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Background

Recall the uniform entropy condition in the Donsker theorem∫ ∞
0

sup
Q

√
log N(ε‖F‖Q,2,F ,L2(Q)) dε <∞. (1)

In particular, (1) holds if for some δ > 0,

sup
Q

log N(ε‖F‖Q,2,F ,L2(Q)) ≤ K
(

1
ε

)2−δ

, 0 < ε < 1.

A much stronger condition is that for some number V ,

sup
Q

N(ε‖F‖Q,2,F ,L2(Q)) ≤ K
(

1
ε

)V

, 0 < ε < 1. (2)

Vapnik-Červonenkis (VC) classes satisfy (2).
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VC classes of sets

Consider an arbitrary collection of n points {x1, . . . , xn} in a set X and
a collection C of subsets of X .

We say that C picks out a certain subset A of {x1, . . . , xn} if
A = C ∩ {x1, . . . , xn} for some C ∈ C.

We say that C shatters {x1, . . . , xn} if all of the 2n possible
subsets of {x1, . . . , xn} are picked out by the sets in C.

The VC index V (C) of the class C is the smallest n for which no
set of size n is shattered by C.

More formally, VC index is defined through

∆n(C; x1, . . . , xn) =
∣∣∣{C ∩ {x1, . . . , xn} : C ∈ C

}∣∣∣,
V (C) = inf

{
n : max

x1,...,xn∈X
∆n(C; x1, . . . , xn) < 2n

}
.
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VC classes of sets (cont.)

Some books define V (C) as the largest n such that some set of
size n is shattered by C. (i.e., V (C)− 1 in our notation).

If C shatters sets of arbitrarily large size, we set V (C) =∞.

Clearly, the more refined C is, the higher the VC index.

We say that C is a VC class if V (C) <∞.
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Example 1

Let X = R and define the collection of sets
C = {(−∞, c] : c ∈ R}.

C shatters no two-point set {x1, x2}, because it fails to pick out
the largest of the two points.

Thus V (C) = 2 and C is a VC class.

When extended to X = Rd , the VC index of the same type of
sets is d + 1.
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Example 2

Let X = R. Now we consider C = {(a,b] : −∞ ≤ a < b ≤ ∞}.
This collection shatters every two-point set.

For any set of three points, C cannot pick out the subset
consisting of the smallest and largest points.

Thus V (C) = 3 and C is a VC class.

With more effort, it can be seen that the VC index of the same
type of sets in Rd is 2d + 1.
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A combinatorial result

Recall that we previously defined ∆n(C; x1, . . . , xn) to be the number
of subsets of {x1, . . . , xn} picked out by C. The following lemma
provides an upper bound for ∆n(C; x1, . . . , xn).

Sauer’s lemma
For a VC class of sets C, one has

max
x1,...,xn∈X

∆n (C; x1, . . . , xn) ≤
V (C)−1∑

j=0

(
n
j

)
.

Since the RHS is bounded by V (C)nV (C)−1, the LHS grows
polynomially of order at most O(nV (C)−1).
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Proof of Sauer’s lemma

We need to use the following lemma1:

Lemma
For any set of n points {x1, . . . , xn} and any collection of sets C,
∆n (C; x1, . . . , xn) is bounded above by the number of subsets of
{x1, . . . , xn} shattered by C.

Sauer’s lemma follows immediately from the above lemma, since the
size of any shattered set is at most V (C)− 1.

1See Lemma 2.6.2 of VW (pp. 135-136) for the proof.
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Bound on covering number

Let 1{C} denote the collection of all indicator functions of sets in the
class C. The following theorem2 gives an upper bound on the Lr
covering numbers of 1{C}:

Theorem 1

There exists a universal constant K such that for any VC class of sets
C, any probability measure Q, any r ≥ 1, and any 0 < ε < 1,

N (ε,1{C},Lr (Q)) ≤ KV (C)(4e)V (C)
(

1
ε

)r(V (C)−1)

.

2See Theorem 2.6.4 of VW (pp. 136-139) for the proof.
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Remarks

Since F ≡ 1 serves as an envelope for 1{C}, it follows immediately
from the preceding theorem that the uniform entropy integral∫ ∞

0
sup

Q

√
log N

(
ε‖F‖Q,2,1{C},L2(Q)

)
dε

.
∫ 1

0

√
log(1/ε) dε =

∫ ∞
0

u1/2e−u du ≤ 1.

Thus, for any VC class C, 1{C} is GC and Donsker, provided the
requisite measurability conditions hold.
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Subgraph

The subgraph of a function f : X → R is the subset of X × R given by

{(x , t) : t < f (x)} .

X

R
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VC classes of functions

A class F of measurable real-valued functions on the sample
space X is called a VC subgraph class, or just a VC class, if the
collection of all subgraphs of the functions in F forms a VC class
of sets (in X × R).

Let V (F) denote the VC index of the set of subgraphs of F .

Just as for sets, the covering numbers of VC classes of functions
grow at a polynomial rate.
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Bound on covering number

This is more precisely stated in the following theorem:

Theorem 2

For a VC class of functions F with measurable envelope function F
and r ≥ 1, one has for any probability measure Q with ‖F‖Q,r > 0,

N
(
ε‖F‖Q,r ,F ,Lr (Q)

)
≤ KV (F)(4e)V (F)

(
2
ε

)r(V (F)−1)

,

for a universal constant K and 0 < ε < 1.

Thus a VC class of functions easily satisfies the uniform entropy
condition. Hence, a suitably measurable VC class is Donsker,
provided its envelope has a weak second moment.
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Proof for r = 1

Let C be the set of all subgraphs Cf of functions f ∈ F . By
Fubini’s theorem, Q|f − g| = (Q × λ)

(
Cf ∆ Cg

)
, where λ is

Lebesgue measure on the real line, and A ∆ B = A ∪ B − A ∩ B
for any two sets A and B.

We renormalize Q × λ to a probability measure on the set
{(x , t) : |t | ≤ F (x)} by defining P = (Q × λ)/(2QF ).

For any f ,g ∈ F , ‖f − g‖Q,1 = 2QF‖1{Cf} − 1{Cg}‖P,1.

By the result for sets in Theorem 1, there exists a universal
constant K such that

N (ε2QF ,F ,L1(Q)) = N (ε,1{C},L1(P))

≤ KV (F)(4e)V (F)

(
1
ε

)V (F)−1

.
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Proof for r > 1

For r > 1, define a probability measure R with density
F r−1/QF r−1 with respect to Q, so that Rf = Q{fF r−1}/QF r−1.

Q|f − g|r ≤ Q
{
|f − g|(2F )r−1} = 2r−1R|f − g|QF r−1

⇒ ‖f − g‖Q,r ≤ 21−1/r (QF r−1)1/r‖f − g‖1/r
R,1

⇒
‖f − g‖Q,r

2‖F‖Q,r
≤
(

QF r−1

2QF r

)1/r

‖f − g‖1/r
R,1 =

(
‖f − g‖R,1

2RF

)1/r

.

Hence, elementary manipulations yield

N
(
ε2‖F‖Q,r ,F ,Lr (Q)

)
≤ N (εr 2RF ,F ,L1(R))

≤ KV (F)(4e)V (F)

(
1
ε

)r(V (F)−1)

.
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Convex hulls and VC hull classes

The symmetric convex hull of a class of functions F is defined by

sconvF :=

{
m∑

i=1

αi fi :
m∑

i=1

|αi | ≤ 1, fi ∈ F

}
.

Similarly, the convex hull of F is defined by

convF :=

{
m∑

i=1

αi fi : αi > 0,
m∑

i=1

|αi | ≤ 1, fi ∈ F

}
.

We use convF and sconvF to denote the pointwise closures of
convF and sconvF , respectively.

A class of measurable functions F is called a VC hull class if
F = sconvG for some VC class G.
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Bound on entropy

The following theorem3 gives an upper bound on the entropy of a VC
hull class:

Theorem 3

Let Q be a probability measure on (X ,A), and let F be a class of
measurable functions with measurable square integrable envelope F
such that QF 2 <∞ and

N
(
ε‖F‖Q,2,F ,L2(Q)

)
≤ C

(
1
ε

)V

, 0 < ε < 1.

Then there exists a constant K depending only on C and V such that

log N
(
ε‖F‖Q,2, convF ,L2(Q)

)
≤ K

(
1
ε

)2V/(V+2)

.

3See Theorem 2.6.9 of VW (pp. 142-144) for the proof.
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Remarks

The preceding theorem shows that the entropy of the convex hull
of any polynomial class is of lower order than (1/ε)r for some
r < 2, which is just enough to ensure that the uniform entropy
condition holds.

Since sconvF is contained in the convex hull of F ∪ {−F} ∪ {0},
and the covering number of F ∪ {−F} ∪ {0} is at most twice the
covering number of F plus 1, the bound in Theorem 3 is valid for
sconvF as well.

Thus, any VC hull class satisfies the uniform entropy condition.

However, VC hull classes can be considerably larger than VC
classes, so we do not have similar results for covering numbers.
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Bound for VC hull classes

Finally, we have an easy corollary that gives precise bounds for
entropy numbers of VC hull classes:

Corollary 4

For any VC hull class F of measurable functions and any probability
measure Q,

log N
(
ε‖F‖Q,2,F ,L2(Q)

)
≤ K

(
1
ε

)2−2/Vm(F)

, 0 < ε < 1,

for a constant K that depends only on the VC index Vm(F) of the VC
subgraph class associated with F .
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Proof of the corollary

Proof.
Let G be the VC class associated with F , i.e., F = sconvG. Since G is
contained in F , F is also an envelope function for G. By Theorem 2,

N
(
ε‖F‖Q,2,G,L2(Q)

)
≤ C

(
1
ε

)2(Vm(F)−1)

, 0 < ε < 1.

The desired bounds follow immediately from Theorem 3 with
V = 2(Vm(F)− 1).
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Example: vector space of functions

Lemma 5

Any finite-dimensional vector space F of measurable functions
f : X → R is VC-subgraph with V (F) ≤ dim(F) + 2.

Proof.
Suppose V (F) > dim(F) + 2, then there exists a collection of
n = dim(F) + 2 points (x1, t1), . . . , (xn, tn) in X × R that can be
shattered by the subgraphs of F . By assumption, the vectors
(f (x1)− t1), . . . , (f (xn)− tn)T , as f ranges over F , are contained in a
dim(F) + 1 = (n − 1)-dimensional subspace of Rn.
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Proof of Lemma 5 (cont.)

Proof.
There exists a vector a with at least one strictly positive coordinate
that is orthogonal to this subspace. Thus,∑

i:ai>0

ai (f (xi )− ti ) =
∑

i:ai<0

(−ai ) (f (xi )− ti ) , for every f ∈ F . (3)

Consider the subset A = {(xi , ti ) : ai > 0} and its complement
Ac = {(xi , ti ) : ai ≤ 0}. Since A is picked out by the subgraphs of F , it
must be contained in the subgraph of some f ∈ F , while Ac must be
outside the subgraph of this f . Then the LHS of (3) is strictly positive
while the RHS is nonpositive (contradiction!)
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Example: translates of monotone function

Lemma 6
The set of all translates {ψ(x − h) : h ∈ R} of a fixed monotone
function ψ : R→ R is VC-subgraph of index 2.

Proof.
Without loss of generality, we assume ψ is nondescreasing. For any
h1 > h2, the subgraph of x 7→ ψ(x − h1) is contained in the subgraph
of x 7→ ψ(x − h2). Any collection of sets with this property shatters no
two-point set, thus has VC index 2.
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Example: monotone stochastic process

Lemma 7
Let {X (t) : t ∈ T} be a monotone increasing stochastic process,
where T ⊂ R. Then X is VC-subgraph of index 2.

Proof.
Let X be the set of all increasing functions mapping T to R. For any
t ∈ T , define function ft : X → R with ft (x) = x(t). We only need to
show that the class of functions F = {ft : t ∈ T} is VC of index 2. For
any t1 < t2, the subgraph of ft1 is contained in the subgraph of ft2 .
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Build VC classes from basic VC classes of sets

Lemma 8
Let C and D be VC classes of sets in a set X and E a VC class of sets
in Y. Also, let φ : X → Y and ψ : Z → X be fixed functions. Thena

(i) Cc = {Cc : C ∈ C} is VC with V (Cc) = V (C);
(ii) C u D = {C ∩ D : C ∈ C,D ∈ D} is VC with index
≤ V (C) + V (D)− 1;

(iii) C t D = {C ∪ D : C ∈ C,D ∈ D} is VC with index
≤ V (C) + V (D)− 1;

(iv) D × E is VC in X × Y with VC index ≤ V (D) + V (E)− 1;
(v) φ(C) is VC with index V (C) if φ is one-to-one;
(vi) ψ−1(C) is VC with index ≤ V (C).

aSee Lemma 9.7 in Kosorok (pp. 159-160) for the proof.

Yu Gu VC Classes and Uniform Entropy July 28, 2021 29 / 33



Build VC classes from basic VC classes of functions

Lemma 9
Let F and G be VC subgraph classes of functions on a set X and
g : X → R, φ : R→ R, and ψ : Z → X fixed functions. Thena

(i) F ∧ G = {f ∧ g : f ∈ F ,g ∈ G} is VC-subgraph with index
≤ V (F) + V (G)− 1;

(ii) F ∨ G = {f ∨ g : f ∈ F ,g ∈ G} is VC-subgraph with index
≤ V (F) + V (G)− 1;

(iii) {F > 0} = {{f > 0} : f ∈ F} is VC with index V (F);
(iv) −F is VC-subgraph with index V (F);
(v) F + g = {f + g : f ∈ F} is VC-subgraph with index V (F);
(vi) F · g = {fg : f ∈ F} is VC-subgraph with index ≤ 2V (F)− 1;
(vii) F ◦ ψ = {f (ψ) : f ∈ F} is VC-subgraph with index ≤ V (F);
(viii) φ ◦ F is VC-subgraph with index ≤ V (F) for monotone φ.

aSee Proof of Lemma 9.9 in Kosorok (pp. 174-175) for the proof.
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Relation between C and 1{C}

Lemma 10
1{C} is VC-subgraph if and only if C is a VC class of sets. Moreover,
their respective VC indices are equal.

Proof.
Let sub(C) denote the subgraph of the indicator function 1{C} for any
C ∈ C. Let D denote the collection of all sub(C). We can easily verify
that for any x ∈ X and C ∈ C,

x ∈ C ⇐⇒ (x ,0) ∈ sub(C).

Thus, for any n > 0 and any x1, . . . , xn ∈ X , {x1, . . . , xn} can be
shattered by C if and only if {(x1,0) , . . . , (xn,0)} can be shattered by
D. The conclusion then follows.
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Result of monotone functions within [0,1]

Lemma 11

The set F of all monotone functions f : R→ [0,1] satisfies

log N (ε,F ,L2(Q)) ≤ K
ε
, 0 < ε < 1

for a universal constant K and any probability measure Q.

Proof.
We first consider the set F+ of all monotone increasing functions
f : R→ [0,1]. Any f ∈ F+ is the pointwise limit of the sequence

fm =
m∑

i=1

1
m

1
{

f >
i
m

}
.
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Proof of Lemma 11 (cont.)

Proof.
Thus, F+ = conv1{G} for some class G of sets of the form {f > t},
with f ranging over F+ and t over R. Since f is increasing, G is
contained in the collection of intervals
{(t ,+∞) : t ∈ R} ∪ {[t ,+∞) : t ∈ R}, which is VC of index 2. Thus, G
is also VC of index 2. By Corollary 4,

log N (ε,F+,L2(Q)) ≤ K0

ε
, 0 < ε < 1.

Any monotone decreasing function g : R→ [0,1] can be written as
1− f for some f ∈ F+. Thus, for 0 < ε < 1,

log N (ε,F ,L2(Q)) = log(2) + log N (ε,F+,L2(Q)) ≤ K
ε
.
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