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From previous talk

Orlicz norm
For a nondecreasing, nonzero convex function ψ : [0,∞] 7→ [0,∞], with ψ(0) = 0,
the Orlicz norm ‖X‖ψ of a real random variable X is defined as

‖X‖ψ ≡ inf

{
c > 0 : Eψ

(
|X|
c

)
≤ 1
}

Theorem 8.4 (General maximal inequality)
Let ψ satisfy the conditions of Lemma 8.2, and let {X(t), t ∈ T} be a separable
stochastic process with ‖X(s)− X(t)‖ψ ≤ rd(s, t), for all s, t ∈ T. Then for any
η, δ > 0,∥∥∥∥∥ sup

s,t∈T:d(s,t)≤δ
|X(s)− X(t)|

∥∥∥∥∥
ψ

≤ K
[∫ η

0
ψ−1(D(ϵ, d))dϵ+ δψ−1 (D2(η, d)

)]
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An important application of previous theorem is to sub-Gaussian processes

Corollary 8.5
Let {X(t), t ∈ T} be a separable sub-Gaussian process with respect to d. Then for
all δ > 0,

E
(

sup
s,t∈T:d(s,t)≤δ

|X(s)− X(t)|
)

≤ K
∫ δ

0

√
logD(ϵ, d)dϵ

where K is a universal constant. Also, for any t0 ∈ T,

E
(
sup
t∈T

|X(t)|
)

≤ E |X (t0)|+ K
∫ diamT

0

√
logD(ϵ, d)dϵ
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Proof for Corollary 8.5

ψp(x) ≡ exp − 1
Based on Exercise 8.5.4, ψp satisfies the conditions of Lemma 8.2 with c = 1, for
any p ∈ [1,∞]
First apply Theorem 8.4 with ψ = ψ2 and η = δ, we have∥∥∥∥∥ sup

s,t∈T:d(s,t)≤δ
|X(s)− X(t)|

∥∥∥∥∥
ψ2

≤ K
[∫ δ

0
ψ−1

2 (D(ϵ, d))dϵ+ δψ−1
2
(
D2(δ, d)

)]

ψ−1
2
(
D2(δ, d)

)
=
√
log(1 + D2(δ, d)) ≤

√
2 log(1 + D(δ, d)) =

√
2ψ−1

2 (D(δ, d))

The second term in the first inequality can be replaced by
√

2δψ−1
2 (D(δ, d)) ≤

√
2
∫ δ

0
ψ−1

2 (D(ϵ, d))dϵ
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and we obtain∥∥∥∥∥ sup
d(s,t)≤δ

|X(s)− X(t)|
∥∥∥∥∥
ψ2

≤ K
∫ δ

0

√
log(1 + D(ϵ, d))dϵ

Note that D(ϵ, d) ≥ 2 for all ϵ strictly less than the diam T. And (1 + m) ≤ m2 for
all m ≥ 2, the 1 inside of the logarithm can be further removed at the cost of
increasing K again, whenever δ < diamT.

For ψ2, E[|X|] ≤ ‖X‖ψ2 , this completes the first part of the corollary.

And the second statement of Corollary 8.5 is simply an easy consequence of the
first, the proof is complete.
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Rademacher Process
Now consider an important sub-Gaussian process: the Rademacher Process

X(a) =
n∑

i=1
ϵiai, a ∈ Rn

where ϵ1, . . . , ϵn are i.i.d Rademacher random variables satisfying
P(ϵ = −1) = P(ϵ = 1) = 1/2
This process will emerge in our development of Donsker results based on uniform
entropy.
The following lemma verifies that Rademacher processes are sub-Gaussian

Lemma 8.7 (Hoeffding’s inequality)
Let a = (a1, · · · , an) ∈ Rn and ϵ1, . . . , ϵn be independent Rademacher random
variables. Then

pr

(∣∣∣∣∣
n∑

i=1
ϵiai

∣∣∣∣∣ > x
)

≤ 2e−
1
2 x2/∥a∥2

for the Euclidean norm ‖ · ‖
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Proof for Lemma 8.7
For any λ and Rademacher variable ϵ, one has

Eeλϵ =
(

eλ + e−λ
)
/2 =

∞∑
i=0

λ2i/(2i)! ≤ eλ2/2

where the last inequality follows from the relationship that (2i)! ≥ 2ii! for all
nonnegative integers.
Hence Markov’s inequality gives for any λ > 0

pr

( n∑
i=1

ϵiai > x
)

≤ e−λxE exp

{
λ

n∑
i=1

ϵiai

}
≤ exp

{(
λ2/2

)
‖a‖2 − λx

}
Setting λ = x/‖a‖2 yields the desired upper bound.
Since multiplying the Rademacher random variables by -1 does not change the joint
distribution, we have

P
(
−

n∑
i=1

ϵiai > x
)

= P
( n∑

i=1
ϵiai > x

)
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The hoeffding’s inequality shows that

pr

(∣∣∣∣∣
n∑

i=1
ϵiai

∣∣∣∣∣ > x
)

≤ 2e−
1
2 x2/∥a∥2

We also have ‖
∑
ϵa‖ψ2

≤
√

6‖a‖ This is because by Lemma 8.1,

P(|
n∑

i=1
ϵiai| > x) ≤ Ke−Cxp

, for all x > 0

⇒ ‖X‖ψp ≤ ((1 + K)/C)1/p

In this case, K = 2, p = 2,C = 1/(2‖a‖2)
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The Symmetrization

One of the two main approaches toward deriving GC/Donsker theorem is based on
comparing the empircal process to a symmetrized empirical process.
Let ϵ1, . . . , ϵn be independent Rademacher random variables, which are also
independent of Xi
Instead of the empirical process

f 7→ (Pn − P) f = 1
n

n∑
i=1

(f (Xi)− Pf)

consider the symmetrized process

f 7→ P◦
nf ≡ n−1

n∑
i
ϵif (Xi)
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Note that both processes have mean function zero.

And G-C theorem or Donsker theorem holds for one of these processes if and only if
it holds for the other.

The goal is to pass from Pn − P to P◦
n and apply arguments conditionally on the

original X′s. Then for fixed X, the symmetrized empirical measure is a Rademacher
process, hence a sub-Gaussian process, then Corollary 8.5 can be applied.
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Before moving onto bound the maxima and moduli of the process Pn − P, one
needs to be careful about the possible nonmeasurability of the suprema of
‖Pn − P‖F
The results will be formulated in terms of outer expectation and we need to be
clear about the underlying product probability space so that outer expectations are
well-defined.
Throughout this section, if outer expectation is involved, we will assume that
X1, · · · ,Xn are the coordinate projection of the product space (X n,An,Pn), where
An is the product σ-field generated from the sets A1 ×· · ·×An for A1, · · · ,An ∈ A

and the outer expectation of functions (X1, . . . ,Xn) 7→ h (X1, . . . ,Xn) are
computed for Pn.
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”Independent” here is understood in terms of a product probability space.
With anxilliary variables independent of X′s Z, the underlying probability space is
assumed to be of the form (X n,An,Pn)× (Z, C,Q), with Xi equal to the
coordinate projections on the ith coordinate and Z depend only on the (n + 1)th

coordinate.
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Theorem 8.8 (Symmetrization)
For every nondecreasing, convex ϕ : R 7→ R and class of measurable functions F ,

E∗ϕ

(
1
2 ‖Pn − P‖F

)
≤ E∗ϕ (‖P◦

n‖F )

≤ E∗ϕ (2 ‖Pn − P‖F + |Rn| · ‖P‖F )

where Rn ≡ P◦
n1 = n−1∑n

i=1 ϵi and the outer expectation are computed based on
the product σ-field described above.

This lemma will mostly be used with the choice ϕ(x) = x
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Proof for Theorem 8.8

Let Y1, · · · ,Yn be independent copies of X1, · · · ,Xn, defined as the coordinate
projections on the last n coordinates in the product space
(X n,An,Pn)× (Z, C,Q)× (X n,An,Pn)
(Z, C,Q) is the probability space for the vector of independent Rademacher
random variables involved in P◦

n
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For fixed values X1, · · · ,Xn,

‖Pn − P‖F = sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1
[f (Xi)− Ef (Yi)]

∣∣∣∣∣
≤ E∗

Y sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1
[f (Xi)− f (Yi)]

∣∣∣∣∣
E∗

Y is the outer expectation with respect to Y and by treating X as constants and
using the probability space (X n,An,Pn)
And Jensen’s inequality yields,

Φ(‖Pn − P‖F ) ≤ EYΦ

∥∥∥∥∥1
n

n∑
i=1

[f (Xi)− f (Yi)]

∥∥∥∥∥
∗Y

F


∗Y denotes the minimal measurable majorant of the supremum, still with X being
fixed.
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Because ϕ(x) is nondecreasing and continuous, the ∗Y inside ϕ can be moved to
E∗

Y

Φ(‖Pn − P‖F ) ≤ E∗
YΦ

(∥∥∥∥∥1
n

n∑
i=1

[f (Xi)− f (Yi)]

∥∥∥∥∥
F

)
Next take expectation with respect to X,

E∗Φ(‖Pn − P‖F ) ≤ E∗
XE∗

YΦ

(
1
n

∥∥∥∥∥
n∑

i=1
[f (Xi)− f (Yi)]

∥∥∥∥∥
F

)

≤ E∗Φ

(
1
n

∥∥∥∥∥
n∑

i=1
[f (Xi)− f (Yi)]

∥∥∥∥∥
F

)

The second inequality holds since double outer expectation can be bounded above
by the joint outer expectation by the Fubini’s theorem for outer expectation
(Lemma 6.14)
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Next we establish the connection with symmetrized process.
Note that adding a minus sign in front of a term f (Xi)− f (Yi) is the same as
exchanging Xi and Yi. And by constructing an underlying product probability
space, the outer expectation of any function f (X1, . . . ,Xn,Y1, . . . ,Yn) remains
unchanged under permutation.
For any n-vector (e1, . . . , en) ∈ {−1, 1}n,

∥∥n−1∑n
i=1 ei [f (Xi)− f (Yi)]

∥∥
F is just a

permutation of

h (X1, . . . ,Xn,Y1, . . . ,Yn) ≡

∥∥∥∥∥n−1
n∑

i=1
[f (Xi)− f (Yi)]

∥∥∥∥∥
F

Expression from last step:

⇒ E∗Φ(‖Pn − P‖F ) ≤ E∗Φ

(
1
n

∥∥∥∥∥
n∑

i=1
[f (Xi)− f (Yi)]

∥∥∥∥∥
F

)

= EϵE∗
X,YΦ

(∥∥∥∥∥n−1
n∑

i=1
ei [f (Xi)− f (Yi)]

∥∥∥∥∥
F

)
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Next use the triangle inequality to separate the contributions of X′s and Y′s

EϵE∗
X,YΦ

(∥∥∥∥∥n−1
n∑

i=1
ei [f (Xi)− f (Yi)]

∥∥∥∥∥
F

)

can be bounded by

1
2EεE∗

X,YΦ

(
2
∥∥∥∥∥1

n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F

)
+

1
2EεE∗

X,YΦ

(
2
∥∥∥∥∥1

n

n∑
i=1

εif (Yi)

∥∥∥∥∥
F

)

The double outer expectation can be replaced by a joint outer expectation.
Thus we have proven the first statement:

E∗Φ(‖Pn − P‖F ) ≤ E∗Φ

(
2
∥∥∥∥∥1

n

n∑
i=1

εif (Yi)

∥∥∥∥∥
F

)
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For the second inequality in Theorem 8.8 that,

E∗ϕ (‖P◦
n‖F ) ≤ E∗ϕ (2 ‖Pn − P‖F + |Rn| · ‖P‖F )

Still define Y as independent copied of X1, · · · ,Xn as before.
Holding X1, · · · ,Xn and ϵ1, · · · , ϵn fixed, we have

‖P◦
nf‖F = ‖P◦

n(f − Pf) + P◦
nPf‖F

= ‖P◦
n(f − Ef(Y)) + RnPf‖F

≤ E∗
Y

∥∥∥∥∥1
n

n∑
i=1

ϵi [f (Xi)− f (Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

Apply Jensen’s inequality,

Φ(‖P◦
n‖F ) ≤ E∗

YΦ

(∥∥∥∥∥1
n

n∑
i=1

ϵi [f (Xi)− f (Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
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Then we take outer expectation on both sides with respect to X and ϵ. With the
same permutation trick we have used in previous proof, ϵ can be replaced by 1’s.
This gives us

E∗Φ(‖P◦
n‖F ) ≤ EϵE∗

XE∗
YΦ

(∥∥∥∥∥1
n

n∑
i=1

[f (Xi)− f (Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
And by adding and subtracting Pf in the summation and triangle inequality, we can
further bound the right-hand-side by

1
2EϵE∗

XE∗
Yϕ

(
2
∥∥∥∥∥1

n

n∑
i=1

[f (Xi)− Pf]
∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)

+
1
2EϵE∗

XE∗
Yϕ

(
2
∥∥∥∥∥1

n

n∑
i=1

[f (Yi)− Pf]
∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
By outer Fubini’s theorem, it can be bounded by

E∗ϕ (2 ‖Pn − P‖F + |Rn| · ‖P‖F )

Thus completes the proof.
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Measurability

The above symmetrization results will be most useful when the supremum ‖P◦
n‖F is

measurable and Fubini’s theorem permits first taking expectation wrt ϵ|X and then
X
If the supremum is not measurable, only weak Fubini’s theorem applies, and the
reordering of expectations may not be valid.
In this case, we assume that the class F is a P-measurable class.

P-measurable class
A class F of measurable function f : X 7→ R, on the probability space (X ,A,P) is
P-measurable if

(X1, . . . ,Xn) 7→

∥∥∥∥∥
n∑

i=1
eif (Xi)

∥∥∥∥∥
F

is measurable on the completion of (X n,An,Pn) for every n and every vector
(e1, . . . , en) ∈ Rn
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Another assumption on F that is stronger than P-measurability but often easier to
verify is pointwise measurability.

Pointwise measurability
A class F of measurable functions is pointwise measurable if there exists a
countable set G ⊂ F such that for every f ∈ F , there exists a sequence {gm} ∈ G
with gm(x) → f(x) for every x ∈ X
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An example of pointwise measurable,
the class F = {1{x ≤ t} : t ∈ R} where the sample space X = R is pointwise
measurable.
Let G = {1{x ≤ t} : t ∈ Q}, and fix the function

x 7→ f(x) = 1 {x ≤ t0}

for some t0 ∈ R
G is countable. Let {tm} be a sequence of rationals with tm ≥ t0 for all m ≥ 1 and
with tm ↓ t0.
Then x 7→ gm(x) = 1 {x ≤ tm} satisfies that gm ∈ G, and gm(x) → f(x) for all
x ∈ R.
t0 is arbituary, therefore the statement holds for all functions in F , which shows
that F is pointwise measurable.
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Besides easy to verify, another nice feature of pointwise measurable class is that
they have a number of useful preservation features.
• When F1 and F2 are pointwise measurable, so is F1 ∪ F2
• F1 ∧ F2 (all possible pairwise minimums) is PM
• F1 ∨ F2 (all possible pairwise maximum) is PM
• F1 + F2 is PM
• F1 · F2 ≡ {f1f2 : f1 ∈ F1, f2 ∈ F2} is PM

Lemma 8.10
Let F1, . . . ,Fk be PM classes of real functions on X , and let ϕ : Rk 7→ R be
continuous.
Then the class ϕ ◦ (F1, . . . ,Fk) is PM, where ϕ ◦ (F1, . . . ,Fk) denotes the class

{ϕ (f1, . . . , fk) : (f1, . . . , fk) ∈ F1 × · · · × Fk}
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