Preservation Results Kosorok: 9.3 - 9.4

August 11, 2021

1/35 [Preservation Results](#page-34-0)

4日)

伊 → ← 手

E

Ξ

In chapter 9, we've focused on computing entropy for empirical process with the purpose of determining whether classes of functions are G-C, Donsker, or neither.

In sections 9.3 and 9.4, we will discuss the modifications of G-C and Donsker classes of functions under which G-C and Donsker properties are preserved.

This will allow us to describe methods for building new G-C and Donsker classes.

9.3 Glivenko-Cantelli Preservation

9.4 Donsker Preservation

4 0 8

×

母 → → ヨ

E

э

Пb.

 \rightarrow

Subsection 9.3: Glivenko-Cantelli Preservation

伊 ▶ ◀ 手

 299

∍

As discussed, we aim to describe the methods in which Glivenko-Cantelli classes can be generated from other G-C classes.

These results are useful in establishing the consistency properties of Z and M estimators and their bootstrapped versions.

Our first example is trivial: for P-G-C classes F and G, then $\mathcal{F} \cup \mathcal{G}$ is also P-G-C, as is any subset of $\mathcal{F} \cup \mathcal{G}$.

More substantial preservation results stem from theorem 9.25, a modification of theorem 3 of van der Vaart and Wellner:

Theorem 9.25

Suppose that $\mathcal{F}_1,\ldots,\mathcal{F}_k$ are strong P-G-C classes of functions with $\max_{1\leq j\leq k} \lVert P\lVert_{\mathcal{F}_j}\,<\,\infty$ and that $\phi\,:\,\mathbb{R}^k\,\mapsto\,\mathbb{R}$ is continuous. Then the class $\mathcal{H} \equiv \phi(\mathcal{F}_1, \ldots, \mathcal{F}_k)$ is strong P-G-C provided it has an integrable envelope.

The proof is omitted in Kosorok, but presented in van der Vaart and Wellner (2000), pg. 115 - 117. We present the proof for the case when $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are suitably measurable.

Assume that the classes F_i are appropriately measurable. Let F_1, \ldots, F_k , H be the envelopes for $\mathcal{F}_1, \ldots, \mathcal{F}_k, \mathcal{H}$, respectively and define $F = F_1 \vee \cdots \vee F_k$. Let $\mathcal{F} \equiv \mathcal{F}_1 \times \cdots \times \mathcal{F}_k$. For $M \in (0, \infty)$, define

$$
\mathcal{H}_M \equiv \{ \phi(f) \mathbb{1} \{ F \leq M \} : f = (f_1, \ldots, f_k) \in \mathcal{F} \}
$$

Now, consider:

$$
\|(\mathbb{P}_n-P)\phi(f)\|_{\mathcal{F}}\leq (\mathbb{P}_n+P)H1\{F>M\}+\|(\mathbb{P}_n-P)h\|_{\mathcal{H}_M}
$$

The first term on the right converges to 0 as $M \to \infty$. Thus, our problem reduces to showing that \mathcal{H}_m is P-G-C for every fixed M. Our next steps tackle this aim. We first need VW-Lemma 2, which we state without proof.

御 ▶ すき ▶ すき ▶

VW-Lemma 2

Let $K \subset \mathbb{R}^k$ be compact and $\phi : K \mapsto \mathbb{R}$ be continuous. Then for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all n and for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in K$,

$$
\frac{1}{n}\sum_{i=1}^n\|a_i-b_i\|<\delta
$$

implies that:

$$
\frac{1}{n}\sum_{i=1}^n |\phi(a_i) - \phi(b_i)| < \epsilon
$$

Here, the norm $\|\cdot\|$ is very general, and can be any norm on \mathbb{R}^k .

Proof of Theorem 9.25

Back in the proof of Theorem 9.25, choose a $\epsilon > 0$, and let $\delta > 0$ exist such that Lemma 2 is satisfied for $\phi:[-M,M]^k \mapsto \mathbb{R}$ for the general norm $\|\cdot\|$ being the L_1 -norm. Then for any $(f_j, g_j) \in \mathcal{F}_j, j = 1, \ldots, k$:

$$
\mathbb{P}_n|f_j-g_j|1\{F_j\leq M\}<\frac{\delta}{k},\ j=1,\cdots,k
$$

implies that

$$
\mathbb{P}_n|\phi(f_1,\ldots,f_k)-\phi(g_1,\ldots,g_k)|1\{F\leq M\}<\epsilon
$$

it follows then that:

$$
\mathsf{N}(\epsilon, \mathcal{H}_M, L_1(\mathbb{P}_n)) \leq \prod_{j=1}^k \mathsf{N}(\frac{\delta}{k}, \mathsf{F}_j 1\{\mathsf{F}_j \leq M\}, L_1(\mathbb{P}_n))
$$

It follows that $\mathrm{E}^* \mathrm{log} N(\epsilon, \mathcal{H}_M, L_1(\mathbb{P}_n)) = o(n)$ for every $\epsilon > 0$, $M < \infty$.

This implies that $\mathrm{E}^* \mathrm{log}N(\epsilon,(\overline{\mathcal{H}}_M)_N,L_1(\mathbb{P}_n))=o(n)$ where $(\overline{\mathcal{H}}_M)_N$ contains the functions $h1\{H \leq N\}$ for $h \in \mathcal{H}_M$. Thus, \mathcal{H}_M is strong G-C for P , and H is weak G-C.

Because H has an integrable envelope and is weak G-C, it is thus strong G-C by VW-Lemma 2.4.5 (1996).

This concludes the proof for the case when the classes $\mathcal{F}_1, \ldots \mathcal{F}_k$ are suitably measurable. A generalization is available in van der Vaart and Wellner (2000).

Corollary 9.26 gives obvious consequences of theorem 9.25:

Corollary 9.26

Let F and G be P-G-C classes with respective integrable envelopes F and G . Then the following hold:

(i) $\mathcal{F} + \mathcal{G}$ is P-G-C. (ii) $\mathcal{F} \cdot \mathcal{G}$ is P-G-C provided that $P[FG] < \infty$ (iii) Let R be the union of the ranges of the functions in F, and let $\psi : \overline{R} \mapsto \mathbb{R}$ be continuous. Then $\psi(F)$ is P-G-C provided it has an integrable envelope.

A short proof is presented on the following slide.

伊 ▶ ヨ ヨ ▶

(i) $F + G < \infty$ provides a trivial integrable envelope for class $F + G$

(ii) Since $(x, y) \mapsto xy$ is continuous in \mathbb{R}^2 , theorem 9.25 applies directly.

(iii) Follows from 9.25 since there exists a continuous extension of ψ , $\tilde{\psi}$, such that $||P\tilde{\psi}(f)||_F = ||P\psi(f)||_F$.

Note that the "preservation of product" G-C result, part (ii) of 9.26 does not hold for Donsker classes in general.

This result is particularly useful for formulating master theorems for bootstrapped Z and M estimators.

Consider the following example of this, continued on the next slide:

Consider verifying the validity of the bootstrap for the parametric Z-estimator, $\widehat\theta_n$, obtained as the zero of $\theta\mapsto {\mathbb P}_n\psi_\theta$ for $\theta\in\Theta$ for an arbitrary random function ψ_{θ} . Let $\Psi(\theta) = P \psi_{\theta}$. Assume that the parameter is identifiable, i.e. for $\{\theta_n\} \in \Theta$, $\Psi(\theta_n) \to 0$ implies $\theta_n \rightarrow \theta_0$. To obtain consistency, we can assume that the class $\{\psi_{\theta}, \theta \in \Theta\}$ is P-G-C, yielding $\hat{\theta}_n \stackrel{\text{as}*}{\rightarrow} \theta_0$

Using arguments laid out in section 2.2.5, if Ψ is appropriately differentiable and the parameter is identifiable, sufficient additional conditions for asymptotic normality of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ are that $\{\psi_{\theta} : \theta \in \Theta\}$ is strong P-G-C, that $\{\psi_{\theta} : \theta \in \Theta, ||\theta - \theta_0|| < \delta\}$ is P-Donsker for some $\delta > 0$, and that $P\|\psi_\theta - \psi_{\theta_0}\|^2 \to 0$ as $\theta \to \theta_0$.

母 ト イミ ト イヨー

As we will see in later chapters, an important step in showing the validity of the bootstrap estimate $\hat{\theta}_{n}^{\circ}$ is to show that it is unconditionally consistent for θ_0 .

If we use a weighted bootstrap with i.i.d non-negative weights ξ_1,\ldots,ξ_n which which are independent of the data and satisfy that $E\xi_1 = 1$, then (ii) of corollary 9.26 gives us that $\mathcal{F} \equiv \{ \xi \psi_{\theta} : \theta \in \Theta \}$ is P-G-C.

This follows since both the class $\{\xi\}$ and $\{\psi_\theta : \theta \in \Theta\}$ are P-G-C and since the product class $\mathcal F$ has an integrable envelope by lemma 8.13.

母 ▶ (三) (

Lemma 9.27 gives a useful result on covariance estimation. The goal is to describe the conditions under which the limiting covariance of \mathbb{G}_n , indexed by F, can be consistently estimated.

Recall that this covariance value is $\sigma(f, g) \equiv Pfg - PfPg$ and has an estimator $\hat{\sigma}(f, g) \equiv \mathbb{P}_nfg - \mathbb{P}_nf\mathbb{P}_ng$.

Although knowledge of the covariance matrix is not sufficient to obtain inference on $\{Pf : f \in \mathcal{F}\}\$, the information it does contain is still useful.

Lemma 9.27

Let ${\mathcal F}$ be Donsker. Then $\|\hat\sigma(f,g)-\sigma(f,g)\|_{{\mathcal F} \cdot {\mathcal F}} \stackrel{\rm as*}{\to} 0$ if and only if $P^* \|f - Pf\|_{\mathcal{F}}^2 < \infty$

Proof

 \Leftarrow Note since F is Donsker, it is also G-C. Hence $\dot{\mathcal{F}}\equiv\{\dot{f}:f\in\mathcal{F}\}$ is also G-C, where for any $f,\dot{f}\equiv f-Pf$. Assume that $P^*\|f-Pf\|^2_{\mathcal{F}}<\infty.$ Theorem 9.25 provides that $\dot{\mathcal{F}}\cdot\dot{\mathcal{F}}$ is also G-C. Uniform consistency of $\hat{\sigma}$ follows since for any $f, g \in \mathcal{F}, \hat{\sigma}(f,g) - \sigma(f,g) = (\mathbb{P}_n - P)\dot{f}g - \mathbb{P}_n\dot{f}\mathbb{P}_n\dot{g}.$

 \implies Now, assume that $\|\hat{\sigma}(f,g)-\sigma(f,g)\|_{\mathcal{F}\cdot\mathcal{F}}\overset{\text{as}*}{\rightarrow} 0.$ Thus, $\dot{\mathcal{F}}\cdot\dot{\mathcal{F}}$ is G-C. Lemma 8.13 thus implies that $P^* \| f - Pf \|_{\mathcal{F}}^2 = P^* \| fg \|_{\dot{\mathcal{F}} \cdot \dot{\mathcal{F}}} < \infty.$

Theorem 9.28 gives equivalent conditions for a functional class $\mathcal F$ to be strong Glivenko-Cantelli.

Theorem 9.28

Let F be a class of measurable functions. Then the following are equivalent:

\n- (i)
$$
\mathcal F
$$
 is strong P-G-C
\n- (ii) $\mathbb E^* \| \mathbb{P}_n - P \|_{\mathcal F} \to 0$ and $\mathbb E^* \| f - Pf \|_{\mathcal F} < \infty$
\n- (iii) $\| \mathbb{P}_n - P \|_{\mathcal F} \stackrel{P}{\to} 0$ and $\mathbb E^* \| f - Pf \|_{\mathcal F} < \infty$
\n

Proof of Theorem 9.28

Proof Since $\mathbb{P}_n - P$ does not change when the class $\mathcal F$ is replaced by $\{f - Pf : f \in \mathcal{F}\}\$, we can assume that $||P||_{\mathcal{F}} = 0$, WLOG.

(i) \implies (ii): By lemma 8.13, F being P-G-C implies $\mathbb{E}^*\|f\|_{\mathcal{F}} < \infty$. Pick $0 < M < \infty$, and note that:

$$
\mathbf{E}^* \|\mathbb{P}_n - P\|_{\mathcal{F}} \le \mathbf{E}^* \|\ (\mathbb{P}_n - P)f \times 1\{F \le M\}\|_{\mathcal{F}} + 2\mathbf{E}^* \left[F \times 1\{F > M\}\right]
$$

applying corollary 9.26's product preservation to the class $\mathcal{F} \cdot 1\{F > M\}$ yields that it is strong P-G-C, and thus $\mathrm{E}^*\|(\overline{\mathbb{P}}_n-P)f\times 1\{F\leq M\}\|_{\mathcal{F}}\rightarrow 0$ for any M , while the second term can be made arbitrarily small by increasing M . Thus, $E^* \|\mathbb{P}_n - P\|_{\mathcal{F}} \to 0$

モー イモト イモト イ野ト

 Ω

 $(iii) \implies (iii)$: Follows directly from the first condition of (ii).

(iii) \implies (i): By assuming that the envelope F is integrable, lemma 8.16 yields that there is a version of $\|\mathbb{P}_n - P\|_{\mathcal{F}}^*$ that converges outer almost surely to a constant. The first condition of (iii) guarantees that this constant must be zero.

御きメモドメ

Subsection 9.4: Donsker Preservation

4 D.K.

E

∍

We consider techniques for building Donsker classes from other Donsker classes. Theorem 9.29, to follow, gives such results for subsets, pointwise closure, and symmetric convex hulls.

For a class F of real-valued, measurable functions on the sample space $\mathcal X$, let $\overline{\mathcal F}^{(P,2)}$ be the set of $f:\mathcal X\mapsto \mathbb R$ for which there exists a sequence ${f_m \in \mathcal{F}}$ such that $f_m \to f$ pointwise and in $L_2(P)$.

Let sconv $\mathcal F$ be defined as all functions f which can be represented as $f=\sum_{i=1}^m \alpha_i f_i$ for constants α_i satisfying $\sum_{i=1}^m |\alpha_i|=1$ and $f_i \in \mathcal{F}$.

Finally, let $\overline{sconv}^{(P,2)}$ be the pointwise and $L_2(P)$ closure of the class sconv $\mathcal F$.

何 ト ィヨ ト ィヨ ト

Theorem 9.29

Let F be a P-Donsker class. Then:

\n- (i) Any
$$
\mathcal{G} \subset \mathcal{F}
$$
 is *P*-Donsker.
\n- (ii) $\overline{\mathcal{F}}^{(P,2)}$ is *P*-Donsker.
\n- (iii) $\overline{\text{score}}^{(P,2)} \mathcal{F}$ is *P*-Donsker.
\n

Proof to follow.

メロトメ団 トメミトメ

E

ミッ

Proof

(i) Recall that weak convergence relies on marginal convergence plus asymptotic equicontinuity. Since equicontinuity is dependent on the maximum modulus of continuity, which cannot increase on a smaller set, the result holds.

(ii) Similar to our proof of theorem 9.28, we can assume that both ${\mathcal F}$ and $\overline{{\mathcal F}}^{(P,2)}$ are mean zero classes. For a class ${\mathcal G}$, denote the modulus of continuity as:

$$
M_{\mathcal{G}}(\delta) \equiv \sup_{f,g \in \mathcal{G}: \|f-g\|_{P,2} < \delta} |G_n(f-g)|
$$

Proof (cont).

(ii) fix $\delta > 0$. We can choose $f, g \in \overline{\mathcal{F}}^{(P,2)}$ such that $|\mathbb{G}_n(f-g)|$ is arbitrarily close to $\mathsf{M}_{\overline{\mathcal{F}}^{(P,2)}}(\delta)$ and $\|f-g\|_{P,2}<\delta.$

Now choose $f_*, g_* \in \mathcal{F}$ such that $||f - f_*||_{P,2}$ and $||g - g_*||_{P,2}$ are arbitrarily small given the data. Since δ is arbitrary, we obtain that asymptotic equicontinuity in probability of $\overline{\mathcal{F}}^{(P,2)}$ follows from the asymptotic equiconinuity of $\{\mathbb{G}_n(f) : f \in \mathcal{F}\}.$

(iii) is found in VW, theorem 2.10.3. The proof involves proving that the symmetric convex hull is pre-Gaussian, followed by an application the almost sure representation theorem using perfect maps. Following the Kosorok text, we omit the proof here.

←何 ▶ イミ ▶ イヨ ▶

Theorem 9.30, stated without proof, is theorem 2.10.6 of VW, and one of the most useful Donsker preservation results for statistical applications.

Theorem 9.30

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be Donsker classes with $\max_{1 \leq i \leq k} ||P||_{\mathcal{F}_i}$ ∞ . Let $\phi: \mathbb{R}^k \mapsto \mathbb{R}$ satisfy:

$$
|\phi \circ f(x) - \phi \circ g(x)|^2 \leq c^2 \sum_{i=1}^k (f_i(x) - g_i(x))^2 \qquad (1)
$$

for every $f, g \in \mathcal{F}_1 \times \cdots \times \mathcal{F}_k$ and $x \in \mathcal{X}$ for some constant $c < \infty$. Then the class $\phi \circ (\mathcal{F}_1, \ldots, \mathcal{F}_k)$ is Donsker provided $\phi \circ f$ is square integrable for at least one $f \in \mathcal{F}_1 \times \cdots \times \mathcal{F}_k$.

Note that equation (1) is satisfied for Lipschitz functions ϕ .

 \triangleright and \equiv \triangleright and \equiv \triangleright

Suppose F is Donsker with $||P||_{\mathcal{F}} < \infty$ and $f \geq \delta$ for some constant $\delta > 0$ for every $f \in \mathcal{F}$, then $1/\mathcal{F} = \{1/f : f \in \mathcal{F}\}\$ is Donsker.

Proof

The result follows directly from the fact that $\phi: x \mapsto \frac{1}{x}$ is Lipschitz on (δ, ∞) . Since:

$$
|\phi(x_1) - \phi(x_2)| = \left|\frac{1}{x_1} - \frac{1}{x_2}\right| = \frac{|x_1 - x_2|}{x_1 x_2} \le \frac{1}{\delta^2} |x_1 - x_2|
$$

The main tool in the proof of Theorem 9.30 is "Gaussianization".

Given random variables ξ_1, \ldots, ξ_n with standard normal distribution independent of the data X_1, \ldots, X_n , Chapter 2.9 covering multiplier CLT in VW gives us that the conditional and unconditional asymptotic behavior of the empirical process is related to the behavior of the process:

$$
\mathbb{Z}_n \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \delta_{X_i}
$$

where $\delta_{\mathbf{X}_{i}}$ is the dirac measure.

Given fixed values X_1, \ldots, X_n , the process $\{ \mathbb{Z}_n(f) : f \in L_2(P) \}$ is Gaussian with zero mean and standard deviation metric:

$$
\sigma_{\xi}\left(\mathbb{Z}_n(f)-\mathbb{Z}_n(g)\right)=\left(\frac{1}{n}\sum_{i=1}^n\left(f(X_i)-g(X_i)\right)^2\right)^{1/2}
$$

which is equal to $L_2(\mathbb{P}_n)$ semimetric. This allows for use of comparison principles for Gaussian processes to derive the result. Three lemmas, with proofs, are given in preparation to prove 9.30. One of the these, VW-Lemma 2.10.14, is of independent interest. We state VW-Lemma 2.10.14 on the following slide.

VW-Lemma 2.10.14

Let F be a P-Donsker class with $||P||_{\mathcal{F}} < \infty$. Then the class $\mathcal{F}^2 \equiv \{f^2 : f \in \mathcal{F}\}\$ is G-C in probability: $\|\mathbb{P}_n - P\|_{\mathcal{F}^2}^*$ $\stackrel{P}{\rightarrow} 0.$ If, in addition, $P^*F^2 < \infty$ for some envelope function F, then \mathcal{F}^2 is also G-C almost surely and in mean.

The proof of VW-Lemma 2.10.14 relies on the Gaussianization technique discussed previously, but is omitted here due to length.

Corollary 9.31

Corollary 9.31 is follows directly from theorem 9.30:

Corollary 9.31

Let F and G be Donsker classes. Then:

(i) $\mathcal{F} \cup \mathcal{G}$ and $\mathcal{F} + \mathcal{G}$ are Donsker.

(ii) If $||P||_{F \cup G} < \infty$, then the classes of pairwise infima,

 $\mathcal{F} \wedge \mathcal{G}$, and pairwise suprema, $\mathcal{F} \vee \mathcal{G}$, are both Donsker.

(iii) If F and G are both uniformly bounded, then $F \cdot G$ is Donsker.

(iv) If ψ : $\overline{R} \mapsto \mathbb{R}$ is Lipschitz continuous, where R is the range of functions in F and $\|\psi(f)\|_{P,2} < \infty$ for at least one $f \in \mathcal{F}$, then $\psi(\mathcal{F})$ is Donsker.

(v) If $||P||_{\mathcal{F}} < \infty$ and g is uniformly bounded and measurable, then $\mathcal{F} \cdot \mathbf{g}$ is Donsker.

Proof of Corollary 9.31

Proof

For any measurable function f, let $\dot{f} \equiv f - P f$. Define $\dot{\mathcal{F}}\equiv\{\dot{f}:f\in\mathcal{F}\}$ and $\dot{\mathcal{G}}\equiv\{\dot{g}:g\in\mathcal{G}\}.$ Note that for any $f\in\mathcal{F}$ and $g\in\mathcal{G}$, $\mathbb{G}_n f=\mathbb{G}_n f$ and $\mathbb{G}_n(f+g)=\mathbb{G}_n(\dot{f}+\dot{g})$. Hence $\mathcal{F}\cup\mathcal{G}$ is Donsker if and only if $\dot{\cal F} \cup \dot{\cal G}$ is Donsker, and ${\cal F} + {\cal G}$ if and only if $\dot{\mathcal{F}}+\dot{\mathcal{G}}$ is Donsker.

(i) Note that $||P||_{\dot{F}\cup\dot{G}}=0$. Since $(x, y) \mapsto x + y$ is Lipschitz continuous on \mathbb{R}^2 , theorem 9.30 provides that $\dot{\mathcal{F}}+\dot{\mathcal{G}}$, and thus $\mathcal{F} + \mathcal{G}$, are Donsker. Since $\dot{\mathcal{F}} \cup \dot{\mathcal{G}} \subset \left\{ \dot{\mathcal{F}} \cup \{0\} \right\} \cup \left\{ \dot{\mathcal{G}} \cup \{0\} \right\}$, $F \cup G$ as well as $F \cup G$ are Donsker.

Proof (cont).

(ii) Left as exercise. Consider $\mathcal{F} \vee \mathcal{G}$. Then for fixed x, arbitrary $f_1, f_2 \in \mathcal{F}$ and arbitrary $g_1, g_2 \in \mathcal{G}$:

$$
|\phi(f_1(x), g_1(x)) - \phi(f_2(x), g_2(x))|^2
$$

= $|\max\{f_1(x), g_1(x)\} - \max\{f_2(x), g_2(x)\}|^2$
 $\leq |f_1(x) - f_2(x)|^2 + |g_1(x) - g_2(x)|^2$

satisfying (1) of theorem 9.30, and the result follows. The proof for $\mathcal{F} \wedge \mathcal{G}$ is similar.

(iii) Since $(x, y) \mapsto xy$ is Lipschitz continuous on bounded subsets of \mathbb{R}^2 , application of theorem 9.30 yields that $\mathcal{F}\cdot\mathcal{G}$ is Donsker.

Proof (cont). (v) Note that for any $f_1, f_2 \in \mathcal{F}$ we have that $|f_1(x)g(x) - f_2(x)g(x)| \le ||g||_{\infty}|f_1(x) - f_2(x)||$

hence taking $\phi(x, y) = xy$, $\phi \circ {\mathcal{F}, \{g\}}$ is Lipschitz continuous and $\mathcal{F} \cdot \mathbf{g}$ is thus Donsker.

伊 ▶ ヨ ヨ ▶

Sections 9.3 and 9.4 present preservation results for Glivenko-Cantelli and Donsker properties, respectively.

Preservations results are useful for generating G-C and Donsker classes from their pre-existing counterparts.

The results discussed in these two sections will be useful in Chapter 10, where we will discuss the validity of bootstrap in the empirical process setting.