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Introduction

In chapter 9, we’ve focused on computing entropy for empirical
process with the purpose of determining whether classes of
functions are G-C, Donsker, or neither.

In sections 9.3 and 9.4, we will discuss the modifications of G-C
and Donsker classes of functions under which G-C and Donsker
properties are preserved.

This will allow us to describe methods for building new G-C and
Donsker classes.
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Outline

9.3 Glivenko-Cantelli Preservation

9.4 Donsker Preservation
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Subsection 9.3: Glivenko-Cantelli Preservation
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9.3: Introduction

As discussed, we aim to describe the methods in which
Glivenko-Cantelli classes can be generated from other G-C classes.

These results are useful in establishing the consistency properties
of Z and M estimators and their bootstrapped versions.

Our first example is trivial: for P-G-C classes F and G, then F ∪ G
is also P-G-C, as is any subset of F ∪ G.
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Theorem 9.25

More substantial preservation results stem from theorem 9.25, a
modification of theorem 3 of van der Vaart and Wellner:

Theorem 9.25

Suppose that F1, . . . ,Fk are strong P-G-C classes of func-
tions with max1≤j≤k‖P‖Fj

< ∞ and that φ : Rk 7→ R is
continuous. Then the class H ≡ φ(F1, . . . ,Fk) is strong
P-G-C provided it has an integrable envelope.

The proof is omitted in Kosorok, but presented in van der Vaart
and Wellner (2000), pg. 115 - 117. We present the proof for the
case when F1, . . . ,Fk are suitably measurable.
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Proof of Theorem 9.25

Assume that the classes Fi are appropriately measurable. Let
F1, . . . ,Fk ,H be the envelopes for F1, . . . ,Fk ,H, respectively and
define F = F1 ∨ · · · ∨ Fk . Let F ≡ F1 × · · · ×Fk . For M ∈ (0,∞),
define

HM ≡ {φ(f )1{F ≤ M} : f = (f1, . . . , fk) ∈ F}

Now, consider:

‖(Pn − P)φ(f )‖F ≤ (Pn + P)H1{F > M}+ ‖(Pn − P)h‖HM

The first term on the right converges to 0 as M →∞. Thus, our
problem reduces to showing that Hm is P-G-C for every fixed M.
Our next steps tackle this aim. We first need VW-Lemma 2, which
we state without proof.
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VW-Lemma 2

VW-Lemma 2

Let K ⊂ Rk be compact and φ : K 7→ R be continuous.
Then for all ε > 0, there exists a δ > 0 such that for all n
and for all a1, . . . , an, b1, . . . , bn ∈ K ,

1

n

n∑
i=1

‖ai − bi‖ < δ

implies that:

1

n

n∑
i=1

|φ(ai )− φ(bi )| < ε

Here, the norm ‖ · ‖ is very general, and can be any norm on Rk .
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Proof of Theorem 9.25

Back in the proof of Theorem 9.25, choose a ε > 0, and let δ > 0
exist such that Lemma 2 is satisfied for φ : [−M,M]k 7→ R for the
general norm ‖ · ‖ being the L1-norm. Then for any
(fj , gj) ∈ Fj , j = 1, . . . , k:

Pn|fj − gj |1{Fj ≤ M} < δ

k
, j = 1, · · · , k

implies that

Pn|φ(f1, . . . , fk)− φ(g1, . . . , gk)|1{F ≤ M} < ε

it follows then that:

N(ε,HM , L1(Pn)) ≤
k∏

j=1

N(
δ

k
,Fj1{Fj ≤ M}, L1(Pn))
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Proof of Theorem 9.25

It follows that E∗logN(ε,HM , L1(Pn)) = o(n) for every
ε > 0,M <∞.

This implies that E∗logN(ε, (HM)N , L1(Pn)) = o(n) where (HM)N
contains the functions h1{H ≤ N} for h ∈ HM . Thus, HM is
strong G-C for P, and H is weak G-C.

Because H has an integrable envelope and is weak G-C, it is thus
strong G-C by VW-Lemma 2.4.5 (1996).

This concludes the proof for the case when the classes F1, . . .Fk

are suitably measurable. A generalization is available in van der
Vaart and Wellner (2000).
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Corollary 9.26

Corollary 9.26 gives obvious consequences of theorem 9.25:

Corollary 9.26

Let F and G be P-G-C classes with respective integrable
envelopes F and G . Then the following hold:

(i) F + G is P-G-C.
(ii) F · G is P-G-C provided that P[FG ] <∞
(iii) Let R be the union of the ranges of the functions in
F , and let ψ : R 7→ R be continuous. Then ψ(F) is P-G-C
provided it has an integrable envelope.

A short proof is presented on the following slide.
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Proof of Corollary 9.26

(i) F + G <∞ provides a trivial integrable envelope for class
F + G

(ii) Since (x , y) 7→ xy is continuous in R2, theorem 9.25 applies
directly.

(iii) Follows from 9.25 since there exists a continuous extension
of ψ, ψ̃, such that ‖Pψ̃(f )‖F = ‖Pψ(f )‖F .
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Example of Corollary 9.26

Note that the ”preservation of product” G-C result, part (ii) of
9.26 does not hold for Donsker classes in general.

This result is particularly useful for formulating master theorems
for bootstrapped Z and M estimators.

Consider the following example of this, continued on the next slide:
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Example of Corollary 9.26

Consider verifying the validity of the bootstrap for the parametric
Z -estimator, θ̂n, obtained as the zero of θ 7→ Pnψθ for θ ∈ Θ for
an arbitrary random function ψθ. Let Ψ(θ) = Pψθ. Assume that
the parameter is identifiable, i.e. for {θn} ∈ Θ, Ψ(θn)→ 0 implies
θn → θ0. To obtain consistency, we can assume that the class
{ψθ, θ ∈ Θ} is P-G-C, yielding θ̂n

as∗→ θ0

Using arguments laid out in section 2.2.5, if Ψ is appropriately
differentiable and the parameter is identifiable, sufficient additional
conditions for asymptotic normality of

√
n(θ̂n − θ0) are that

{ψθ : θ ∈ Θ} is strong P-G-C, that {ψθ : θ ∈ Θ, ‖θ − θ0‖ ≤ δ} is
P-Donsker for some δ > 0, and that P‖ψθ − ψθ0‖2 → 0 as θ → θ0.
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Example of Corollary 9.26

As we will see in later chapters, an important step in showing the
validity of the bootstrap estimate θ̂◦n is to show that it is
unconditionally consistent for θ0.

If we use a weighted bootstrap with i.i.d non-negative weights
ξ1, . . . , ξn which which are independent of the data and satisfy that
Eξ1 = 1, then (ii) of corollary 9.26 gives us that
F ≡ {ξψθ : θ ∈ Θ} is P-G-C.

This follows since both the class {ξ} and {ψθ : θ ∈ Θ} are P-G-C
and since the product class F has an integrable envelope by lemma
8.13.
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Lemma 9.27 Introduction

Lemma 9.27 gives a useful result on covariance estimation. The
goal is to describe the conditions under which the limiting
covariance of Gn, indexed by F , can be consistently estimated.

Recall that this covariance value is σ(f , g) ≡ Pfg − PfPg and has
an estimator σ̂(f , g) ≡ Pnfg − Pnf Png .
Although knowledge of the covariance matrix is not sufficient to
obtain inference on {Pf : f ∈ F}, the information it does contain
is still useful.
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Lemma 9.27

Lemma 9.27

Let F be Donsker. Then ‖σ̂(f , g)− σ(f , g)‖F·F
as∗→ 0 if and

only if P∗‖f − Pf ‖2F <∞

Proof
⇐= Note since F is Donsker, it is also G-C. Hence
Ḟ ≡ {ḟ : f ∈ F} is also G-C, where for any f , ḟ ≡ f − Pf . Assume
that P∗‖f − Pf ‖2F <∞. Theorem 9.25 provides that Ḟ · Ḟ is also
G-C. Uniform consistency of σ̂ follows since for any
f , g ∈ F , σ̂(f , g)− σ(f , g) = (Pn − P)ḟ ġ − Pn ḟ Pnġ .

=⇒ Now, assume that ‖σ̂(f , g)− σ(f , g)‖F·F
as∗→ 0. Thus, Ḟ · Ḟ

is G-C. Lemma 8.13 thus implies that
P∗‖f − Pf ‖2F = P∗‖fg‖Ḟ·Ḟ <∞.
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Theorem 9.28

Theorem 9.28 gives equivalent conditions for a functional class F
to be strong Glivenko-Cantelli.

Theorem 9.28

Let F be a class of measurable functions. Then the following
are equivalent:

(i) F is strong P-G-C
(ii) E∗‖Pn − P‖F → 0 and E∗‖f − Pf ‖F <∞
(iii) ‖Pn − P‖F

P→ 0 and E∗‖f − Pf ‖F <∞
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Proof of Theorem 9.28

Proof Since Pn − P does not change when the class F is replaced
by {f − Pf : f ∈ F}, we can assume that ‖P‖F = 0, WLOG.

(i) =⇒ (ii): By lemma 8.13, F being P-G-C implies
E∗‖f ‖F <∞. Pick 0 < M <∞, and note that:

E∗‖Pn − P‖F ≤ E∗‖(Pn − P)f × 1{F ≤ M}‖F
+ 2E∗ [F × 1{F > M}]

applying corollary 9.26’s product preservation to the class
F · 1{F > M} yields that it is strong P-G-C, and thus
E∗‖(Pn − P)f × 1{F ≤ M}‖F → 0 for any M, while the second
term can be made arbitrarily small by increasing M. Thus,
E∗‖Pn − P‖F → 0
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Proof of Theorem 9.28

(ii) =⇒ (iii): Follows directly from the first condition of (ii).

(iii) =⇒ (i): By assuming that the envelope F is integrable,
lemma 8.16 yields that there is a version of ‖Pn − P‖∗F that
converges outer almost surely to a constant. The first condition of
(iii) guarantees that this constant must be zero.
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Subsection 9.4: Donsker Preservation
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Theorem 9.29

We consider techniques for building Donsker classes from other
Donsker classes. Theorem 9.29, to follow, gives such results for
subsets, pointwise closure, and symmetric convex hulls.

For a class F of real-valued, measurable functions on the sample

space X , let F (P,2)
be the set of f : X 7→ R for which there exists

a sequence {fm} ∈ F such that fm → f pointwise and in L2(P).

Let sconvF be defined as all functions f which can be represented
as f =

∑m
i=1 αi fi for constants αi satisfying

∑m
i=1 |αi | = 1 and

fi ∈ F .

Finally, let sconv(P,2)F be the pointwise and L2(P) closure of the
class sconvF .
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Theorem 9.29

Theorem 9.29

Let F be a P-Donsker class. Then:

(i) Any G ⊂ F is P-Donsker.

(ii) F (P,2)
is P-Donsker.

(iii) sconv(P,2)F is P-Donsker.

Proof to follow.
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Proof of Theorem 9.29

Proof
(i) Recall that weak convergence relies on marginal convergence
plus asymptotic equicontinuity. Since equicontinuity is dependent
on the maximum modulus of continuity, which cannot increase on
a smaller set, the result holds.

(ii) Similar to our proof of theorem 9.28, we can assume that both

F and F (P,2)
are mean zero classes. For a class G, denote the

modulus of continuity as:

MG(δ) ≡ sup
f ,g∈G : ‖f−g‖P,2<δ

|Gn(f − g)|
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Proof of Theorem 9.29

Proof (cont).

(ii) fix δ > 0. We can choose f , g ∈ F (P,2)
such that |Gn(f − g)|

is arbitrarily close to M
F (P,2)(δ) and ‖f − g‖P,2 < δ.

Now choose f∗, g∗ ∈ F such that ‖f − f∗‖P,2 and ‖g − g∗‖P,2 are
arbitrarily small given the data. Since δ is arbitrary, we obtain that

asymptotic equicontinuity in probability of F (P,2)
follows from the

asymptotic equiconinuity of {Gn(f ) : f ∈ F}.

(iii) is found in VW, theorem 2.10.3. The proof involves proving
that the symmetric convex hull is pre-Gaussian, followed by an
application the almost sure representation theorem using perfect
maps. Following the Kosorok text, we omit the proof here.
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Theorem 9.30

Theorem 9.30, stated without proof, is theorem 2.10.6 of VW, and
one of the most useful Donsker preservation results for statistical
applications.

Theorem 9.30

Let F1, . . . ,Fk be Donsker classes with max1≤i≤k‖P‖Fi
<

∞. Let φ : Rk 7→ R satisfy:

|φ ◦ f (x)− φ ◦ g(x)|2 ≤ c2
k∑

i=1

(fi (x)− gi (x))2 (1)

for every f , g ∈ F1 × · · · × Fk and x ∈ X for some constant
c <∞. Then the class φ ◦ (F1, . . . ,Fk) is Donsker provided
φ ◦ f is square integrable for at least one f ∈ F1 × · · · × Fk .

Note that equation (1) is satisfied for Lipschitz functions φ.
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Theorem 9.30 Example

Suppose F is Donsker with ‖P‖F <∞ and f ≥ δ for some
constant δ > 0 for every f ∈ F , then 1/F = {1/f : f ∈ F} is
Donsker.

Proof
The result follows directly from the fact that φ : x 7→ 1

x is Lipschitz
on (δ,∞). Since:

|φ(x1)− φ(x2)| =

∣∣∣∣ 1

x1
− 1

x2

∣∣∣∣ =
|x1 − x2|
x1x2

≤ 1

δ2
|x1 − x2|
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Theorem 9.30 Discussion

The main tool in the proof of Theorem 9.30 is ”Gaussianization”.

Given random variables ξ1, . . . , ξn with standard normal
distribution independent of the data X1, . . . ,Xn, Chapter 2.9
covering multiplier CLT in VW gives us that the conditional and
unconditional asymptotic behavior of the empirical process is
related to the behavior of the process:

Zn ≡
1√
n

n∑
i=1

ξiδXi

where δXi
is the dirac measure.
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Theorem 9.30 Discussion

Given fixed values X1, . . . ,Xn, the process {Zn(f ) : f ∈ L2(P)} is
Gaussian with zero mean and standard deviation metric:

σξ (Zn(f )− Zn(g)) =

(
1

n

n∑
i=1

(f (Xi )− g(Xi ))2
)1/2

which is equal to L2(Pn) semimetric. This allows for use of
comparison principles for Gaussian processes to derive the result.
Three lemmas, with proofs, are given in preparation to prove 9.30.
One of the these, VW-Lemma 2.10.14, is of independent interest.
We state VW-Lemma 2.10.14 on the following slide.
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VW-Lemma 2.10.14

VW-Lemma 2.10.14

Let F be a P-Donsker class with ‖P‖F <∞. Then the class

F2 ≡ {f 2 : f ∈ F} is G-C in probability: ‖Pn − P‖∗F2

P→ 0.
If, in addition, P∗F 2 < ∞ for some envelope function F ,
then F2 is also G-C almost surely and in mean.

The proof of VW-Lemma 2.10.14 relies on the Gaussianization
technique discussed previously, but is omitted here due to length.
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Corollary 9.31

Corollary 9.31 is follows directly from theorem 9.30:

Corollary 9.31

Let F and G be Donsker classes. Then:

(i) F ∪ G and F + G are Donsker.
(ii) If ‖P‖F∪G < ∞, then the classes of pairwise infima,
F ∧ G, and pairwise suprema, F ∨ G, are both Donsker.
(iii) If F and G are both uniformly bounded, then F · G is
Donsker.
(iv) If ψ : R 7→ R is Lipschitz continuous, where R is the
range of functions in F and ‖ψ(f )‖P,2 <∞ for at least one
f ∈ F , then ψ(F) is Donsker.
(v) If ‖P‖F <∞ and g is uniformly bounded and measur-
able, then F · g is Donsker.
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Proof of Corollary 9.31

Proof
For any measurable function f , let ḟ ≡ f − Pf . Define
Ḟ ≡ {ḟ : f ∈ F} and Ġ ≡ {ġ : g ∈ G}. Note that for any f ∈ F
and g ∈ G, Gnf = Gn ḟ and Gn(f + g) = Gn(ḟ + ġ). Hence F ∪ G
is Donsker if and only if Ḟ ∪ Ġ is Donsker, and F + G if and only if
Ḟ + Ġ is Donsker.

(i) Note that ‖P‖Ḟ∪Ġ = 0. Since (x , y) 7→ x + y is Lipschitz

continuous on R2, theorem 9.30 provides that Ḟ + Ġ, and thus

F + G, are Donsker. Since Ḟ ∪ Ġ ⊂
{
Ḟ ∪ {0}

}
∪
{
Ġ ∪ {0}

}
,

Ḟ ∪ Ġ as well as F ∪ G are Donsker.
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Proof of Corollary 9.31

Proof (cont).
(ii) Left as exercise. Consider F ∨ G. Then for fixed x , arbitrary
f1, f2 ∈ F and arbitrary g1, g2 ∈ G:

|φ(f1(x), g1(x))− φ(f2(x), g2(x))|2

= |max{f1(x), g1(x)} −max{f2(x), g2(x)}|2

≤ |f1(x)− f2(x)|2 + |g1(x)− g2(x)|2

satisfying (1) of theorem 9.30, and the result follows. The proof
for F ∧ G is similar.

(iii) Since (x , y) 7→ xy is Lipschitz continuous on bounded subsets
of R2, application of theorem 9.30 yields that F · G is Donsker.
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Proof of Corollary 9.31

Proof (cont).
(v) Note that for any f1, f2 ∈ F we have that

|f1(x)g(x)− f2(x)g(x) | ≤ ‖g‖∞|f1(x)− f2(x)|

hence taking φ(x , y) = xy , φ ◦ {F , {g}} is Lipschitz continuous
and F · g is thus Donsker.
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Conclusions

Sections 9.3 and 9.4 present preservation results for
Glivenko-Cantelli and Donsker properties, respectively.

Preservations results are useful for generating G-C and Donsker
classes from their pre-existing counterparts.

The results discussed in these two sections will be useful in
Chapter 10, where we will discuss the validity of bootstrap in the
empirical process setting.

35 / 35 Preservation Results


