≤2cφ−1(m) max
i
‖Xi‖φ

≤2c

σ
ψ−1(m) max

i
‖Xi‖ψ
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Orlicz Norms and Maxima

An important consequence of Lemma 8.2 is that maximums of random

variables with bounded ψ-norm grow at the rate of ψ−1(m).

Based on exercise 8.5.4, ψp = ex
p − 1 satisfies the conditions of Lemma

8.2 with c = 1, for any p ∈ [1,∞). The growth of maxima is at most

logarithmic, since ψ−1p (m) = (log(1 + m))1/p.
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Orlicz Norms and Maxima

We now present an inequality for collections X1, . . . ,Xm of random

variables which satisfy

P(|Xi | > x) ≤ 2e−
1
2

x2

b+ax (8.3)

for all x > 0, i = 1, . . . ,m and some a, b ≥ 0. This setting will arise later

in the development of a Donsker theorem based on bracketing entropy.
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Orlicz Norm and Maxima

Lemma (8.3)

Let X1, . . . ,Xm be random variables that satisfy the tail bound

P(|Xi | > x) ≤ 2e−
1
2

x2

b+ax (8.3)

for 1 ≤ i ≤ m and some a, b ≥ 0. Then

‖ max
1≤i≤m

|Xi |‖ψ1 ≤ K
{
a log(1 + m) +

√
b
√

log(1 + m)
}

where the constant K is universal, in the sense that it does not depend on

a, b or on the random variables.
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Proof of Lemma 8.3

Assume for now that a, b > 0. The condition implies for all x ≤ b/a the

upper bound 2 exp(−x2/(4b)) for P(|Xi | > x), since in this case

b + ax ≤ 2b. For all x > b/a the conditions implies an upper bound of

2 exp(−x/(4a)), since b/a + x ≤ 2a in this case. This implies that

P(|Xi |1{|Xi | ≤ b/a} > x) ≤ 2 exp(−x2/(4b))

P(|Xi |1{|Xi | > b/a} > x) ≤ 2 exp(−x/(4a))

for all x > 0. By Lemma 8.1, the Orlicz norms ‖|Xi |1{|Xi | ≤ b/a}‖ψ2 and

‖|Xi |1{|Xi | > b/a}‖ψ1 are bounded by
√

12b and 12a respectively.

Since ψp-norms increase in p,

‖max
i
|Xi |‖ψ1 ≤ ‖max

i
|Xi |1{|Xi | > b/a}‖ψ1 + ‖max

i
|Xi |1{|Xi | ≤ b/a}‖ψ2
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Proof of Lemma 8.3

Result of Lemma 8.3 follows by Lemma 8.2 combined with above

inequality.

Suppose now that a > 0 but b = 0. Then the tail bound 8.3 holds for all

b > 0, and the result of Lemma 8.3 follows by letting b ↓ 0.

A similar argument will verify that the results holds when a = 0 and b > 0.

When a = b = 0, Xi = 0 almost surely for i = 1, . . . ,m.
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Maximal Inequalities for Processes

The goals of this section are to first establish a general maximal inequality

for separable stochastic processes and then specialize to sub-Gaussian

processes.

A stochastic process {X (t), t ∈ T} is separable when there exists a

countable subset T∗ ⊂ T such that

sup
t∈T

inf
s∈T∗
|X (t)− X (s)| = 0

almost surely.

In statistical applications, the separability of certain processes is hidden in

other conditions and its verification is seldom required.
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Maximal Inequalities for Processes

A stochastic process is sub-Gaussian when for all s, t ∈ T , x > 0

P(|X (t)− X (s)| > x) ≤ 2e−
1
2
x2/d2(s,t)

for a semimetric d on T . In this case, we say that X is sub-Gaussian with

respect to d .

Examples of sub-Gaussian processes include Rademacher process and

Brownian motion on [0, 1].

The conclusion of Lemma 8.2 is not immediately useful for maximizing

X (t) over t ∈ T since a potentially infinite number of random variables is

involved.
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Maximal Inequalities for Processes

For an arbitrary semimetric space (T , d), the covering number N(ε,T , d)

or N(ε, d) is the minimal number of closed d−balls of radius ε required to

cover T .

The packing number D(ε,T , d) or D(ε, d) is the maximal number of

points that can fit in T while maintaining a distance greater than ε

between all points.

The associated entropy numbers are the respective logarithms of the

covering and packing numbers. These concepts define metric entropy.
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Metric Entropy

For a semimetric space (T , d) and each ε > 0,

N(ε, d) ≤ D(ε, d) ≤ N(ε/2, d)

There exists a minimal subset Tε ⊂ T such that the cardinality of

Tε = D(ε, d) and the minimum distance between distinct points in Tε is

> ε.

If we now place closed ε-balls around each point in Tε, we have a covering

of T . Thus, N(ε, d) ≤ D(ε, d).

No ball of radius ≤ ε/2 can cover more than one point in Tε, and thus at

least D(ε, d) closed ε/2-balls are needed to cover Tε. Hence

D(ε, d) ≤ N(ε/2, d).

Above discussion reveals that covering and packing numbers are essentially

equivalent in behavior as ε ↓ 0.
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Maximal Inequalities for Processes

Theorem (General maximal inequality)

Let ψ satisfy the conditions of Lemma 8.2, and let {X (t), t ∈ T} be a
separable stochastic process with ‖X (s)− X (t)‖ψ ≤ rd(s, t), for all
s, t ∈ T , some semimetric d on T , and a constant r <∞.
Then for any η, δ > 0,∥∥∥∥∥ sup
s,t∈T :d(s,t)≤δ

|X (s)− X (t)|

∥∥∥∥∥
ψ

≤ K

[∫ η

0
ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

]
for a constant K <∞ which depends only on ψ and r . Moreover,∥∥∥∥∥ sup

s,t∈T
|X (s)− X (t)|

∥∥∥∥∥
ψ

≤ 2K

∫ diamT

0
ψ−1(D(ε, d))dε

where diamT ≡ sups,t∈T d(s, t) is the diameter of T .
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Maximal Inequalities for Processes

An important application of above theorem is to sub-Gaussian processes.

Suppose {X (t), t ∈ T} is a sub-Gaussian process wit respect to d . By

Lemma 8.1,

‖X (t)− X (s)‖ψ2 ≤
√

6d(s, t)

Corollary (8.5)

Let {X (t), t ∈ T} be a separable sub-Gaussian process with respect to d .
Then for all δ > 0,

E

(
sup

s,t∈T :d(s,t)≤δ
|X (s)− X (t)|

)
≤ K

∫ δ

0

√
logD(ε, d)dε

where K is a universal constant. Also for any t0 ∈ T ,

E
(

sup
t∈T
|X (t)|

)
≤ E|X (t0)|+ K

∫ diamT

0

√
logD(ε, d)dε
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Proof of Corollary 8.5

Apply general maximal inequality with ψ = ψ2 and η = δ. Because

ψ−12 (m) =
√

log(1 + m) ≤
√

2
√

log(1 +
√
m), ψ−12 (D2(δ, d)) ≤√

2ψ−12 (D(δ, d)). Hence the second term of general maximal inequality

can be replaced by

√
2δψ−12 (D(δ, d)) ≤

√
2

∫ δ

0
ψ−12 (D(ε, d))dε

and we obtain

‖ sup
d(s,t)≤δ

|X (s)− X (t)|‖ψ2 ≤ K

∫ δ

0

√
log(1 + D(ε, d))dε
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Proof of Corollary 8.5

Note D(ε, d) ≥ 2 for all ε strictly less than diamT . Since (1 + m) ≤ m2

for all m ≥ 2, the 1 inside of the logarithm can be removed at the cost of

increasing K , whenever δ < diamT .

The second conclusion is an consequence of the first conclusion with

triangle inequality.
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Maximal Inequalities for Processes

Modulus of continuity of a stochastic process {X (t) : t ∈ T}, where

(T , d) is a semimetric space, is defined as

mX (δ) = sup
s,t∈T :d(s,t)≤δ

|X (s)− X (t)|

Corollary (8.6)

Assume the conditions of corollary 8.5. Also assume there exists a

differentiable function δ 7→ h(δ), with derivative h′(δ), satisfying

h(δ) ≥
√

logD(δ, d) for all δ > 0 small enough and

limδ↓0[δh′(δ)/h(δ)] = 0. Then

lim
M→∞

lim sup
δ↓0

P(
mX (δ)

δh(δ)
> M) = 0

Jianqiao Wang Empirical Process Methods July 7, 2021 27 / 38



Maximal Inequalities for Processes

Theorem (General maximal inequality)

Let ψ satisfy the conditions of Lemma 8.2, and let {X (t), t ∈ T} be a
separable stochastic process with ‖X (s)− X (t)‖ψ ≤ rd(s, t), for all
s, t ∈ T , some semimetric d on T , and a constant r <∞.
Then for any η, δ > 0,∥∥∥∥∥ sup
s,t∈T :d(s,t)≤δ

|X (s)− X (t)|

∥∥∥∥∥
ψ

≤ K

[∫ η

0
ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

]
for a constant K <∞ which depends only on ψ and r . Moreover,∥∥∥∥∥ sup

s,t∈T
|X (s)− X (t)|

∥∥∥∥∥
ψ

≤ 2K

∫ diamT

0
ψ−1(D(ε, d))dε

where diamT ≡ sups,t∈T d(s, t) is the diameter of T .
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Proof of General Maximal Inequality

Note that if the first integral were infinite, the inequalities would be

trivially true. Hence, without loss of generality, assume that the packing

numbers and associated integral are bounded.

Construct a sequence of finite nested set T0 ⊂ T1 ⊂ · · · ⊂ T such that for

each Tj ,

d(s, t) > η2−j for every distinct s, t ∈ Tj , and

each Tj is ”maximal” in the sense that no additional points can be

added to Tj without violating the inequality.

Thus, the number of points in Tj is bounded by D(η2−j , d).
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Proof of General Maximal Inequality

Do the chaining part of the proof.

Begin by ”linking” every point tj+1 ∈ Tj+1 to one and only one tj ∈ Tj

such that d(tj , tj+1) ≤ η2−j , for all points in Tj+1.

Continue this process to link all points in Tj with points in Tj−1, and so

on, for every tj+1 ∈ Tj+1, to obtain a chain tj+1, tj , tj−1, . . . , t0 that

connects to a point in T0.
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Proof of General Maximal Inequality

For any integer k ≥ 0 and arbitrary points sk+1, tk+1 ∈ Tk+1, the

difference in increments along their respective chains connecting to s0, t0

can be bounded as follows:

|(X (sk+1)− X (tk+1))− (X (s0)− X (t0))|

=|
k∑

j=0

{X (sj+1)− X (sj)} −
k∑

j=0

{X (tj+1)− X (tj)}|

≤2
k∑

j=0

max |X (u)− X (v)|

where for fixed j the maximum is taken over all links (u, v) from Tj+1 to

Tj . Hence, the jth maximum is taken over at most the cardinality of Tj+1

links, with each link having ‖X (u)− X (v)‖ψ is bounded by

rd(u, v) ≤ rη2−j .
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Proof of General Maximal Inequality

By Lemma 8.2, for a constant K0 <∞ depending only on ψ and r ,∥∥∥∥ max
s,t∈Tk+1

|{X (s)− X (s0)} − {X (t)− X (t0)}|
∥∥∥∥
ψ

≤2
k∑

j=0

‖max |X (u)− X (v)|‖ψ

≤K0

k∑
j=0

ψ−1(D(η2−j−1, d))η2−j

=4K0

k∑
j=0

ψ−1(D(η2−k+j−1, d))η2−k+j−2

≤4ηK0

∫ 1

0
ψ−1(D(ηu, d))du = 4K0

∫ η

0
ψ−1(D(ε, d))dε
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Proof of General Maximal Inequality

In this bound, s0 and t0 depend on s and t in that they are the endpoints

of the chains starting at s and t respectively.

The maximum of the increments |X (sk+1)− X (tk+1)| over all sk+1 and

tk+1 in Tk+1 with d(sk+1, tk+1) < δ is bounded by

the left-hand-side of above inequality

plus the maximum of the discrepancies at the ends of the chains

|X (s0)− X (t0)| for those points in Tk+1 which are less than δ apart.
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Proof of General Maximal Inequality

For every such pair of endpoints s0, t0 of chains starting at two points in

Tk+1 within distance δ of each other, choose one and only one pair

sk+1, tk+1 in Tk+1, with d(sk+1, tk+1) < δ, whose chains end at s0, t0.

By the definition of T0, this results in at most D2(η, d) pairs.

|X (s0)− X (t0)| ≤|{X (s0)− X (sk+1)} − {X (t0)− X (tk+1)}|

+ |X (sk+1)− X (tk+1)|

Take the maximum over all pairs of endpoints s0, t0. The maximum of the

second term of the right-hand-side is the maximum of D2(η, d) terms with

ψ-norm bounded by rδ. By Lemma 8.2, this maximum is bounded by

some constant C times δψ−1(D2(η, d)).
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Proof of General Maximal Inequality

Combining above inequalities,

‖ max
s,t∈Tk+1:d(s,t)<δ

|X (s)− X (t)|‖ψ

≤8K0

∫ η

0
ψ−1(D(ε, d))dε+ Cδψ−1(D2(η, d))

By the fact that the right-hand-side does non depend on k , we can replace

Tk+1 with T∞ = ∪∞j=1Tj by the monotone convergence theorem.
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Proof of General Maximal Inequality

If we can verify that taking the supremum over T∞ is equivalent to taking

the supremum over T , then the first conclusion of the theorem follows

with K = (8K0) ∨ C .

Since X is separable, there exists a countable subset T∗ ⊂ T such that

supt∈T infs∈T∗ |X (t)− X (s)| = 0 almost surely.

Let Ω∗ denote the subset of the sample space of X for which this

supremeum is zero. P(Ω∗) = 1.
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Proof of General Maximal Inequality

Now for any point t and sequence tn in T , exercise 8.5.5 shows that

d(t, tn)→ 0 implies |X (t)− X (tn)| → 0 almost surely.

For each t ∈ T∗, let Ωt be the subset of the sample space of X for which

infs∈T∞ |X (s)− X (t)| = 0.

Since T∞ is a dense subset of the semimetric space (T , d), P(Ωt) = 1.

Let Ω̃ = Ω∗ ∩ (∩t∈T∗Ωt), P(Ω̃) = 1.

Combined with the fact that

sup
t∈T

inf
s∈T∞

|X (t)− X (s)| ≤ sup
t∈T

inf
s∈T∗
|X (t)− X (s)|+ sup

t∈T∗
inf

s∈T∞
|X (s)− X (t)|

implies that supt∈T infs∈T∞ |X (t)− X (s)| = 0 almost surely.

Thus taking the supremum over T is equivalent to taking the supremum

over T∞.
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Proof of General Maximal Inequality

The second conclusion of general maximal inequality follows from previous

result by setting δ = η = diamT and noting D(η, d) = 1.
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