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Background

@ Recall the uniform entropy condition in the Donsker theorem

| supJlogNClFloz . (@) de <. (1)
0 Q

@ In particular, (1) holds if for some ¢ > 0,
1 2—6
suplog N(¢||F|laz2, F,L2(Q)) < K (;) , O<e<1.
Q
@ A much stronger condition is that for some number V,

v
sup N(e[|Fllaz2, F. L2(Q)) < K (%) , O<e<1. (2
Q

@ Vapnik-Cervonenkis (VC) classes satisfy (2).
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VC classes of sets

Consider an arbitrary collection of n points {xy,...,x,} in a set X and
a collection C of subsets of X.
@ We say that C picks out a certain subset A of {xy,..., Xp} if
A=Cn{xy,...,xn} forsome C € C.
@ We say that C shatters {x1, ..., x,} if all of the 2" possible
subsets of {x1, ..., Xy} are picked out by the sets in C.

@ The VC index V(C) of the class C is the smallest n for which no
set of size nis shattered by C.

@ More formally, VC index is defined through

An(Ci X1, Xn) = ‘{Cm{x1,...,xn}: cecl

)

V(C) = inf{n P max Ap(Ci X1,y Xp) < zn}'
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VC classes of sets (cont.)

@ Some books define V(C) as the largest n such that some set of
size nis shattered by C. (i.e., V(C) — 1 in our notation).

@ If C shatters sets of arbitrarily large size, we set V(C) = oc.
@ Clearly, the more refined C is, the higher the VC index.

@ We say that C is a VC class if V(C) < oc.
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Example 1

@ Let X = R and define the collection of sets
C={(—o0,c]: ceR}.

@ C shatters no two-point set {x1, xo}, because it fails to pick out
the largest of the two points.

—_tJ

l o 1 .
I

@ Thus V(C) =2andCis a VC class.

@ When extended to X = RY, the VC index of the same type of
setsisd + 1.
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Example 2

@ Let ¥ = R. Now we consider C = {(a,b] : —oo < a< b < o0}.
This collection shatters every two-point set.

@ For any set of three points, C cannot pick out the subset
consisting of the smallest and largest points.

//,1 //.1] [ o
\\XIJ\\XZJJ\XS J

@ Thus V(C) =3 and Cis a VC class.

[ -
—

@ With more effort, it can be seen that the VC index of the same
type of sets in R% is 2d + 1.
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A combinatorial result

Recall that we previously defined A,(C; x1, ..., X,) to be the number
of subsets of {x1, ..., x,} picked out by C. The following lemma
provides an upper bound for A,(C; x4, ..., Xn).

Sauer’s lemma
For a VC class of sets C, one has

v(C)—1

n
m?(’i(EXAn(C;X‘],...,Xn) S Z (],).

j=0

Since the RHS is bounded by V(C)n"(©)~1 the LHS grows
polynomially of order at most O(n"(©)-1).
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Proof of Sauer’'s lemma

We need to use the following lemma:

Lemma
For any set of n points {x1, ..., X,} and any collection of sets C,
Ap(C; x1,...,Xp) is bounded above by the number of subsets of

{x1,...,Xn} shattered by C.

Sauer’s lemma follows immediately from the above lemma, since the
size of any shattered set is at most V(C) — 1.

1 See Lemma 2.6.2 of VW (pp. 135-136) for the proof.
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Bound on covering number

Let 1{C} denote the collection of all indicator functions of sets in the
class C. The following theorem? gives an upper bound on the L,
covering numbers of 1{C}:

Theorem 1

There exists a universal constant K such that for any VC class of sets
C, any probability measure Q, any r > 1, andany0 < e < 1,

1\ VE©-1)
N (e,1{C}, L(Q)) < KV(C)(4e)V(©) (E) .

2 See Theorem 2.6.4 of VW (pp. 136-139) for the proof.
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Remarks

Since F = 1 serves as an envelope for 1{C}, it follows immediately
from the preceding theorem that the uniform entropy integral

|| s logN ({Flaz: 10). Lo @) o

1 )
5/ |og(1/e)de:/ u'2e~Y du < 1.
0 0

Thus, for any VC class C, 1{C} is GC and Donsker, provided the
requisite measurability conditions hold.
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Subgraph

The subgraph of a function f : X — R is the subset of X x R given by

{(x,1): t < f(x)}.

X
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VC classes of functions

@ A class F of measurable real-valued functions on the sample
space X is called a VC subgraph class, or just a VC class, if the
collection of all subgraphs of the functions in F forms a VC class
of sets (in X x R).

@ Let V(F) denote the VC index of the set of subgraphs of F.

@ Just as for sets, the covering numbers of VC classes of functions
grow at a polynomial rate.
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Bound on covering number

This is more precisely stated in the following theorem:
Theorem 2

For a VC class of functions F with measurable envelope function F
andr > 1, one has for any probability measure Q with ||F||q,r > 0,

AV(F)-1)
N (e[Fllar, F, L(Q)) < KV(F)(48)"?) (%) 7

for a universal constant K and 0 < e < 1.

Thus a VC class of functions easily satisfies the uniform entropy
condition. Hence, a suitably measurable VC class is Donsker,
provided its envelope has a weak second moment.
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Proof for r = 1

@ Let C be the set of all subgraphs C; of functions f € F. By
Fubini’s theorem, Q|f — g| = (Q x A) (Cf A Cy), where X is
Lebesgue measure on the real line,and AAB=AUB—-ANB
for any two sets A and B.

@ We renormalize Q x X to a probability measure on the set
{(x,t) : [t| < F(x)} by defining P = (Q x \)/(2QF).

@ Forany f,ge F, ||f — glla,1 = 2QF[|[1{Ct} — 1{Cq}||p,1-

@ By the result for sets in Theorem 1, there exists a universal
constant K such that

N (e2QF,F,L1(Q)) = N(e,1{C}, L1(P))

< KV(]:)(46)V(]:) (1) V(F)—-1 .
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Proof for r > 1

@ For r > 1, define a probability measure R with density
F=1/QF"" with respect to Q, so that Rf = Q{fF"~'}/QF"~".

Qlf —g" < Q{|f —gl(2F)"} =2 RIf — g|QF""
= [|f = glla, < 2'"7(QF")'/"|1f - g|[¥]

_ 1
_ If—glar _ (QF" /’”f_g||1/r: If —gllas\""
2[[Fllar — \ 2QF" A1 2RF ’

@ Hence, elementary manipulations yield

N (e2||Fllor, F,L(Q)) < N(e"2RF, F, L1(R))

r(V(F)-1)
< KV(F)(4e)" ><1) } 1.
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Convex hulls and VC hull classes

@ The symmetric convex hull of a class of functions F is defined by
m m
sconv F = {Za/fi : Z|a,~| <1, fie .7:}.
i=1 i=1
@ Similarly, the convex hull of F is defined by

m m
conv F := {Zaif;: a; >0, Z|a,-| < 1,f,-€}'}.
=1

i=1

@ We use conv.F and sconv.F to denote the pointwise closures of
conv F and sconv F, respectively.

@ A class of measurable functions F is called a VC hull class if
F = sconvg for some VC class G.
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Bound on entropy

The following theorem? gives an upper bound on the entropy of a VC
hull class:

Theorem 3

Let Q be a probability measure on (X, A), and let F be a class of
measurable functions with measurable square integrable envelope F
such that QF? < oo and

74
N(e||F||o,2,f,L2<c>))sc(}) C0<ce<t.

Then there exists a constant K depending only on C and V such that

€

1\ 2V/(V+2)
08 N (e Fllaz.com, Lo()) < K () .

3 See Theorem 2.6.9 of VW (pp. 142-144) for the proof.
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Remarks

@ The preceding theorem shows that the entropy of the convex hull
of any polynomial class is of lower order than (1/¢)" for some
r < 2, which is just enough to ensure that the uniform entropy
condition holds.

@ Since sconv F is contained in the convex hull of F U {—-F} U {0},
and the covering number of 7 U {—F} U {0} is at most twice the
covering number of F plus 1, the bound in Theorem 3 is valid for
sconv.F as well.

@ Thus, any VC hull class satisfies the uniform entropy condition.

@ However, VC hull classes can be considerably larger than VC
classes, so we do not have similar results for covering numbers.
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Bound for VC hull classes

Finally, we have an easy corollary that gives precise bounds for
entropy numbers of VC hull classes:

Corollary 4

For any VC hull class F of measurable functions and any probability
measure Q,

1\ 272/ Vm(F)
) , O<ex< 1,

log N (¢||Fllaz2, F, L2(Q)) < K (Z
for a constant K that depends only on the VC index V,(F) of the VC
subgraph class associated with F.
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Proof of the corollary

Proof.

Let G be the VC class associated with F, i.e., F = sconvg. Since G is
contained in F, F is also an envelope function for G. By Theorem 2,

1\ 2(Vin(F)=1)
) , O<e< 1.

N (e Fllaz, G, La(Q)) < C (z
The desired bounds follow immediately from Theorem 3 with
V =2(Vn(F) —1). -
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Example: vector space of functions

Lemma 5

Any finite-dimensional vector space F of measurable functions
f: X — R is VC-subgraph with V(F) < dim(F) + 2.

Proof.

Suppose V(F) > dim(F) + 2, then there exists a collection of

n = dim(F) + 2 points (x1,t),. .., (X, ta) in X x R that can be
shattered by the subgraphs of F. By assumption, the vectors

(f(x1) — t),...,(f(xa) — t,)7, as f ranges over F, are contained in a
dim(F) + 1 = (n — 1)-dimensional subspace of R".
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Proof of Lemma 5 (cont.)

Proof.

There exists a vector a with at least one strictly positive coordinate
that is orthogonal to this subspace. Thus,

dSa(f(x)—t)= > (-a)(f(x)—t), foreveryfeF. (3)

i:a;i>0 i:ai<0

Consider the subset A = {(x;, ;) : a; > 0} and its complement

A° ={(x;, ) : ai < 0}. Since Ais picked out by the subgraphs of F, it
must be contained in the subgraph of some f € F, while A° must be
outside the subgraph of this f. Then the LHS of (3) is strictly positive
while the RHS is nonpositive (contradiction!) O

v

Yu Gu VC Classes and Uniform Entropy July 28, 2021 26/33



Example: translates of monotone function

Lemma 6

The set of all translates {)(x — h) : h € R} of a fixed monotone
function : R — R is VC-subgraph of index 2.

Proof.

Without loss of generality, we assume ) is nondescreasing. For any
hy > ho, the subgraph of x — (x — hy) is contained in the subgraph
of x — 1(x — h2). Any collection of sets with this property shatters no
two-point set, thus has VC index 2. ]

y
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Example: monotone stochastic process

Lemma 7

Let {X(t): t € T} be a monotone increasing stochastic process,
where T C R. Then X is VC-subgraph of index 2.

Proof.

Let X be the set of all increasing functions mapping T to R. For any
t € T, define function f; : X — R with f;(x) = x(t). We only need to
show that the class of functions 7 = {f; : t € T} is VC of index 2. For
any t; < t, the subgraph of f; is contained in the subgraph of f,. [
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Build VC classes from basic VC classes of sets

Lemma 8
LetC and D be VC classes of sets in a set X and £ a VC class of sets
inY. Also, let¢ : X — Y and+ : Z — X be fixed functions. Then?
(i) cc={C°.CecC}isVCwithV(C° = V(C),
(i) cMmD={CnD:CeC,De D} is VC with index
<V(EC)+ V(D)-1;
(i) CUD={CuD:CecC,De D} is VC with index
<V(EC)+ V(D)-1;
(iv) Dx EisVCinX x Y with VC index < V(D) + V(€) — 1;
(v) ¢(C) is VC with index V(C) if ¢ is one-to-one;
(vi) »~1(C) is VC with index < V(C).

2See Lemma 9.7 in Kosorok (pp. 159-160) for the proof.
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Build VC classes from basic VC classes of functions

Lemma 9

Let F and G be VC subgraph classes of functions on a set X and
g: X —>R,¢:R—=R,andy : Z — X fixed functions. Then?

(i) FANG={fAg:feF,geqG}isVC-subgraph with index

< V(F)+ V() —1;
(i) FvG={fvg:feF,geg}is VC-subgraph with index
< V(F)+ V(G -1;
{F>0}={{f >0}:fe F}is VC with index V(F);
—F is VC-subgraph with index V(F);
F+g={f+g:feF}is VC-subgraph with index V(F);
F-g={fg:fe F}is VC-subgraph with index < 2V(F) —1;
Fop={f(y):feF}is VC-subgraph with index < V(F);
¢ o F is VC-subgraph with index < V(F) for monotone ¢.

(i
(iv
(v
(vi
(vii
(viii

=D o=

2See Proof of Lemma 9.9 in Kosorok (pp. 174-175) for the proof.
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Relation between C and 1{C}

Lemma 10

1{C} is VC-subgraph if and only ifC is a VC class of sets. Moreover,
their respective VC indices are equal.

Proof.

Let sub(C) denote the subgraph of the indicator function 1{C} for any
C € C. Let D denote the collection of all sub(C). We can easily verify
that for any x € X and C € C,

x € C < (x,0) € sub(C).

Thus, forany n> 0 and any xq,...,x, € X, {Xq,...,Xp} can be
shattered by C if and only if {(x1,0),...,(xs,0)} can be shattered by
D. The conclusion then follows. O

<
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Result of monotone functions within [0, 1]

Lemma 11

The set F of all monotone functions f : R — [0, 1] satisfies

NE

logN (e, F,(Q) < —, O0<e<

for a universal constant K and any probability measure Q.

Proof.

We first consider the set 7. of all monotone increasing functions
f: R—[0,1]. Any f € F, is the pointwise limit of the sequence

w2 m).
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Proof of Lemma 11 (cont.)

Proof.

Thus, F, = conv1{G} for some class G of sets of the form {f > ¢},
with f ranging over 7, and t over R. Since f is increasing, G is
contained in the collection of intervals

{(t,+0) : t e R} U{[t,+00) : t € R}, which is VC of index 2. Thus, G
is also VC of index 2. By Corollary 4,

log N (e, F+, Lo(Q)) < %, O<e<1.

Any monotone decreasing function g : R — [0, 1] can be written as
1 —fforsome fe F,. Thus,forO <e< 1,

. O

log N (¢, F, Lo(Q)) = log(2) + log N (¢, Fi, L2(Q)) < g
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