Functional Delta Method

Wenyi Xie

University of North Carolina at Chapel Hill

September 2, 2021

0 §12.1 Proofs for main theorems related to functional delta method

§12.1 Proofs for main theorems related to functional delta method §12.2 Examples of Hadamard differentiable maps

■ §12.2 Examples of Hadamard differentiable maps

§12.1 Proofs for main theorems related to functional delta method $\frac{1}{2}$

From previous talk

Hadamard-differentiable

A map $\phi : \mathbb{D}_\phi \mapsto \mathbb{E}$ is Hadamard-differentiable at $\theta \in \mathbb{D}$, tangentially to a set $\mathbb{D}_0\subset\mathbb{D}$, if there exists a continuous linear map $\phi'_{\theta}:\mathbb{D}\mapsto\mathbb{E}$ such that

$$
\frac{\phi\left(\theta+t_{n}h_{n}\right)-\phi(\theta)}{t_{n}}\rightarrow\phi'_{\theta}(h)
$$

as $n \to \infty$, for all converging sequences $t_n \to 0$ and $h_n \to h \in \mathbb{D}_0$, with $h_n \in \mathbb{D}$ and $\theta + t_n h_n \in \mathbb{D}_{\phi}$ for all $n \geq 1$ sufficiently large.

§12.1 Proofs for main theorems related to functional delta method

THE UNIVERSITY

THEOREM 2*.*8 (functional delta method theorem)

For normed spaces $\mathbb D$ and $\mathbb E$, let $\phi : \mathbb D_\phi \subset \mathbb D \mapsto \mathbb E$ be Hadamard-differentiable at θ tangentially to $\mathbb{D}_0 \subset \mathbb{D}$. Assume that $r_n(X_n - \theta) \rightsquigarrow X$ for some sequence of constants $r_n \to \infty$, where X_n takes its values in \mathbb{D}_{ϕ} , and X is a tight process taking its values in \mathbb{D}_0 . Then r_n $(\phi(X_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(X)$

Proofs

 $\mathsf{Consider} \ \mathsf{then} \ \mathsf{map} \ \mathit{h} \mapsto r_n(\phi(\theta+\ \ r_n^{-1}\mathit{h})-\phi(\theta))\equiv g_n(\mathit{h}), \ \mathsf{defined} \ \mathsf{on} \ \mathsf{the} \ \mathsf{domain}$ $\mathbb{D}_n\equiv\big\{h:\theta+r_n^{-1}h\in\mathbb{D}_{\phi}\big\}$ and satisfies $g_n\left(h_n\right)\to\phi_{\theta}'(h)$ for every $h_n\to h\in\mathbb{D}_0$ with $h_n \in \mathbb{D}_n$.

By extended continuous mapping theorem, we have

$$
g_n(r_n(X_n - \theta)) = r_n(\phi(X_n) - \phi(\theta)) \to \phi'_{\theta}(X)
$$

§12.1 Proofs for main theorems related to functional delta method $\overline{1}$ oo $\overline{0}$

THE UNIVERSITY

It suffices that *ϕ* is differentiable at just one single point *θ*, which is convenient in empirical process where random elements are abstract and continuous differentiability may fail.

§12.1 Proofs for main theorems related to functional delta method §12.2 Examples of Hadamard differentiable maps

 $\mathbb{X}_n(X_n)$ is a sequence of random elements in a normed space $\mathbb D$ based on the data sequence $\{X_n, n\geq 1\}$, while $\hat{\mathbb{X}}_n$ (X_n, W_n) is a bootstrapped version of \mathbb{X}_n based on both the data sequence and a sequence of weights $W = \{W_n, n \geq 1\}$.

THEOREM 12.1 Delta method bootstrap

For normed spaces $\mathbb D$ and $\mathbb E$, let $\phi : \mathbb D_\phi \subset \mathbb D \mapsto \mathbb E$ be Hadamard-differentiable at μ tangentially to $\mathbb{D}_0\subset\mathbb{D}$, with derivative $\phi'_\mu.$ Let \mathbb{X}_n and $\hat{\mathbb{X}}_n$ have values in $\mathbb{D}_\phi,$ with $r_n\left(\mathbb{X}_n-\mu\right)\leadsto \mathbb{X}$, where $\mathbb X$ is tight and takes its values in $\mathbb D_0$ for some sequence of constants $0 < r_n \to \infty$, the maps $\,W_n \mapsto h\left(\hat{\mathbb{X}}_n\right)$ are measurable for every $h\in C_b(\mathbb{D})$ outer almost surely, and where $r_nc\left(\hat{\mathbb{X}}_n-\mathbb{X}_n\right)\overset{\mathsf{P}}{\underset{\mathsf{W}}{\leadsto}}\mathbb{X}$, for a constant $0 < c < \infty$. Then $r_nc\left(\phi\left(\hat{\mathbb{X}}_n\right) - \phi\left(\mathbb{X}_n\right)\right) \underset{\mathsf{W}}{\overset{\mathsf{P}}{\rightsquigarrow}} \phi'_{\mu}(\mathbb{X})$

§12.1 Proofs for main theorems related to functional delta method 00000000

The sequence of "conditional random laws" (given $\,X_1,X_2,\ldots)$ of $\sqrt{n}\left(\phi\left(\hat{\mathbb{X}}_n\right)-\right.$ *φ*(\mathbb{X}_n)) is asymptotically consistent in probability for estimating the laws of the random elements \sqrt{n} (ϕ (\mathbb{X}_n) − ϕ (μ))

Proofs for bootstrap delta method

We can show that $\hat{\mathbb{U}}_n \equiv r_n\left(\hat{\mathbb{X}}_n-\mathbb{X}_n\right) \rightsquigarrow c^{-1}\mathbb{X}$ and $r_n\left(\hat{\mathbb{X}}_n-\mu\right) \rightsquigarrow Z$ unconditionally, where Z is a tight random element. Using the same strategy as proving the conditional multiplier central limit theorem. Fix some $h \in BL_1(\mathbb{D})$, define $\mathbb{U}_n \equiv r_n\left(\mathbb{X}_n-\mu\right)$ and let $\tilde{\mathbb{X}}_1$ and $\tilde{\mathbb{X}}_2$ be two

independent copies of X , we have

$$
|\mathbf{E}^* h(\hat{\mathbb{U}}_n + \mathbb{U}_n) - \mathbf{E} h(c^{-1}\tilde{\mathbb{X}}_1 + \tilde{\mathbb{X}}_2)|
$$

\n
$$
\leq |\mathbf{E}_{X_n} \mathbf{E}_{W_n} h(\hat{\mathbb{U}}_n + \mathbb{U}_n)^* - \mathbf{E}^* \mathbf{E}_{W_n} h(\hat{\mathbb{U}}_n + \mathbb{U}_n)| \to 0
$$

\n
$$
+ \mathbf{E}^* |\mathbf{E}_{W_n} h(\hat{\mathbb{U}}_n + \mathbb{U}_n) - \mathbf{E}_{\tilde{\mathbf{X}}_1} h(c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{U}_n)| \to 0
$$

\n
$$
+ |\mathbf{E}^* \mathbf{E}_{\tilde{\mathbf{X}}_1} h(c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{U}_n) - \mathbf{E}_{\tilde{\mathbf{X}}_2} \mathbf{E}_{\tilde{\mathbf{X}}_1} h(c^{-1}\tilde{\mathbb{X}}_1 + \tilde{\mathbb{X}}_2)| \to 0
$$

 $($ Asymptotic measureability); $(\hat{\mathbb{U}}_n \equiv r_n\left(\hat{\mathbb{X}}_n - \mathbb{X}_n\right) \rightsquigarrow c^{-1}\mathbb{X}, h\in BL_1(\mathbb{D})) ;$ $(\mathbb{U}_n \rightsquigarrow \mathbb{X}, h \in BL_1(\mathbb{D}))$

§12.1 Proofs for main theorems related to functional delta method 00000000

(Proof Con't)

h is arbituary, and by portmanteau theorem we have that unconditionally,

$$
r_n \left(\begin{array}{c} \hat{\mathbb{X}}_n - \mu \\ \mathbb{X}_n - \mu \end{array} \right) \rightsquigarrow \left(\begin{array}{c} c^{-1} \tilde{\mathbb{X}}_1 + \tilde{\mathbb{X}}_2 \\ \tilde{\mathbb{X}}_2 \end{array} \right)
$$

Then we apply the functional delta method

$$
r_n \left(\begin{array}{c} \phi\left(\hat{\mathbb{X}}_n\right) - \phi(\mu) \\ \phi\left(\mathbb{X}_n\right) - \phi(\mu) \\ \hat{\mathbb{X}}_n - \mu \\ \mathbb{X}_n - \mu \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \phi'_{\mu}\left(c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{X}_2\right) \\ \phi'_{\mu}\left(\mathbb{X}_2\right) \\ c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{X}_2 \\ \mathbb{X}_2 \end{array} \right)
$$

Which implies

$$
r_n c \left(\begin{array}{c} \phi \left(\hat{\mathbb{X}}_n \right) - \phi \left(\mathbb{X}_n \right) \\ \hat{\mathbb{X}}_n - \mathbb{X}_n \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \phi'_{\mu}(\mathbb{X}) \\ \mathbb{X} \end{array} \right)
$$

since ϕ'_{μ} is linear on \mathbb{D}_0

Functional Delta Method

(Proof Con't)

With the map $(x,y) \mapsto x - \phi'_{\mu}(y)$, we have unconditionally

$$
r_n c\left(\phi\left(\hat{\mathbb{X}}_n\right)-\phi\left(\mathbb{X}_n\right)\right)-\phi'_\mu\left(r_n c\left(\hat{\mathbb{X}}_n-\mathbb{X}_n\right)\right) \quad \stackrel{\text{P}}{\rightarrow} \quad 0
$$

By bootstrap continuous mapping theorem,

$$
\phi'_{\mu}\left(r_n c\left(\hat{\mathbb{X}}_n - \mathbb{X}_n\right)\right) \overset{P}{\underset{W}{\leadsto}} \phi'_{\mu}(\mathbb{X})
$$

Thus completes the proof

ain theorems related to functional delta method **§12.2** Examples of Hadamard differentiable maps

1 §12.1 Proofs for main theorems related to functional delta method

² §12.2 Examples of Hadamard differentiable maps

THE UNIVERSITY

Composition

Let $g : \mathbb{R} \mapsto \mathbb{R}$ be a fixed map. Given an arbitrary set X, consider the map $\phi: \ell^{\infty}(\mathcal{X}) \mapsto \ell^{\infty}(\mathcal{X})$ given by $\phi(A)(x) = g(A(x)).$ One simple example is $\phi(f) = 1/f$, In §2.2.4, we established that ϕ is

Hadamard-differentiable with derivative at θ equal to $h \mapsto -h/\theta^2$

Lemma 12.2 Hadamard-differentiable of composition mapping

Let $g: B \subset \mathbb{R} \mapsto \mathbb{R}$ be differentiable with derivative continuous on all closed subsets of B , and let $\mathbb{D}_\phi=\{A\in \ell^\infty(\mathcal{X}): \, \{R(A)\}^\delta\subset B$ for some $\delta>0\},$ where $\mathcal X$ is a set, $R(C)$ denotes the range of the function $C \in \ell^\infty(\mathcal{X})$, and D^δ is the *δ*-enlargement of the set *D*. Then $\overline{A} \mapsto g \circ A$ is Hadamard-differentiable as a map from $\mathbb{D}_{\phi} \subset \ell^{\infty}(\mathcal{X})$ to $\ell^{\infty}(\mathcal{X})$,

at every $A \in \mathbb{D}_{\phi}$.

The derivative is given by $\phi'_{A}(\alpha) = g'(A)\alpha$, where g' is the derivative of g .

Proof of Lemma 12.2.

Let t_n be any real sequence with $t_n \to 0$, let $\{h_n\} \in \ell^\infty(\mathcal{X})$ be any sequence converging to $h\in \ell^\infty(\mathcal{X})$ uniformly, and define $A_n=A+t_nh_n.$ Then, by the $\mathsf{conditions}$ of the theorem, there exists a closed $B_1\subset B$ such that ${R(A) \cup R(A_n)}$ ^{δ} \subset *B*₁ for some $\delta > 0$ and all *n* large enough. Hence

$$
\sup_{x \in \mathcal{X}} \left| \frac{g(A(x) + t_n h_n(x)) - g(A(x))}{t_n} - g'(A(x))h(x) \right| \to 0
$$

as *n → ∞*, since continuous functions on closed sets are bounded and thus *g ′* is uniformly continuous on B_1 .

Integration

$$
\phi(A,B) = \int_{(a,b]} A(s) dB(s) \quad \text{and} \quad \psi(A,B)(t) = \int_{(a,t]} A(s) dB(s)
$$

are Hadamard differentiable. Where $A \in D[a, b]$ is a cadlag function on the interval $[a, b] \subset \overline{\mathbb{R}}$ and $B \in BV_M[a, b]$ is a cadlag function with total variation bounded by a fixed constant *M*

Lemma 12.3

Let $\mathbb{D}_M\equiv D[a,b]\times BV_M[a,b].$ For each fixed $M<\infty,$ the maps $\phi:\mathbb{D}_M\mapsto\mathbb{R}$ and $\psi: \mathbb{D}_M \mapsto D[a,b]$ defined previously are Hadamard differentiable at each $(A, B) \in \mathbb{D}_M$ with $\int_{(a, b]} |dA| < \infty$.. The derivatives are given by

$$
\phi'_{A,B}(\alpha,\beta) = \int_{(a,b]} Ad\beta + \int_{(a,b]} \alpha dB, \quad \text{ and } \quad \psi'_{A,B}(\alpha,\beta)(t) = \int_{(a,t]} Ad\beta + \int_{(a,t]} \alpha dB
$$

Note that if *β* is not of bounded variation then R *Adβ* can be defined via integration by parts.

Example (Wilcoxon statistics)

Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from distributions F and G on the reals. If \mathbb{F}_m and \mathbb{G}_n are the respective empirical distribution functions. Then $T = \int_{\mathbb{R}} \mathbb{G}_n(x) d\mathbb{F}_m(x)$ is the Mann-Whitney form of the Wilcoxon statistics, and it's an estimator of $\phi(G, F) = \int G dF = \text{P}(Y \leq X)$ Note that F, G, \mathbb{F}_m and \mathbb{G}_n all have total variation ≤ 1 . Lemma 12.3 gives $\phi'_{G,F}(\alpha,\beta) = \int_{\mathbb{R}} G d\beta + \int_{\mathbb{R}} \alpha dF$

If we assume $m/(m+n) \rightarrow \lambda \in [0,1]$ as $m \wedge n \rightarrow \infty$,

$$
\sqrt{\frac{mn}{m+n}} \left(\begin{array}{c} \mathbb{G}_n - G \\ \mathbb{F}_m - F \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \sqrt{\lambda} \mathbb{G}_G \\ \sqrt{1 - \lambda} \mathbb{G}_F \end{array} \right)
$$

where \mathbb{G}_F , \mathbb{G}_G are independent tight, F- and G-Brownian bridge processes.

$$
\sqrt{\frac{mn}{m+n}}(\int_{\mathbb{R}}\mathbb{G}_n(x)d\mathbb{F}_m(x)-\int GdF)\rightsquigarrow \sqrt{\lambda}\int_{\mathbb{R}}\mathbb{G}_GdF+\sqrt{1-\lambda}\int_{\mathbb{R}}Gd\mathbb{G}_F
$$

Example (Nelson-Aalen) $X = T \wedge C$ is the minimum of a failure time T and censoring time C , and $δ = 1\{T \le C\}$. T and C are independent. $Λ(t) = \int_0^t dF(s)/S(s-)$ The Nelson-Aalen estimator for Λ based on samples is

$$
\hat{\Lambda}_n(t) \equiv \int_{[0,t]} \frac{d\hat{N}_n(s)}{\hat{Y}_n(s)}
$$
\n
$$
\hat{N}_n(t) \equiv n^{-1} \sum_{i=1}^n \delta_i \mathbf{1} \{ X_i \le t \} \text{ and } \hat{Y}_n(t) \equiv n^{-1} \sum_{i=1}^n \mathbf{1} \{ X_i \ge t \}
$$

*dN*ˆ

§12.2 Examples of Hadamard differentiable maps
©2000000000000000000000

THE UNIVERSITY

Example (Nelson-Aalen Con't)

 $\{ \delta$ 1 $\{X \le t\}$, $t \ge 0$ } and $\{1\{X \ge t\} : t \ge 0\}$ can be verified to be both Donsker class, therefore

$$
\sqrt{n}\left(\begin{array}{c}\hat{N}_n-N_0\\ \hat{Y}_n-Y_0\end{array}\right)\rightsquigarrow \left(\begin{array}{c}\mathbb{G}_1\\ \mathbb{G}_2\end{array}\right)
$$

where $N_0(t) \equiv P(T \le t, C \ge T)$, $Y_0(t) \equiv P(X \ge t)$. \mathbb{G}_1 and \mathbb{G}_2 are tight Gaussian processes.

The N-A estimator depends on the pairs $\left(\hat{N}_n,\hat{Y}_n\right)$ through

$$
(A, B) \mapsto \left(A, \frac{1}{B}\right) \mapsto \int_{[0,t]} \frac{1}{B} dA
$$

In this case, the point (A, B) of interest is $A = N_0$ and $B = Y_0$.

Example (Nelson-Aalen Con't)

By Lemma 12.3 and chain rule of Hadamard differentiability, we can see such composition map is Hadamard differentiable on a domain of type $\{(A,B):\int_{[0,\tau]}|dA(t)|\leq M, \inf_{t\in[0,\tau]}|B(t)|\geq\epsilon\}$ for $M<0$ and $\epsilon>0$ at every point (A, B) such that $1/B$ is of bounded variation. The derivative of such composition map is given by

§12.2 Examples of Hadamard differentiable maps

THE UNIVERSITY

OF NORTH CAROLINA

$$
(\alpha, \beta) \mapsto \left(\alpha, \frac{-\beta}{Y_0^2}\right) \mapsto \int_{[0,t]} \frac{d\alpha}{Y_0} - \int_{[0,t]} \frac{\beta dN_0}{Y_0^2}
$$

By functional delta method

$$
\sqrt{n}\left(\hat{\Lambda}_n - \Lambda\right) \rightsquigarrow \int_{[0,(\cdot)]} \frac{d\mathbb{G}_1}{Y_0} - \int_{[0,(\cdot)]} \frac{\mathbb{G}_2 dN_0}{Y_0^2}
$$

§12.1 Proofs for main theorems related to functional delta method §12.2 Examples of Hadamard differentiable maps

Example (Nelson-Aalen Con't)

$$
\sqrt{n}\left(\hat{\Lambda}_n - \Lambda\right) \rightsquigarrow \int_{[0,(\cdot)]} \frac{d\mathbb{G}_1}{Y_0} - \int_{[0,(\cdot)]} \frac{\mathbb{G}_2 dN_0}{Y_0^2}
$$

The right side is equal to $\int_{[0, (\cdot)]} d\mathbb{M}/Y_0$, where $\mathbb{M}(t) \equiv \mathbb{G}_1(t) - \int_{[0, t]} \mathbb{G}_2 d\Lambda$ $\mathbb{M}(t)$ can be shown to be a Gaussian martingale with independent increments.

es for main theorems related to functional set of the set of the set of Hadamard differentiable maps

accesses accesses and set of the set of the

THE UNIVERSITY

Proof for Lemma 12.3

Recall Lemma 12.3

$$
\phi(A,B) = \int_{(a,b]} A(s) dB(s) \quad \text{and} \quad \psi(A,B)(t) = \int_{(a,t]} A(s) dB(s)
$$

are Hadamard differentiable at each $(A, B) \in \mathbb{D}_M \equiv D[a, b] \times BV_M[a, b]$ And the derivatives are given by

$$
\phi'_{A,B}(\alpha,\beta) = \int_{(a,b]} A d\beta + \int_{(a,b]} \alpha dB, \quad \text{and}
$$

$$
\psi'_{A,B}(\alpha,\beta)(t) = \int_{(a,t]} A d\beta + \int_{(a,t]} \alpha dB
$$

Functional Delta Method

THE UNIVERSITY

O NORTH CAROLIN

Proof of Lemma 12.3

For sequences $t_n \to 0, \alpha_n \to \alpha$, and $\beta_n \to \beta$, define $A_n \equiv A + t_n \alpha_n$ and $B_n \equiv B + t_n \beta_n$. Require that $(A_n, B_n) \in \mathbb{D}_M$, therefore the total variation of *Bⁿ* is boudned by *M*

$$
\frac{\int_{(a,t]} A_n dB_n - \int_{(a,t]} A dB}{t_n} - \psi'_{A,B} (\alpha_n, \beta_n)
$$
\n
$$
= \frac{\int_{(a,t]} (A + t_n \alpha_n) dB_n - \int_{(a,t]} A dB}{t_n} - \left(\int_{(a,t]} A d\beta_n + \int_{(a,t]} \alpha_n dB \right)
$$
\n
$$
= \int_{(a,t]} \alpha d (B_n - B) + \int_{(a,t]} (\alpha_n - \alpha) d (B_n - B)
$$

Next show the right side goes to 0. First note that the second term goes to zero uniformly over $t \in (a, b]$ since both B_n and B have total variation boudned by M and $\alpha_n \to \alpha$

Functional Delta Method

Proof of Lemma 12.3 Con't

In terms of the first term $\int_{(a,t]} \alpha d(B_n - B)$. For a fixed $\epsilon > 0$, since α is cadlag, there exists a partition *a* = $t_0 < t_1 < \cdots < t_m = b$ such that α varies less than ϵ over each interval $[t_{i-1}, t_i)$, $1 \leq i \leq m$, and $m < \infty$. Define $\tilde{\alpha} = \alpha(t_{i-1})$ over the interval $[t_{i-1}, t_i)$ and $\tilde{\alpha}(b) = \alpha(b)$

THE UNIVERSITY

SORTH CAROLINA

Proof of Lemma 12.3 Con't

$$
\left\| \int_{(a,t]} \alpha d(B_n - B) \right\|_{\infty}
$$

\n
$$
\leq \left\| \int_{(a,t]} (\alpha - \tilde{\alpha}) d(B_n - B) \right\|_{\infty} + \left\| \int_{(a,t]} \tilde{\alpha} d(B_n - B) \right\|_{\infty}
$$

\n
$$
\leq \left\| \alpha - \tilde{\alpha} \right\|_{\infty} 2M + \sum_{i=1}^{m} |\alpha(t_{i-1})| \times |(B_n - B)(t_i) - (B_n - B)(t_{i-1})|
$$

\n
$$
+ |\alpha(b)| \times |(B_n - B)(b)|
$$

\n
$$
\leq \epsilon 2M + (2m + 1) \|B_n - B\|_{\infty} ||\alpha||_{\infty}
$$

\n
$$
\rightarrow \epsilon 2M
$$

Thus we have proved

$$
\frac{\int_{(a,t]} A_n dB_n - \int_{(a,t]} A dB}{t_n} \to \psi'_{A,B}(\alpha,\beta)
$$

and the desired Hadamard differentiability of *φ*¹ follows.

The product integral

For a function $A \in D(0, b]$, let $\Delta A(t) = A(t) - A(t-)$ and $A^c(t) \equiv A(t) - \sum_{0 < s \le t} \Delta A(s)$ be the jump part and continuous part of *A*, respectively.

Product integral

The product integral is defined as

$$
\phi(A)(t) \equiv \prod_{0 < s \le t} (1 + dA(s)) = \prod_{0 < s \le t} (1 + \Delta A(s)) \exp(A^c(t))
$$

The expression in the middle is simply a notation, as motivated by the mathematical definition of the product integral. We will also use the notation

$$
\phi(A)(s,t) = \prod_{s
$$

for all $0 \leq s < t$

Functional Delta Method

Product integration Hadamard differentiability

Lemma 12.5

For fixed constants $0 < b, M < \infty$, the product integral $\text{map }\phi: BV_M[0,b] \subset D[0,b] \mapsto D[0,b]$ is Hadamard differentiable with derivative

$$
\phi'_A(\alpha)(t) = \int_{(0,t]} \phi(A)(0, u)\phi(A)(u, t] d\alpha(u)
$$

When $\alpha \in D[0, b]$ has unbounded variation, the above quantity is welldefined by integration by parts.

§12.2 Examples of Hadamard differentiable maps

Application

It can be shown that in the right-censored survival setting $S(t) = \phi(-\Lambda)(t)$, and that the Kaplan-Meier estimator $\hat{S}_n(t) = \phi\left(-\hat{\Lambda}_n\right)(t).$ Apply Lemma 12.5, we can derive the asymptotic limit distribution of $\sqrt{n}\left(\hat{S}_n - S\right)$ Recall from slide 20, the asymtotic limit distribution of $\sqrt{n}\left(\hat{\Lambda}_n - \Lambda\right)$ in $\stackrel{\sim}{D}[0,\tau]$ is

$$
\sqrt{n}\left(\hat{\Lambda}_n-\Lambda\right)\leadsto\int_{[0,(\cdot)]}d\mathbb{M}/Y_0=\mathbb{Z}
$$

If the N-A estimator $\hat{\Lambda}_n$ is of uniformly bounded total variation (with probability tending to 1), then delta-method gives

$$
\sqrt{n}\left(\hat{S}_n - S\right) \rightsquigarrow \phi'_{-\Lambda}(-\mathbb{Z}) = -\int_{(0, (\cdot)]} \phi(-\Lambda)(0, u)\phi(-\Lambda)(u, t] d\mathbb{Z}
$$

$$
= -S(t)\int_{(0, (\cdot)]} \frac{d\mathbb{Z}}{(1 - \Delta\Lambda)}
$$

Functional Delta Method

Inversion

For a non-decreasing function $B \in D(-\infty, \infty)$, define the left-continuous inverse

$$
r \mapsto B^{-1}(r) \equiv \inf\{x : B(x) \ge r\}
$$

We will hereafter use the notation $\tilde{D}[u, v]$ to denote all left-continuous functions with right-hand limits (caglad) on $[u, v]$ and $D_1[u, v]$ to denote the restriction of all non-decreasing functions in $D(-\infty, \infty)$ to the interval $[u, v]$

Lemma 12.7

Let $-\infty$ *< p* ≤ *q* < ∞ , and let the non-decreasing function *A* ∈ *D*($-\infty$, ∞) be continuously differentiable on the interval

$$
[u, v] \equiv [A^{-1}(p) - \epsilon, A^{-1}(q) + \epsilon]
$$

for some $\epsilon > 0$, with derivative A' being strictly positive and bounded over $[u,v]$ Then the inverse map $B \mapsto B^{-1}$ as a map

$$
D_1[u, v] \subset D[u, v] \mapsto \tilde{D}[p, q]
$$

is Hadamard differentiable at A tangentially to $C[u, v]$, with derivative

 $\alpha \mapsto -(\alpha/A') \circ A^{-1}$

There are also results similar to the one above but utilizes the knowledge about the support of the distribution function *F* THE UNIVERSITY

Application

An important application of these results is estimation and inference for the quantile function $p \mapsto F^{-1}(p)$ based on the empirical distribution function for i.i.d data.

These results are applicable to other estimators of the distribution function *F* besides the usual empirical distribution, provided the standardized estimators converge to a tight limiting process over the necessary intervals. We now apply Lemma 12.7 to the construction of quantile processes based on the Kaplan-Meier estimator described above.

§12.2 Examples of Hadamard differentiable maps

Application to Kaplan-Meier quantile process

The Kaplan-Meier quantile process is defined as

$$
\left\{\hat{\xi}(p) \equiv \hat{F}_n^{-1}(p), 0 < p \le q\right\}
$$

§12.1 Proofs for main theorems related to functional delta method §12.2 Examples of Hadamard differentiable maps

Assume that *F* is continously differentiable on $[0, \tau]$ with *f* bounded below by zero and finite.

Combine with the results that

$$
\sqrt{n}\left(\hat{S}_n - S\right) \rightsquigarrow -S(t) \int_{(0, (\cdot)]} \frac{d\mathbb{Z}}{(1 - \Delta\Lambda)}
$$

$$
\sqrt{n}(\hat{\xi} - \xi)(\cdot) \rightsquigarrow -\frac{S(\xi(\cdot))}{f(\xi(\cdot))} \int_{(0, \xi(\cdot)]} \frac{d\mathbb{Z}}{(1 - \Delta\Lambda)}
$$

Functional Delta Method

