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Overview

Glivenko-Cantelli and Donsker results

With bracketing
Without bracketing

Results in previous presentations will be frequently used

Maximal inequalities
Symmetrization
Results on weak convergence
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Glivenko-Cantelli and Donsker class

With the notation ‖Q‖F = sup{|Qf | : f ∈ F}, the uniform version of the
law of large numbers and central limit theorem becomes

Definition 1 (GC class)

A class F is called a Glivenko-Cantelli class, or also P-Glivenko-Cantelli
class to bring out the dependence on the underlying measure P, if

‖Pn − P‖F → 0

where the convergence is in outer probability or is outer almost surely.

Definition 2 (Donsker class)

A class F is called a Donsker class, or P-Donsker class, if

Gn =
√
n (Pn − P) G, in `∞(F)

where the limit G is a tight Borel measurable element in `∞(F).

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)Glivenko-Cantelli and Donsker Results 07/21/2021 3 / 31



Complexity of (F , ‖ · ‖)

Whether a given class F is a Glivenko-Cantelli or Donsker class
depends on the size of the class.

A finite class of square integrable functions is always Donsker.
The class of all square integrable, uniformly bounded functions is
almost never Donsker.

Covering number N(ε,F , ‖ · ‖)
minimum number of balls B(f ; ε) := {g : ‖g − f ‖ < ε} to cover F
entropy: logN(ε,F , ‖ · ‖)

Bracketing number N[](ε,F , ‖ · ‖)
minimum number of brackets [l , u] with ‖l − u‖ < ε to cover F
entropy with bracketing: logN[](ε,F , ‖ · ‖)

Simple sufficient conditions for a class to be Glivenko-Cantelli or
Donsker can be given in terms of the rate of increase as ε tends to
zero.
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Glivenko-Cantelli results with bracketing

Theorem 3

Let F be a class of measurable functions such that N[] (ε,F , L1(P)) <∞
for every ε > 0. Then F is Glivenko-Cantelli.

Proof. Fix ε > 0. Choose finitely many ε-brackets [li , ui ] whose union
contains F and such that P (ui − li ) < ε for every i . Then, for every
f ∈ F , there is a bracket such that

(Pn − P) f ≤ (Pn − P) ui + P (ui − f ) ≤ (Pn − P) ui + ε

Consequently,

sup
f ∈F

(Pn − P) f ≤ max
i

(Pn − P) ui + ε

The right side converges almost surely to ε by the strong law of large
numbers for real variables. Combination with a similar argument for
inff ∈F (Pn − P) f yields that limsup ‖Pn − P‖∗F ≤ ε almost surely, for
every ε > 0.
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Glivenko-Cantelli results without bracketing

Theorem 4

Let F be a P-measurable class of measurable functions with envelope F
such that P∗F <∞. Let FM be the class of functions f 1{F ≤ M} when
f ranges over F . If logN (ε,FM , L1 (Pn)) = o∗P(n) for every ε and M > 0,
then ‖Pn − P‖∗F → 0 both almost surely and in mean. In particular, F is
Glivenko-Cantelli.

Lemma 5 (Symmetrization)

For every nondecreasing, convex Φ : R 7→ R and class of measurable
functions F ,

E∗Φ (‖Pn − P‖F ) ≤ E∗Φ (2 ‖Po
n‖F )
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Proof of Theorem 4

Proof. By the symmetrization Lemma 5, measurability of the class F , and
Fubini’s theorem,

E∗ ‖Pn − P‖F ≤ 2EXEε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
F

≤ 2EXEε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
FM

+ 2P∗F{F > M}

by the triangle inequality, for every M > 0. For sufficiently large M, the
last term is arbitrarily small. To prove convergence in mean, it suffices to
show that the first term converges to zero for fixed M. Fix X1, . . . ,Xn.
Let G be a set such that the L1 (Pn) ε-balls of the elements in G cover
FM , then

Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
FM

≤ Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
G

+ ε
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Proof of Theorem 4, continued

Lemma 6

Let ψ be a convex, nondecreasing, nonzero function with ψ(0) = 0 and
lim supx ,y→∞ ψ(x)ψ(y)/ψ(cxy) <∞ for some constant c. Then, for any
random variables X1, . . . ,Xm,∥∥∥∥ max

1≤i≤m
Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
i
‖Xi‖ψ

for a constant K depending only on ψ.

The cardinality of G can be chosen equal to N (ε,FM , L1 (Pn)). Bound the
L1-norm on the right by the Orlicz-norm for ψ2(x) = exp(x2)− 1, and use
the maximal inequality Lemma 6 to find that the last expression does not
exceed a multiple of√

1 + logN (ε,FM , L1 (Pn)) sup
f ∈G

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
ψ2|X

+ ε
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Proof of Theorem 4, continued

Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
G

=

∥∥∥∥∥sup
f ∈G

∣∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣∣
∥∥∥∥∥
1|X

≤ K1

∥∥∥∥∥sup
f ∈G

∣∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣∣
∥∥∥∥∥
ψ2|X

≤ K2

√
log(1 + N (ε,FM , L1 (Pn))) sup

f ∈G

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
ψ2|X

≤ K3

√
1 + logN (ε,FM , L1 (Pn)) sup

f ∈G

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
ψ2|X
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Proof of Theorem 4, continued

By Hoeffding’s inequality, the Orlicz norm can be bounded by√
6/n

(
Pnf

2
)1/2 ≤√6/nM. Thus we have

Eε

∥∥∥∥∥1

n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
FM

≤ K3

√
1 + logN (ε,FM , L1 (Pn))

√
6

n
M + ε

P∗→ ε

Since it is bounded by M, its expectation with respect to X1, . . . ,Xn

converges to zero by the dominated convergence theorem.
This concludes the proof that ‖Pn − P‖∗F → 0 in mean. It also converges
almost surely follows from the fact that the sequence ‖Pn − P‖∗F by the
following lemma.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)Glivenko-Cantelli and Donsker Results 07/21/2021 10 / 31



Proof of Theorem 4, continued

Lemma 7

Let F be a class of measurable functions with envelope F such that
P∗F <∞. Define a filtration by letting Σn be the σ-field generated by all
measurable functions h : X∞ 7→ R that are permutationsymmetric in their
first n arguments. Then

E (‖Pn − P‖∗F | Σn+1) ≥ ‖Pn+1 − P‖∗F , a.s.

Furthermore, there exist versions of the measurable cover functions ‖Pn−
P‖∗F that are adapted to the filtration. Any such versions form a reverse
submartingale and converge almost surely to a constant.

Proof. See Lemma 2.4.5 of VW. From this Lemma , we know that there
exists a version of ‖Pn − P‖∗F that converges almost surely to a constant.

Since we already know that ‖Pn − P‖∗F
P∗→ 0, this constant must be zero.
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Glivenko-Cantelli results without bracketing

Theorem 8

Let F be a P measurable class of measurable functions with envelope F
and

sup
Q

N (ε‖F‖Q,1,F , L1(Q)) <∞

for every ε > 0, where the supremum is taken over all finite probability
measures Q with ‖F‖Q,1 > 0. If P∗F <∞, then F is Glivenko-Cantelli.

Proof. Assume P∗F > 0. Thus there exists δ, η > 0 such that, with
probability 1, δ < PnF < η for all n large enough. Fix ε > 0. There is a
K <∞ such that 1 {PnF > 0} logN (εPnF ,F , L1 (Pn)) ≤ K almost surely.
Hence, with probability 1, logN (εη,F , L1 (Pn)) ≤ K for all n large enough.
We have

logN (ε,FM , L1 (Pn)) ≤ logN (ε,F , L1 (Pn)) = O∗P(1)

for all ε > 0 and M <∞.
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Donsker results without bracketing

Theorem 9

Let F be a class of measurable functions that satisfies the uniform entropy
bound ∫ ∞

0
sup
Q

√
logN (ε‖F‖Q,2,F , L2(Q))dε <∞

Let the classes Fδ = {f − g : f , g ∈ F , ‖f − g‖P,2 < δ} and F2
∞ be P

-measurable for every δ > 0. If P∗F 2 <∞, then F is P-Donsker.

Theorem 10

A sequence Xn : Ωn 7→ `∞(T ) is asymptotically tight if and only if Xn(t) is
asymptotically tight in R for every t and there exists a semimetric ρ on T
such that (T , ρ) is totally bounded and Xn is asymptotically uniformly
ρ-equicontinuous in probability.

By Theorem 10, we only need to show Gn is asymptotically uniformly
equicontinuous in probability and F is totally bounded in L2(P).
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Proof of Theorem 9

Proof. To prove asymptotically uniformly equicontinuity, we only need to
prove that for arbitrary sequence δn ↓ 0 and x > 0, P∗(‖Gn‖Fδn

> x)→ 0.
By Markov’s inequality and the symmetrization Lemma 5,

P∗
(
‖Gn‖Fδn

> x
)
≤ 1

x
E∗
√
n ‖Pn − P‖Fδn

≤ 2

x
E∗

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
Fδn

Since the supremum in the right-hand side is measurable by assumption,
Fubini’s theorem applies and the outer expectation can be calculated as
EXEε. Fix X1, . . . ,Xn. By Hoeffding’s inequality, the stochastic process
f 7→

{
n−1/2

∑n
i=1 εi f (Xi )

}
is sub-Gaussian for the L2 (Pn)-seminorm

‖f ‖n =

√√√√1

n

n∑
i=1

f 2 (Xi ).
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Proof of Theorem 9, continued

Lemma 11

Let {Xt : t ∈ T} be a separable sub-Gaussian process. Then for every
δ > 0 and any t0,

E sup
t
|Xt | ≤ E |Xt0 |+ K

∫ ∞
0

√
logD(ε, d)dε

for a universal constant K.

Use the above Lemma 11 to find that

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εi f (Xi )

∥∥∥∥∥
Fδn

.
∫ ∞
0

√
logN (ε,Fδn , L2 (Pn))dε

For large values of ε the set Fδn fits in a single ball of radius ε around the
origin, in which case the integrand is zero. This is certainly the case for
values of ε larger than θn, where
θ2n = supf ∈Fδn

‖f ‖2n =
∥∥ 1
n

∑n
i=1 f

2 (Xi )
∥∥
Fδn

.
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Proof of Theorem 9, continued

Furthermore, we have

N (ε,Fδn , L2(Q)) ≤ N (ε,F∞, L2(Q)) ≤ N2 (ε/2,F , L2(Q))

for every measure Q. The first inequality holds because Fδn ⊂ F∞. For
the second inequality, fix ε and choose f1, . . . , fN ∈ F such that their
ε/2-balls cover F . Then consider the set {fi − fj : i , j = 1, . . . ,N}, which
is a subset of F∞ and contains at most N2 elements. For any h ∈ F∞, it
can be written as h = f − g where f , g ∈ F . By the construction of
f1, . . . , fN , there exist i0 and j0 such that f ∈ B(fi0 ; ε/2) and
g ∈ B(fj0 ; ε/2). Thus, we must have h = f − g ∈ B(fi0 − fj0 ; ε).
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Proof of Theorem 9, continued

Then we can limit the integral to the interval (0, θn), make a change of
variables, and bound the integrand to obtain the bound∫ θn/‖F‖n

0
sup
Q

√
logN (ε‖F‖Q,2,F , L2(Q))dε‖F‖n

Now we take expectation on X and apply Cauchy-Schwarz inequality to
the abouve quantity,EX

(∫ θn/‖F‖n

0
sup
Q

√
logN(ε‖F‖Q,2,F , L2(Q))dε

)2


1/2 {
EX (‖F‖2n)

}1/2
Since ‖F‖n = Op(1), we can conclude the above quantity converges to

zero if we can show θn =
∥∥ 1
n

∑n
i=1 f

2 (Xi )
∥∥1/2
Fδn

P∗→ 0.
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Proof of Theorem 9, continued

Since sup
{
Pf 2 : f ∈ Fδn

}
→ 0 and Fδn ⊂ F∞, it is certainly enough to

prove that ∥∥Pnf
2 − Pf 2

∥∥
F∞

P∗→ 0

This is a uniform law of large numbers for the class F2
∞. This class has

integrable envelope (2F )2 and is measurable by assumption. For any pair
f , g of functions in F∞,

Pn

∣∣f 2 − g2
∣∣ ≤ Pn|f − g |4F ≤ ‖f − g‖n‖4F‖n

Thus,

logN
(
ε‖2F‖2n,F2

∞, L1 (Pn)
)
≤ logN (ε‖F‖n,F∞, L2 (Pn)) = o∗p(n)

By Theorem 4, F2
∞ is Glivenko-Cantelli. This completes the proof of

asymptotic equicontinuity.
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Proof of Theorem 9, continued

Finally, we show that F is totally bounded in L2(P). By the result of the
last slide, there exists a sequence of discrete measures Pn with∥∥(Pn − P) f 2

∥∥
F∞ → 0

Take n sufficiently large so that the supremum is bounded by ε2. By
assumption, N (ε,F , L2 (Pn)) is finite. For any f , g ∈ F with
‖f − g‖Pn,2 < ε,

P(f − g)2 ≤ Pn(f − g)2 +
∣∣(Pn − P) (f − g)2

∣∣ ≤ 2ε2

Any ε-net for F in L2 (Pn) is a
√

2ε-net in L2(P). Hence F is totally
bounded in L2(P) since ε was arbitrary.
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Donsker results with bracketing

The second main empirical central limit theorem uses bracketing entropy
rather than uniform entropy.

Theorem 12

Suppose that F is a class of measurable functions satisfying∫ ∞
0

√
logN[](ε,F , L2(P))dε <∞

Then F is P-Donsker.

Unlike the uniform entropy condition, this bracketing integral involves only
the true underlying measure P. However, part of this gain is offset by the
fact that bracketing numbers can be larger than covering numbers. As a
result, the two sufficient conditions for a class to be Donsker are not
comparable.
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Donsker results with bracketing

Define L2,∞-norm as ‖f ‖P,2,∞ = supx>0

(
x2P(|f | > x)

)1/2
. Note that

‖f ‖P,2,∞ ≤ ‖f ‖P,2, so that the bracketing numbers relative to L2,∞(P) are
smaller. We can prove a more general theorem.

Theorem 13

Let F be a class of measurable functions such that∫ ∞
0

√
logN[] (ε,F , L2,∞(P))dε+

∫ ∞
0

√
logN (ε,F , L2(P))dε <∞

Moreover, assume that the envelope function F of F possesses a weak
second moment, i.e., x2P∗(F (X ) > x)→ 0 as x →∞. Then F is
P-Donsker.
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Proof of Theorem 13

Proof. To prove Theorem 13, we need to use the following theorem.

Theorem 14

A sequence Xn : Ωn 7→ `∞(T ) is asymptotically tight if and only if Xn(t) is
asymptotically tight in R for every t and, for all ε, η > 0, there exists a
finite partition T = ∪ki=1Ti such that

lim sup
α

P∗

(
sup
i

sup
s,t∈Ti

|Xα(s)− Xα(t)| > ε

)
< η

holds for every ε, η > 0.

The first condition is easy by the CLT theorem and the weak second
moment of F . To verify the second condition, it is sufficient to show that
for any η > 0, we can find a finite partition of F : F1, . . . ,Fm such that
supf ,q∈Fi

|Gn(f − g)| = op(1).
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Proof of Theorem 13, continued

The proof of is based on a chaining argument. We first state that, for

each natural number q, there exists a partition F = ∪Nq

i=1Fqi of F into Nq

disjoint subsets such that ∑
2−q
√

logNq <∞

‖( sup
f ,g∈Fqi

|f − g |)∗‖P,2,∞ < 2−q

sup
f ,g∈Fqi

‖f − g‖P,2 < 2−q

To see this, first cover F separately with minimal numbers of L2(P)-balls
and L2,∞(P)-brackets of size 2−q, disjointify, and take the intersection of
the two partitions. The total number of sets will be N̄q = N̄1

q N̄
2
q if N̄ i

q are
the number of sets in the two separate partitions. The logarithm turns the
product into a sum, and the first condition is satisfied if it is satisfied for
both N̄ i

q, which can be satisfied by the discrete version of the assumption.
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Proof of Theorem 13, continued

By successive refinements, we can reconstruct the sequence of partitions.
We take the partition at stage q to consist of all intersections of the form
∩qp=1Fp,ip . This gives new partitions into Nq = N̄1 · · · N̄q sets. Using the
inequality (

log
∏

N̄p

)1/2
≤
∑(

log N̄p

)1/2
we can prove the first of the three displayed conditions is still satisfied.
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Proof of Theorem 13, continued

Choose for each q a fixed element fqi from each partitioning set Fqi and
set

πqf = fqi if f ∈ Fqi

∆qf = supf ,g∈Fqi
|f − g |∗, if f ∈ Fqi

In other words, πqf is the projection of f in the q-th partition and ∆qf is
the maximal possible difference between f and its projection in q-th
partition. In view of Theorem 14, it suffices to show that

‖Gn(f − πq0f )‖F
P∗→ 0

as n→∞ followed by q0 →∞.
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Proof of Theorem 13, continued

The chaining method works as follows: for each f , we obtain πq0f then
πq0+1f and so on. Therefore, there is a chain corresponding to
f : πq0f → πq0+1f → πq0+2f → . . . . However, the chain stops once ∆qf is
larger than

√
naq, where aq = 2−q/

√
lnNq+1. Mathematically, we obtain

f−πq0f = (f − πq0f )Bq0f +
∞∑

q0+1

(f − πqf )Bqf +
∞∑

q0+1

(πqf − πq−1f )Aq−1f

where

Aq−1f = 1
{

∆q0f ≤
√
naq0 , . . . ,∆q−1f ≤

√
naq−1

}
Bqf = 1

{
∆q0f ≤

√
naq0 , . . . ,∆q−1f ≤

√
naq−1,∆qf >

√
naq
}

Bq0f = 1
{

∆q0f >
√
naq0

}
Noticing that either all Bqf are zero or there is a unique q1 with Bq1f = 1,
we can easily prove this equation.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)Glivenko-Cantelli and Donsker Results 07/21/2021 26 / 31



Proof of Theorem 13, continued

The next thing we need to do is to apply the empirical process
Gn =

√
n (Pn − P) to each of the three terms separately, and take

suprema over f ∈ F . It will be shown that the resulting three variables
converge to zero in probability as n→∞ followed by q0 →∞.
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Proof of Theorem 13, continued

First, since |f − πq0f |Bq0f ≤ 2F1
{

2F >
√
naq0

}
, one has

E∗ ‖Gn (f − πq0f )Bq0f ‖F ≤ 4
√
nP∗F

{
2F >

√
naq0

}
The right side converges to zero as n→∞, for each fixed q0, by the
assumption that F has a weak second moment.
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Proof of Theorem 13, continued

Second, by the inequality supt>0 tEX{X > t} ≤ 2‖X‖22,∞,

√
naqP∆qfBqf ≤

√
naqP∆qf {∆qf >

√
naq} ≤ 2 ‖∆qf ‖2P,2,∞ ≤ 2× 2−2q

Since ∆qfBqf ≤ ∆q−1fBqf ≤
√
naq−1 for q > q0, we obtain

P (∆qfBqf )2 ≤
√
naq−1P∆qf

{
∆qf >

√
naq
}
≤ 2

aq−1
aq

2−2q
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Proof of Theorem 13, continued

By Bernstein’s inequality and lemma 8.3,

E ‖Gn‖F . max
f

‖f ‖∞√
n

log |F|+ max
f
‖f ‖P,2

√
log |F| (1)

Apply the triangle inequality and inequality (1) to find

E∗
∥∥∥∑∞q0+1Gn (f − πqf )Bqf

∥∥∥
F

≤
∑∞

q0+1 E
∗ ‖Gn∆qfBqf ‖F +

∑∞
q0+1 2

√
n ‖P∆qfBqf ‖F

.
∑∞

q0+1

[
aq−1 logNq +

√
aq−1

aq
2−q
√

logNq + 4
aq

2−2q
]

Since aq is decreasing, the quotient aq−1/aq can be replaced by its square.
Then in view of the definition of aq, the series on the right can be
bounded by a multiple of

∑∞
q0+1 2−q

√
logNq. This upper bound is

independent of n and converges to zero as q0 →∞.
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Proof of Theorem 13, continued

Third, there are at most Nq functions πqf − πq−1f and at most Nq−1
functions Aq−1f . Since the partitions are nested, the function
|πqf − πq−1f |Aq−1f is bounded by ∆q−1fAq−1f ≤

√
naq−1. The

L2(P)-norm of |πqf − πq−1f | is bounded by 2−q+1. Apply inequality (1)
to find

E∗

∥∥∥∥∥∥
∞∑

q0+1

Gn (πqf − πq−1f )Aq−1f

∥∥∥∥∥∥
F

.
∞∑

q0+1

[
aq−1 logNq + 2−q

√
logNq

]
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