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From previous talk

Orlicz norm

For a nondecreasing, nonzero convex function ¢ : [0, co] — [0, 0], with ¥(0) =
the Orlicz norm || X]|; of a real random variable X is defined as

1]l = 1nf{c > 0:Ev (|X|) < 1}

Theorem 8.4 (General maximal inequality)

Let ¢ satisfy the conditions of Lemma 8.2, and let {X(¢),t € T} be a separable
stochastic process with || X(s) — X()[|y < rd(s,t), for all s,t € T. Then for any
1,0 >0,

sup | X(s) — X(?)]
s,t€ Thd(s,t) <8

<KU Y (D(e, d))de + 5y~ (D*(n, d))

Wenyi Xie (UNC) Symmetrization Inequality and Measurability July 14, 2021 3/27




Application of General Maximal Inequality

[e]e] Jele]ele]e)

An important application of previous theorem is to sub-Gaussian processes

Corollary 8.5

Let {X(?),t € T} be a separable sub-Gaussian process with respect to d. Then for
all § >0,

4
B ( sup | X(s) — X(t)|> < K/ /Iog D(e, d)de
s,t€ T d(s,8) <8 0

where K is a universal constant. Also, for any & € T,

diam T'

E <§gg|X(t)|> <E|X(t)|+ K ; v 1og D(e, d)de
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Proof for Corollary 8.5

Yp(z) = €” — 1
Based on Exercise 8.5.4, v, satisfies the conditions of Lemma 8.2 with ¢ = 1, for
any p € [1, 0]
First apply Theorem 8.4 with ¢ = )5 and n = §, we have

sup | X(s) — X(?)|
s,te T:d(s,t)<é

<KU ¥y 1 (D(e, d))de + 55" (D*(5, d))

vy (D6, ) = \Jlog(1 + D2(5, ) < v/2log(1 + D(3, d)) = V2, (D5, )

The second term in the first inequality can be replaced by

V205 H(D(5, d)) < V2 / ' Py (D(e, d)) de -
0 J,E ‘ Lo
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and we obtain

sup | X(s) — X(1)]

9
<K / VIoa(1 + D(e, d))de
d(s,t)<é 0

P2

Note that D(e, d) > 2 for all € strictly less than the diam 7. And (1 + m) < m? for
all m > 2, the 1 inside of the logarithm can be further removed at the cost of
increasing K again, whenever ¢ < diamT.

For 19, E[| X|] < || X]|y,. this completes the first part of the corollary.

And the second statement of Corollary 8.5 is simply an easy consequence of the
first, the proof is complete.
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Rademacher Process

Now consider an important sub-Gaussian process: the Rademacher Process

n
X(a) = Zﬁi% aeR"
i=1
where €1,...,¢€, are i.i.d Rademacher random variables satisfying

Ple=-1)=Ple=1)=1/2
This process will emerge in our development of Donsker results based on uniform
entropy.

The following lemma verifies that Rademacher processes are sub-Gaussian
Lemma 8.7 (Hoeffding's inequality)

Let a = (a1, -+ ,a,) € R™ and €1,. .., €, be independent Rademacher random
variables. Then

n
pr Z€i“i >z| < 957/ lall?
=1
for the Euclidean norm || - ||
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Proof for Lemma 8.7

For any A and Rademacher variable ¢, one has

o0
Eet = <e)‘ + e_)‘) /2= Z M/ (20) < N2
=0
where the last inequality follows from the relationship that (24)! > 2%! for all
nonnegative integers.
Hence Markov's inequality gives for any A > 0

n n
pr <Z €ia; > :c> < e MEexp {)\Zeiai} < exp {()\2/2) llal? - Az}

i=1 =1
Setting A = x/||a||? yields the desired upper bound.

Since multiplying the Rademacher random variables by -1 does not change the joint
distribution, we have

P <— Zn:eiai > a:> =P (Zn: €;0; > 33) ol

=1 =1
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The hoeffding's inequality shows that

n
pr ( ani
=1

We also have |3 eall,,, < V/6]|al| This is because by Lemma 8.1,

N x) < 2~/ lal?

n
P(] Zeiai| > 1) < Kem " forall 2> 0
=1

= || Xlly, < ((1+K)/O)MP
In this case, K =2,p=2,C=1/(2]|a||?)
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The Symmetrization

One of the two main approaches toward deriving GC/Donsker theorem is based on
comparing the empircal process to a symmetrized empirical process.

Let €1, ..., €, be independent Rademacher random variables, which are also
independent of X;

Instead of the empirical process

consider the symmetrized process

[ Phf=n i eif (Xi)

i
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Note that both processes have mean function zero.

And G-C theorem or Donsker theorem holds for one of these processes if and only if
it holds for the other.

The goal is to pass from P, — P to P and apply arguments conditionally on the
original X's. Then for fixed X, the symmetrized empirical measure is a Rademacher
process, hence a sub-Gaussian process, then Corollary 8.5 can be applied.

Wenyi Xie (UNC) Symmetrization Inequality and Measurability July 14, 2021 12 /27



Application of General Maximal Inequality Symmetrization Inequality Measurability

00000000 000®000000000 00000

Before moving onto bound the maxima and moduli of the process P,, — P, one
needs to be careful about the possible nonmeasurability of the suprema of

[Pr — Pl

The results will be formulated in terms of outer expectation and we need to be
clear about the underlying product probability space so that outer expectations are
well-defined.

Throughout this section, if outer expectation is involved, we will assume that

Xi,- -+, X, are the coordinate projection of the product space (X™, A" P"), where
A" is the product o-field generated from the sets A1 x--- x A, for A, --- ,A, € A
and the outer expectation of functions (Xi,..., X,) — h(Xiy,..., X)) are

computed for P".

Wi:
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Application of General Maximal Inequality

"Independent” here is understood in terms of a product probability space.

With anxilliary variables independent of X’'s Z, the underlying probability space is
assumed to be of the form (X™, A™ P") x (Z,C, @), with X; equal to the
coordinate projections on the i coordinate and Z depend only on the (n+ 1)%

coordinate.

i
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Theorem 8.8 (Symmetrization)

For every nondecreasing, convex ¢ : R — R and class of measurable functions F,
< (1 « 0
E'9 (5 IBa— Plr ) <E'¢ (B 5)
<E'¢(2|Pn— Pl + [Rul - |1 Pll7)

where R, = P51 = n~1 3" | ¢; and the outer expectation are computed based on
the product o-field described above.

This lemma will mostly be used with the choice ¢(z) =

=
[
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Proof for Theorem 8.8

Let Y7, -+, Y, be independent copies of Xi,---, X, defined as the coordinate
projections on the last n coordinates in the product space

(xm A" P")y x (Z,C, Q) x (X", A", P")

(Z,C, Q) is the probability space for the vector of independent Rademacher
random variables involved in PP,
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For fixed values X7, -+, X,

I = Pllz = sup 1> | [/(X:) — BS(Y)
<Eysupo ; F(X0) = (V)]

y is the outer expectation with respect to Y and by treating X as constants and
using the probability space (X", A", P")
And Jensen's inequality yields,

@ (||Py — Pllz) < Ey®

F

* Y denotes the minimal measurable majorant of the supremum, still with X being
fixed. E
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Because ¢(z) is nondecreasing and continuous, the x Y inside ¢ can be moved to

ET*Y
)
E*® (|P, — P|| ;) < EXE}® (% > (X)) — F(V)] >
=1 F
B (1 )
" F

The second inequality holds since double outer expectation can be bounded above
by the joint outer expectation by the Fubini's theorem for outer expectation
(Lemma 6.14)

IS e )

=1

O (|[Pr, — Pl 7) < Ey (

Next take expectation with respect to X,

n

> () = £(YD)]
=1
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Next we establish the connection with symmetrized process.

Note that adding a minus sign in front of a term f(X;) — f(Y}) is the same as
exchanging X; and Y;. And by constructing an underlying product probability
space, the outer expectation of any function f(X1,..., Xy, Y1,..., Y;,) remains
unchanged under permutation.

For any n-vector (e1, ..., e,) € {—1,1}", ||n~" 321, e [f(Xi) — f(Ya)]|| - is just a
permutation of

h,(Xl,...,Xn, Yl,...,Yn)E

n! Z [F(X3) — F(V7)]

)

ntY e (X)) — (V)

i=1

‘F

Expression from last step:

= B0 ([P P ;) < B0 (1 o) = £

= E.E} 0 (

;) ol
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Next use the triangle inequality to separate the contributions of X’s and Y's

)

E.E% y® < Y elf(X) — (V)
=1

can be bounded by

1 ., 1 <& 1 ., 1 &
BB y® (2 = e (X) ) + 5B @ (2 = eif (Vi) )
n =1 F n =1 F

The double outer expectation can be replaced by a joint outer expectation.
Thus we have proven the first statement:
]:)

E°G (|, — Pl;) < E°® (2

1 n
ﬁ;elf(yl)

ol

Wenyi Xie (UNC) Symmetrization Inequality and Measurability July 14, 2021 20/27



Application of General Maximal Inequality Symmetrization Inequality

0000000000080

For the second inequality in Theorem 8.8 that,

E*¢ (IPyll 7) < E*¢ (2P — Pl + [Ral - |1 Pl 7)

Still define Y as independent copied of Xi,- -, X,, as before.
Holding X1,---, X, and €1, -+ , €, fixed, we have

P2l 7 = IP(f = Pf) + P Pfl|
= [[P%(f = E(Y)) + RuPfl| £

n

1
< Ey ﬁzei[f(Xi) —f(YDll| + [Ral - [|PllF
=1 F
Apply Jensen's inequality,
1 n
@ ([Pl 7) < EY® (H;LZQ F(Xi) = F(YD]| 4 [Rnl - |!P||f>
=1 F
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Then we take outer expectation on both sides with respect to X and e. With the
same permutation trick we have used in previous proof, € can be replaced by 1's.
This gives us

1 n

- S (X = (V)]

E*0 (|[P[| 7) < EEXEY (
=1

+ [Ral - ||P“J-‘>
f

And by adding and subtracting IPfin the summation and triangle inequality, we can
further bound the right-hand-side by

%EEE’;(Ew <2 %Z [f(X:) = PAl|| +|Rn|- ||P||J-'>
=1 F
+ %EEXEYQS (2 %Z F(Ye) = PRIl + | Rl - ”PH}‘)
i=1 F

By outer Fubini's theorem, it can be bounded by
E*¢ (2|Pr — Pllz + [Bn| - | Pl )

=3 THE
Il |

Thus completes the proof. o
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Measurability

The above symmetrization results will be most useful when the supremum [P} || - is
measurable and Fubini's theorem permits first taking expectation wrt €| X and then
X

If the supremum is not measurable, only weak Fubini's theorem applies, and the
reordering of expectations may not be valid.

In this case, we assume that the class F is a P-measurable class.

P-measurable class

A class F of measurable function f: X — R, on the probability space (X, A, P) is

P-measurable if
n

(X1, X) = |1 ef (X))
=1 F
is measurable on the completion of (X", A", P") for every n and every vector
(e1,...,e,) €R"
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Another assumption on F that is stronger than P-measurability but often easier to
verify is pointwise measurability.

Pointwise measurability

A class F of measurable functions is pointwise measurable if there exists a
countable set G C F such that for every f€ F, there exists a sequence {g,,} € G
with gm(z) — f(z) for every z € X
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An example of pointwise measurable,

the class F = {1{z < t} : t € R} where the sample space X = R is pointwise
measurable.

Let G = {1{z < t} : t € Q}, and fix the function

z— flr) =1{z <t}

for some thp € R

G is countable. Let {t,,} be a sequence of rationals with ¢,, > #y for all m > 1 and
with &, | .

Then z— gm(z) = 1{z < t,} satisfies that g,, € G, and g,,(z) — f(z) for all
reR.

to is arbituary, therefore the statement holds for all functions in F, which shows
that F is pointwise measurable.

= THE
ol
Wenyi Xie (UNC) Symmetrization Inequality and Measurability July 14, 2021 26 /27



of General Maximal Inequality i ality Measurability

0O000e

Besides easy to verify, another nice feature of pointwise measurable class is that
they have a number of useful preservation features.

® When F; and JF> are pointwise measurable, so is F1 U Fo

® Fi1 A Fa (all possible pairwise minimums) is PM

® F1 V Fa (all possible pairwise maximum) is PM

o Fi+ Fais PM

* Fi-Fa={fi:h € F1,fp € F2} is PM
Lemma 8.10
Let Fi,...,F, be PM classes of real functions on X, and let ¢ : R¥ — R be
continuous.

Then the class ¢ o (F1,...,Fk) is PM, where ¢ o (Fi,...,Fi) denotes the class

{¢(f17"'7fk):(flv"'7fk)€]:1x"'xfk}
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