Vapnik-Červonenkis (VC) Classes and Uniform Entropy

Yu Gu

July 28, 2021

Yu Gu July 28, 2021 1/33

4 0 8

B K

 290

Background

• Recall the *uniform entropy condition* in the Donsker theorem

$$
\int_0^\infty \sup_Q \sqrt{\log N(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q))} \, d\epsilon < \infty. \tag{1}
$$

• In particular, [\(1\)](#page-1-0) holds if for some $\delta > 0$,

$$
\sup_Q\log N(\epsilon\|F\|_{Q,2},\mathcal{F},L_2(Q))\leq K\left(\frac{1}{\epsilon}\right)^{2-\delta},\quad 0<\epsilon<1.
$$

A much stronger condition is that for some number *V*,

$$
\sup_{Q} N(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)) \leq K\left(\frac{1}{\epsilon}\right)^V, \quad 0 < \epsilon < 1. \tag{2}
$$

• Vapnik-Červonenkis (VC) classes satisfy [\(2\)](#page-1-1).

 QQ

メロメメ 倒 メメ ミメメ ミメ

Outline

- **[VC Classes of Functions](#page-11-0)**
- **[Convex Hulls and VC Hull Classes](#page-17-0)**
- ⁴ [Examples and Properties of VC Classes](#page-23-0)

4 0 8 \prec Э×.

 $2Q$

VC classes of sets

Consider an arbitrary collection of *n* points $\{x_1, \ldots, x_n\}$ in a set X and a collection $\mathcal C$ of subsets of $\mathcal X$.

- We say that C *picks out* a certain subset A of $\{x_1, \ldots, x_n\}$ if $A = C \cap \{x_1, \ldots, x_n\}$ for some $C \in \mathcal{C}$.
- We say that C *shatters* $\{x_1, \ldots, x_n\}$ if all of the 2ⁿ possible subsets of $\{x_1, \ldots, x_n\}$ are picked out by the sets in C.
- The *VC index* $V(C)$ of the class C is the smallest *n* for which no set of size *n* is shattered by C.
- More formally, VC index is defined through

$$
\Delta_n(C; x_1,\ldots,x_n) = \Big|\big\{C \cap \{x_1,\ldots,x_n\}: C \in C\big\}\Big|,
$$

$$
V(C) = \inf\Big\{n: \max_{x_1,\ldots,x_n \in \mathcal{X}} \Delta_n(C; x_1,\ldots,x_n) < 2^n\Big\}.
$$

VC classes of sets (cont.)

• Some books define $V(C)$ as the largest *n* such that some set of size *n* is shattered by C . (i.e., $V(C) - 1$ in our notation).

- If C shatters sets of arbitrarily large size, we set $V(\mathcal{C}) = \infty$.
- Clearly, the more refined $\mathcal C$ is, the higher the VC index.
- We say that C is a VC class if $V(\mathcal{C}) < \infty$.

Example 1

- Let $\mathcal{X} = \mathbb{R}$ and define the collection of sets $C = \{(-\infty, c] : c \in \mathbb{R}\}.$
- \bullet C shatters no two-point set $\{x_1, x_2\}$, because it fails to pick out the largest of the two points.

- Thus $V(C) = 2$ and C is a VC class.
- When extended to $\mathcal{X} = \mathbb{R}^d$, the VC index of the same type of sets is $d + 1$.

Example 2

- Let $\mathcal{X} = \mathbb{R}$. Now we consider $\mathcal{C} = \{(a, b] : -\infty \le a < b \le \infty\}$. This collection shatters every two-point set.
- \bullet For any set of three points, $\mathcal C$ cannot pick out the subset consisting of the smallest and largest points.

$$
\begin{matrix} \begin{matrix} \bullet & \bullet \\ \bullet & x_1 \end{matrix} & \begin{matrix} \bullet & \bullet \\ \bullet & x_2 \end{matrix} & \begin{matrix} \bullet & \bullet \\ \bullet & x_3 \end{matrix} & \begin{matrix} \bullet & \bullet \\ \bullet & x_3 \end{matrix} & \begin{matrix} \bullet & \bullet \\ \bullet & x_3 \end{matrix} & \begin{matrix} \bullet & \bullet \\ \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{matrix} & \begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \
$$

- Thus $V(\mathcal{C}) = 3$ and \mathcal{C} is a VC class.
- With more effort, it can be seen that the VC index of the same type of sets in \mathbb{R}^d is 2 $d+1$.

A combinatorial result

Recall that we previously defined $\Delta_n(\mathcal{C}; x_1, \ldots, x_n)$ to be the number of subsets of $\{x_1, \ldots, x_n\}$ picked out by C. The following lemma provides an upper bound for $\Delta_n(\mathcal{C}; x_1, \ldots, x_n)$.

Sauer's lemma

For a VC class of sets \mathcal{C} , one has

$$
\max_{x_1,\ldots,x_n\in\mathcal{X}}\Delta_n\left(\mathcal{C};x_1,\ldots,x_n\right)\leq\sum_{j=0}^{V(\mathcal{C})-1}\binom{n}{j}.
$$

Since the RHS is bounded by *V*(C)*n V*(C)−1 , the LHS grows polynomially of order at most *O*(*n V*(C)−1).

つひつ

Proof of Sauer's lemma

We need to use the following lemma¹:

Lemma

For any set of *n* points $\{x_1, \ldots, x_n\}$ and any collection of sets C, $\Delta_n(\mathcal{C}; x_1, \ldots, x_n)$ is bounded above by the number of subsets of $\{x_1, \ldots, x_n\}$ shattered by C.

Sauer's lemma follows immediately from the above lemma, since the size of any shattered set is at most $V(\mathcal{C}) - 1$.

¹*See Lemma 2.6.2 of VW (pp. 135-136) for the proof.*

Bound on covering number

Let $1\{\mathcal{C}\}\$ denote the collection of all indicator functions of sets in the class C. The following theorem² gives an upper bound on the *L^r* covering numbers of $1\{\mathcal{C}\}$:

Theorem 1

There exists a universal constant K such that for any VC class of sets C, any probability measure Q, any $r > 1$, and any $0 < \epsilon < 1$,

$$
N(\epsilon, \mathbf{1}\{\mathcal{C}\}, L_r(Q)) \leq KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}.
$$

²*See Theorem 2.6.4 of VW (pp. 136-139) for the proof.*

Remarks

Since $F \equiv 1$ serves as an envelope for $1\{\mathcal{C}\}\,$, it follows immediately from the preceding theorem that the uniform entropy integral

$$
\begin{aligned}&\int_0^\infty \sup_Q \sqrt{\log N\left(\epsilon\|F\|_{Q,2},1\{\mathcal{C}\},L_2(Q)\right)}\,d\epsilon\\&\lesssim \int_0^1 \sqrt{\log(1/\epsilon)}\,d\epsilon=\int_0^\infty u^{1/2}e^{-u}\,du\leq 1.\end{aligned}
$$

Thus, for any VC class C , $1\{C\}$ is GC and Donsker, provided the requisite measurability conditions hold.

イロト イ母 トイヨ トイヨト

 QQ

Outline

- **[Convex Hulls and VC Hull Classes](#page-17-0)**
- ⁴ [Examples and Properties of VC Classes](#page-23-0)

4 0 8 \prec 化重 经年

 QQ

Subgraph

The subgraph of a function $f: \mathcal{X} \to \mathbb{R}$ is the subset of $\mathcal{X} \times \mathbb{R}$ given by

 $\{(x, t): t < f(x)\}\.$

4 0 8

 $2Q$

VC classes of functions

- \bullet A class $\mathcal F$ of measurable real-valued functions on the sample space X is called a *VC subgraph class*, or just a *VC class*, if the collection of all subgraphs of the functions in $\mathcal F$ forms a VC class of sets (in $\mathcal{X} \times \mathbb{R}$).
- Let $V(F)$ denote the VC index of the set of subgraphs of F .
- Just as for sets, the covering numbers of VC classes of functions grow at a polynomial rate.

 Ω

Bound on covering number

This is more precisely stated in the following theorem:

Theorem 2

For a VC class of functions F *with measurable envelope function F and r* $>$ 1*, one has for any probability measure Q with* $\|F\|_{Q}$, $>$ 0*,*

$$
N\left(\epsilon\|F\|_{Q,r},\mathcal{F},L_r(Q)\right)\leq KV(\mathcal{F})(4e)^{V(\mathcal{F})}\left(\frac{2}{\epsilon}\right)^{r(V(\mathcal{F})-1)}
$$

for a universal constant K and $0 < \epsilon < 1$.

Thus a VC class of functions easily satisfies the uniform entropy condition. Hence, a suitably measurable VC class is Donsker, provided its envelope has a weak second moment.

つひひ

,

Proof for $r = 1$

- Let C be the set of all subgraphs C_f of functions $f \in \mathcal{F}$. By Fubini's theorem, $\bm{\mathsf{Q}} | f - g | = (\bm{\mathsf{Q}} \times \lambda) \, \big(\textit{\textbf{C}}_f \, \Delta \, \textit{\textbf{C}}_g \big),$ where λ is Lebesgue measure on the real line, and $A \Delta \overline{B} = A \cup B - A \cap B$ for any two sets *A* and *B*.
- We renormalize $Q \times \lambda$ to a probability measure on the set $\{(x, t) : |t| < F(x)\}$ by defining $P = (Q \times \lambda)/(2QF)$.
- For any $f, g \in \mathcal{F}$, $||f g||_{Q,1} = 2QF||1{G_f} 1{G_a}||_{P,1}$.
- By the result for sets in Theorem [1,](#page-9-0) there exists a universal constant *K* such that

$$
N(\epsilon 2QF, \mathcal{F}, L_1(Q)) = N(\epsilon, 1\{\mathcal{C}\}, L_1(P))
$$

$$
\leq KV(\mathcal{F})(4e)^{V(\mathcal{F})}\left(\frac{1}{\epsilon}\right)^{V(\mathcal{F})-1}
$$

 Ω

.

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

Proof for $r > 1$

For *r* > 1, define a probability measure *R* with density *F^{r−1}/QF^{r−1}* with respect to *Q*, so that $Rf = Q\{fF^{r-1}\} / QF^{r-1}$.

$$
Q|f - g|^{r} \leq Q\left\{|f - g|(2F)^{r-1}\right\} = 2^{r-1}R|f - g|QF^{r-1}
$$
\n
$$
\Rightarrow ||f - g||_{Q,r} \leq 2^{1-1/r}(QF^{r-1})^{1/r}||f - g||_{R,1}^{1/r}
$$
\n
$$
\Rightarrow \frac{||f - g||_{Q,r}}{2||F||_{Q,r}} \leq \left(\frac{QF^{r-1}}{2QF^r}\right)^{1/r}||f - g||_{R,1}^{1/r} = \left(\frac{||f - g||_{R,1}}{2RF}\right)^{1/r}.
$$

• Hence, elementary manipulations yield

$$
N\left(\epsilon 2\|F\|_{Q,r},\mathcal{F},L_r(Q)\right)\leq N\left(\epsilon' 2RF,\mathcal{F},L_1(R)\right)\\ \leq KV(\mathcal{F})(4e)^{V(\mathcal{F})}\left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{F})-1)}
$$

 QQ

.

イロト イ母ト イヨト イヨト

Outline

4 D.K. \prec 化重新润滑

 QQ

Convex hulls and VC hull classes

 \bullet The *symmetric convex hull* of a class of functions $\mathcal F$ is defined by

$$
\mathsf{sconv}\,\mathcal{F}:=\left\{\sum_{i=1}^m\alpha_i f_i:\ \sum_{i=1}^m|\alpha_i|\leq 1,\ f_i\in\mathcal{F}\right\}.
$$

 \bullet Similarly, the *convex hull* of $\mathcal F$ is defined by

$$
\operatorname{conv}\mathcal{F}:=\left\{\sum_{i=1}^m\alpha_if_i:\ \alpha_i>0,\ \sum_{i=1}^m|\alpha_i|\leq 1,\ f_i\in\mathcal{F}\right\}.
$$

- We use $\overline{\text{conv}}\mathcal{F}$ and $\overline{\text{sconv}}\mathcal{F}$ to denote the pointwise closures of conv $\mathcal F$ and sconv $\mathcal F$, respectively.
- A class of measurable functions F is called a *VC hull class* if $F = \overline{\text{scony}} G$ for some VC class G.

Bound on entropy

The following theorem³ gives an upper bound on the entropy of a VC hull class:

Theorem 3

Let Q be a probability measure on (X, A) , and let F be a class of *measurable functions with measurable square integrable envelope F such that* $OF^2 < \infty$ *and*

$$
N\left(\epsilon\|F\|_{Q,2},\mathcal{F},L_2(Q)\right)\leq C\left(\frac{1}{\epsilon}\right)^V,\quad 0<\epsilon<1.
$$

Then there exists a constant K depending only on C and V such that

$$
\log N\left(\epsilon\|F\|_{Q,2},\overline{\mathrm{conv}}\mathcal{F},L_2(Q)\right)\leq K\left(\frac{1}{\epsilon}\right)^{2V/(V+2)}
$$

つひひ

.

³*See Theorem 2.6.9 of VW (pp. 142-144) for the proof.*

Remarks

- The preceding theorem shows that the entropy of the convex hull of any polynomial class is of lower order than $(1/\epsilon)^r$ for some $r < 2$, which is just enough to ensure that the uniform entropy condition holds.
- Since sconv F is contained in the convex hull of $\mathcal{F} \cup \{-\mathcal{F}\} \cup \{0\},\$ and the covering number of $\mathcal{F} \cup \{-\mathcal{F}\} \cup \{0\}$ is at most twice the covering number of F plus 1, the bound in Theorem [3](#page-19-0) is valid for $\overline{\text{scony}} F$ as well.
- Thus, any VC hull class satisfies the uniform entropy condition.
- However, VC hull classes can be considerably larger than VC classes, so we do not have similar results for covering numbers.

 Ω

Bound for VC hull classes

Finally, we have an easy corollary that gives precise bounds for entropy numbers of VC hull classes:

Corollary 4

For any VC hull class F *of measurable functions and any probability measure Q,*

$$
\log N\left(\epsilon\|F\|_{Q,2},\mathcal{F},L_2(Q)\right)\leq K\left(\frac{1}{\epsilon}\right)^{2-2/V_m(\mathcal{F})},\quad 0<\epsilon<1,
$$

for a constant K that depends only on the VC index Vm(F) *of the VC subgraph class associated with* F*.*

Proof of the corollary

Proof.

Let G be the VC class associated with F, i.e., $\mathcal{F} = \overline{\text{score}}\mathcal{G}$. Since G is contained in \mathcal{F} , \mathcal{F} is also an envelope function for \mathcal{G} . By Theorem [2,](#page-14-0)

$$
N\left(\epsilon\|F\|_{Q,2},\mathcal{G},L_2(Q)\right)\leq C\left(\frac{1}{\epsilon}\right)^{2(V_m(\mathcal{F})-1)},\quad 0<\epsilon<1.
$$

The desired bounds follow immediately from Theorem [3](#page-19-0) with $V = 2(V_m(\mathcal{F}) - 1).$

4 D.K.

Outline

- **[VC Classes of Functions](#page-11-0)**
- **[Convex Hulls and VC Hull Classes](#page-17-0)**
- ⁴ [Examples and Properties of VC Classes](#page-23-0)

4 0 8

E K $\left(1\right)$ $2Q$

Example: vector space of functions

Lemma 5

Any finite-dimensional vector space F *of measurable functions f* : $\mathcal{X} \rightarrow \mathbb{R}$ *is VC-subgraph with V(F)* \leq *dim(F)* + 2*.*

Proof.

Suppose $V(\mathcal{F}) > dim(\mathcal{F}) + 2$, then there exists a collection of $n = \text{dim}(\mathcal{F}) + 2$ points $(x_1, t_1), \ldots, (x_n, t_n)$ in $\mathcal{X} \times \mathbb{R}$ that can be shattered by the subgraphs of F . By assumption, the vectors $(f(x_1) - t_1), \ldots, (f(x_n) - t_n)^T$, as f ranges over ${\cal F}$, are contained in a $dim(\mathcal{F}) + 1 = (n - 1)$ -dimensional subspace of \mathbb{R}^n .

 Ω

Proof of Lemma [5](#page-24-0) (cont.)

Proof.

There exists a vector *a* with at least one strictly positive coordinate that is orthogonal to this subspace. Thus,

$$
\sum_{i:a_i>0} a_i (f(x_i)-t_i)=\sum_{i:a_i<0} (-a_i) (f(x_i)-t_i), \text{ for every } f\in\mathcal{F}.
$$
 (3)

Consider the subset $A = \{(x_i, t_i): a_i > 0\}$ and its complement $\mathcal{A}^{c} = \{ (x_{i},t_{i}) : \, a_{i} \leq 0 \}.$ Since A is picked out by the subgraphs of $\mathcal{F},$ it must be contained in the subgraph of some $f \in \mathcal{F}$, while \mathcal{A}^c must be outside the subgraph of this *f*. Then the LHS of [\(3\)](#page-25-0) is strictly positive while the RHS is nonpositive (contradiction!)

つひつ

Example: translates of monotone function

Lemma 6

The set of all translates $\{\psi(x - h) : h \in \mathbb{R}\}\$ *of a fixed monotone function* $\psi : \mathbb{R} \to \mathbb{R}$ *is VC-subgraph of index 2.*

Proof.

Without loss of generality, we assume ψ is nondescreasing. For any $h_1 > h_2$, the subgraph of $x \mapsto \psi(x - h_1)$ is contained in the subgraph of $x \mapsto \psi(x - h_2)$. Any collection of sets with this property shatters no two-point set, thus has VC index 2.

Example: monotone stochastic process

Lemma 7

Let $\{X(t): t \in T\}$ *be a monotone increasing stochastic process, where* $T \subset \mathbb{R}$. Then X is VC-subgraph of index 2.

Proof.

Let X be the set of all increasing functions mapping T to $\mathbb R$. For any $t \in \mathcal{T}$, define function $f_t: \mathcal{X} \to \mathbb{R}$ with $f_t(x) = x(t)$. We only need to show that the class of functions $\mathcal{F} = \{f_t:~t \in \mathcal{T}\}$ is VC of index 2. For any $t_1 < t_2$, the subgraph of f_{t_1} is contained in the subgraph of $f_{t_2}.$

 Ω

Build VC classes from basic VC classes of sets

Lemma 8

Let C *and* D *be VC classes of sets in a set* X *and* E *a VC class of sets in y*. Also, let ϕ : $\mathcal{X} \rightarrow \mathcal{Y}$ and ψ : $\mathcal{Z} \rightarrow \mathcal{X}$ be fixed functions. Then^a (i) $C^c = \{C^c : C \in C\}$ *is VC with V* $(C^c) = V(C)$ *;* (ii) $C \sqcap \mathcal{D} = \{C \cap D : C \in \mathcal{C}, D \in \mathcal{D}\}\$ is VC with index $< V(C) + V(D) - 1$; (iii) $C \sqcup D = \{C \cup D : C \in C, D \in D\}$ *is VC with index* $< V(C) + V(D) - 1$; (iv) $\mathcal{D} \times \mathcal{E}$ *is VC in* $\mathcal{X} \times \mathcal{Y}$ *with VC index* $\leq V(\mathcal{D}) + V(\mathcal{E}) - 1$; (v) $\phi(\mathcal{C})$ *is VC with index V(C) if* ϕ *is one-to-one;* (vi) $\psi^{-1}(\mathcal{C})$ *is VC with index* \leq $V(\mathcal{C})$ *.*

aSee Lemma 9.7 in Kosorok (pp. 159-160) for the proof.

 QQ

イロト イ母 トイヨ トイヨ

Build VC classes from basic VC classes of functions

Lemma 9

Let F *and* G *be VC subgraph classes of functions on a set* X *and* $g: \mathcal{X} \to \mathbb{R}, \phi: \mathbb{R} \to \mathbb{R}$, and $\psi: \mathcal{Z} \to \mathcal{X}$ fixed functions. Then^a

- (i) $\mathcal{F} \wedge \mathcal{G} = \{f \wedge g : f \in \mathcal{F}, g \in \mathcal{G}\}\$ is VC-subgraph with index $< V(F) + V(G) - 1$;
- (ii) $\mathcal{F} \vee \mathcal{G} = \{f \vee g : f \in \mathcal{F}, g \in \mathcal{G}\}\$ is VC-subgraph with index $< V(F) + V(G) - 1$;
- (iii) $\{F > 0\} = \{\{f > 0\} : f \in \mathcal{F}\}\$ is VC with index $V(\mathcal{F})$;
- (iv) −F *is VC-subgraph with index V*(F)*;*

(v) $\mathcal{F} + g = \{f + g : f \in \mathcal{F}\}\$ is VC-subgraph with index $V(\mathcal{F})$;

(vi) $\mathcal{F} \cdot g = \{fg : f \in \mathcal{F}\}\$ is VC-subgraph with index $\leq 2V(\mathcal{F}) - 1$;

(vii) $\mathcal{F} \circ \psi = \{f(\psi) : f \in \mathcal{F}\}\$ is VC-subgraph with index $\leq V(\mathcal{F})$;

(viii) $\phi \circ \mathcal{F}$ *is VC-subgraph with index* \leq $\mathsf{V}(\mathcal{F})$ *for monotone* ϕ *.*

 Ω

イロメ イ母メ イヨメ イヨメ

aSee Proof of Lemma 9.9 in Kosorok (pp. 174-175) for the proof.

Relation between C and $1\{\mathcal{C}\}\$

Lemma 10

1{C} *is VC-subgraph if and only if* C *is a VC class of sets. Moreover, their respective VC indices are equal.*

Proof.

Let sub(*C*) denote the subgraph of the indicator function $1\{C\}$ for any $C \in \mathcal{C}$. Let $\mathcal D$ denote the collection of all sub(*C*). We can easily verify that for any $x \in \mathcal{X}$ and $C \in \mathcal{C}$,

$$
x\in C\Longleftrightarrow (x,0)\in\mathsf{sub}(C).
$$

Thus, for any $n > 0$ and any $x_1, \ldots, x_n \in \mathcal{X}, \{x_1, \ldots, x_n\}$ can be shattered by C if and only if $\{(x_1, 0), \ldots, (x_n, 0)\}$ can be shattered by D . The conclusion then follows.

Result of monotone functions within [0, 1]

Lemma 11

The set F of all monotone functions $f : \mathbb{R} \to [0, 1]$ satisfies

$$
\log N\left(\epsilon, \mathcal{F}, L_2(Q)\right) \leq \frac{K}{\epsilon}, \quad 0 < \epsilon < 1
$$

for a universal constant K and any probability measure Q.

Proof.

We first consider the set \mathcal{F}_+ of all monotone increasing functions $f: \mathbb{R} \to [0, 1]$. Any $f \in \mathcal{F}_+$ is the pointwise limit of the sequence

$$
f_m=\sum_{i=1}^m\frac{1}{m}\left\{f>\frac{i}{m}\right\}.
$$

 Ω

Proof of Lemma [11](#page-31-0) (cont.)

Proof.

Thus, $\mathcal{F}_+ = \overline{\text{conv}}\{G\}$ for some class G of sets of the form $\{f > t\}$, with *f* ranging over \mathcal{F}_+ and *t* over R. Since *f* is increasing, G is contained in the collection of intervals $\{(t, +\infty): t \in \mathbb{R}\} \cup \{(t, +\infty): t \in \mathbb{R}\},\$ which is VC of index 2. Thus, \mathcal{G} is also VC of index 2. By Corollary [4,](#page-21-0)

$$
\log N\left(\epsilon, \mathcal{F}_+, L_2(Q)\right) \leq \frac{K_0}{\epsilon}, \quad 0 < \epsilon < 1.
$$

Any monotone decreasing function $g : \mathbb{R} \to [0,1]$ can be written as 1 $-$ *f* for some $f \in \mathcal{F}_+$. Thus, for $0 < \epsilon < 1$,

$$
\log N\left(\epsilon, \mathcal{F}, L_2(Q)\right) = \log(2) + \log N\left(\epsilon, \mathcal{F}_+, L_2(Q)\right) \leq \frac{K}{\epsilon}.
$$

つひひ

П