Functional Delta Method

Wenyi Xie

University of North Carolina at Chapel Hill

September 2, 2021

① §12.1 Proofs for main theorems related to functional delta method

2 §12.2 Examples of Hadamard differentiable maps

From previous talk

Hadamard-differentiable

A map $\phi : \mathbb{D}_{\phi} \mapsto \mathbb{E}$ is Hadamard-differentiable at $\theta \in \mathbb{D}$, tangentially to a set $\mathbb{D}_0 \subset \mathbb{D}$, if there exists a continuous linear map $\phi'_{\theta} : \mathbb{D} \mapsto \mathbb{E}$ such that

$$\frac{\phi\left(\theta+t_nh_n\right)-\phi(\theta)}{t_n}\to\phi_{\theta}'(h)$$

as $n \to \infty$, for all converging sequences $t_n \to 0$ and $h_n \to h \in \mathbb{D}_0$, with $h_n \in \mathbb{D}$ and $\theta + t_n h_n \in \mathbb{D}_{\phi}$ for all $n \ge 1$ sufficiently large.

THEOREM 2.8 (functional delta method theorem)

For normed spaces \mathbb{D} and \mathbb{E} , let $\phi : \mathbb{D}_{\phi} \subset \mathbb{D} \mapsto \mathbb{E}$ be Hadamard-differentiable at θ tangentially to $\mathbb{D}_0 \subset \mathbb{D}$. Assume that $r_n(X_n - \theta) \rightsquigarrow X$ for some sequence of constants $r_n \to \infty$, where X_n takes its values in \mathbb{D}_{ϕ} , and X is a tight process taking its values in \mathbb{D}_0 . Then $r_n(\phi(X_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(X)$

Proofs

Consider the map $h \mapsto r_n(\phi(\theta + r_n^{-1}h) - \phi(\theta)) \equiv g_n(h)$, defined on the domain $\mathbb{D}_n \equiv \{h : \theta + r_n^{-1}h \in \mathbb{D}_{\phi}\}$ and satisfies $g_n(h_n) \to \phi'_{\theta}(h)$ for every $h_n \to h \in \mathbb{D}_0$ with $h_n \in \mathbb{D}_n$.

By extended continuous mapping theorem, we have

$$g_n(r_n(X_n - \theta)) = r_n(\phi(X_n) - \phi(\theta)) \to \phi'_{\theta}(X)$$

It suffices that ϕ is differentiable at just one single point θ , which is convenient in empirical process where random elements are abstract and continuous differentiability may fail.

 $\mathbb{X}_n(X_n)$ is a sequence of random elements in a normed space \mathbb{D} based on the data sequence $\{X_n, n \ge 1\}$, while $\hat{\mathbb{X}}_n(X_n, W_n)$ is a bootstrapped version of \mathbb{X}_n based on both the data sequence and a sequence of weights $W = \{W_n, n \ge 1\}$.

THEOREM 12.1 Delta method bootstrap

The sequence of "conditional random laws" (given $X_1, X_2, ...$) of $\sqrt{n} \left(\phi \left(\hat{\mathbb{X}}_n \right) - \phi \left(\mathbb{X}_n \right) \right)$ is asymptotically consistent in probability for estimating the laws of the random elements $\sqrt{n} \left(\phi \left(\mathbb{X}_n \right) - \phi(\mu) \right)$

Proofs for bootstrap delta method

We can show that $\hat{\mathbb{U}}_n \equiv r_n \left(\hat{\mathbb{X}}_n - \mathbb{X}_n\right) \rightsquigarrow c^{-1}\mathbb{X}$ and $r_n \left(\hat{\mathbb{X}}_n - \mu\right) \rightsquigarrow Z$ unconditionally, where Z is a tight random element. Using the same strategy as proving the conditional multiplier central limit theorem. Fix some $h \in BL_1(\mathbb{D})$, define $\mathbb{U}_n \equiv r_n (\mathbb{X}_n - \mu)$ and let $\tilde{\mathbb{X}}_1$ and $\tilde{\mathbb{X}}_2$ be two independent copies of \mathbb{X} , we have

$$\begin{split} \mid \mathbf{E}^{*}h\left(\hat{\mathbb{U}}_{n}+\mathbb{U}_{n}\right)-\mathbf{E}h\left(c^{-1}\tilde{\mathbb{X}}_{1}+\tilde{\mathbb{X}}_{2}\right)\mid\\ &\leq \left|\mathbf{E}_{X_{n}}\mathbf{E}_{W_{n}}h\left(\hat{\mathbb{U}}_{n}+\mathbb{U}_{n}\right)^{*}-\mathbf{E}^{*}\mathbf{E}_{W_{n}}h\left(\hat{\mathbb{U}}_{n}+\mathbb{U}_{n}\right)\right|\rightarrow0\\ &+\mathbf{E}^{*}\left|\mathbf{E}_{W_{n}}h\left(\hat{\mathbb{U}}_{n}+\mathbb{U}_{n}\right)-\mathbf{E}_{\tilde{\mathbf{X}}_{1}}h\left(c^{-1}\tilde{\mathbb{X}}_{1}+\mathbb{U}_{n}\right)\right|\rightarrow0\\ &+\left|\mathbf{E}^{*}\mathbf{E}_{\tilde{\mathbf{X}}_{1}}h\left(c^{-1}\tilde{\mathbb{X}}_{1}+\mathbb{U}_{n}\right)-\mathbf{E}_{\tilde{\mathbf{X}}_{2}}\mathbf{E}_{\tilde{\mathbf{X}}_{1}}h\left(c^{-1}\tilde{\mathbb{X}}_{1}+\tilde{\mathbb{X}}_{2}\right)\right|\rightarrow0 \end{split}$$

(Asymptotic measureability); $(\hat{\mathbb{U}}_n \equiv r_n \left(\hat{\mathbb{X}}_n - \mathbb{X}_n \right) \rightsquigarrow c^{-1} \mathbb{X}, h \in BL_1(\mathbb{D}));$ $(\mathbb{U}_n \rightsquigarrow \mathbb{X}, h \in BL_1(\mathbb{D}))$

(Proof Con't)

h is arbituary, and by portmanteau theorem we have that unconditionally,

$$r_n \left(\begin{array}{c} \hat{\mathbb{X}}_n - \mu \\ \mathbb{X}_n - \mu \end{array} \right) \rightsquigarrow \left(\begin{array}{c} c^{-1} \tilde{\mathbb{X}}_1 + \tilde{\mathbb{X}}_2 \\ \tilde{\mathbb{X}}_2 \end{array} \right)$$

Then we apply the functional delta method

$$r_n \begin{pmatrix} \phi\left(\hat{\mathbb{X}}_n\right) - \phi(\mu) \\ \phi\left(\mathbb{X}_n\right) - \phi(\mu) \\ \hat{\mathbb{X}}_n - \mu \\ \mathbb{X}_n - \mu \end{pmatrix} \rightsquigarrow \begin{pmatrix} \phi'_\mu\left(c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{X}_2\right) \\ \phi'_\mu\left(\mathbb{X}_2\right) \\ c^{-1}\tilde{\mathbb{X}}_1 + \mathbb{X}_2 \\ \mathbb{X}_2 \end{pmatrix}$$

Which implies

$$r_n c \left(\begin{array}{c} \phi\left(\hat{\mathbb{X}}_n\right) - \phi\left(\mathbb{X}_n\right) \\ \hat{\mathbb{X}}_n - \mathbb{X}_n \end{array}\right) \rightsquigarrow \left(\begin{array}{c} \phi'_{\mu}(\mathbb{X}) \\ \mathbb{X} \end{array}\right)$$

since ϕ'_{μ} is linear on \mathbb{D}_0

(Proof Con't)

With the map $(x,y)\mapsto x-\phi_{\mu}'(y),$ we have unconditionally

$$r_n c\left(\phi\left(\hat{\mathbb{X}}_n\right) - \phi\left(\mathbb{X}_n\right)\right) - \phi'_{\mu}\left(r_n c\left(\hat{\mathbb{X}}_n - \mathbb{X}_n\right)\right) \xrightarrow{\mathbf{P}} 0$$

By bootstrap continuous mapping theorem,

$$\phi'_{\mu}\left(r_n c\left(\hat{\mathbb{X}}_n - \mathbb{X}_n\right)\right) \stackrel{\mathrm{P}}{\underset{W}{\longrightarrow}} \phi'_{\mu}(\mathbb{X})$$

Thus completes the proof

§12.1 Proofs for main theorems related to functional delta method

2 §12.2 Examples of Hadamard differentiable maps

Composition

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a fixed map. Given an arbitrary set \mathcal{X} , consider the map $\phi: \ell^{\infty}(\mathcal{X}) \mapsto \ell^{\infty}(\mathcal{X})$ given by $\phi(A)(x) = g(A(x))$. One simple example is $\phi(f) = 1/f$, In §2.2.4, we established that ϕ is Hadamard-differentiable with derivative at θ equal to $h \mapsto -h/\theta^2$

Lemma 12.2 Hadamard-differentiable of composition mapping

Let $g: B \subset \mathbb{R} \mapsto \mathbb{R}$ be differentiable with derivative continuous on all closed subsets of B, and let $\mathbb{D}_{\phi} = \{A \in \ell^{\infty}(\mathcal{X}) : \{R(A)\}^{\delta} \subset B \text{ for some } \delta > 0\}$, where \mathcal{X} is a set, R(C) denotes the range of the function $C \in \ell^{\infty}(\mathcal{X})$, and D^{δ} is the δ -enlargement of the set D. Then $A \mapsto g \circ A$ is Hadamard-differentiable as a map from $\mathbb{D}_{\phi} \subset \ell^{\infty}(\mathcal{X})$ to $\ell^{\infty}(\mathcal{X})$, at every $A \in \mathbb{D}_{\phi}$.

The derivative is given by $\phi'_A(\alpha) = g'(A)\alpha$, where g' is the derivative of g.

Proof of Lemma 12.2.

Let t_n be any real sequence with $t_n \to 0$, let $\{h_n\} \in \ell^{\infty}(\mathcal{X})$ be any sequence converging to $h \in \ell^{\infty}(\mathcal{X})$ uniformly, and define $A_n = A + t_n h_n$. Then, by the conditions of the theorem, there exists a closed $B_1 \subset B$ such that $\{R(A) \cup R(A_n)\}^{\delta} \subset B_1$ for some $\delta > 0$ and all n large enough. Hence

$$\sup_{x \in \mathcal{X}} \left| \frac{g(A(x) + t_n h_n(x)) - g(A(x))}{t_n} - g'(A(x))h(x) \right| \to 0$$

as $n \to \infty$, since continuous functions on closed sets are bounded and thus g' is uniformly continuous on $B_1.\square$

Integration

$$\phi(A,B) = \int_{(a,b]} A(s) dB(s) \quad \text{ and } \quad \psi(A,B)(t) = \int_{(a,t]} A(s) dB(s)$$

are Hadamard differentiable. Where $A \in D[a, b]$ is a cadlag function on the interval $[a, b] \subset \overline{\mathbb{R}}$ and $B \in BV_M[a, b]$ is a cadlag function with total variation bounded by a fixed constant M

Lemma 12.3

Let $\mathbb{D}_M \equiv D[a, b] \times BV_M[a, b]$. For each fixed $M < \infty$, the maps $\phi : \mathbb{D}_M \mapsto \mathbb{R}$ and $\psi : \mathbb{D}_M \mapsto D[a, b]$ defined previously are Hadamard differentiable at each $(A, B) \in \mathbb{D}_M$ with $\int_{(a, b]} |dA| < \infty$.. The derivatives are given by

$$\begin{split} \phi_{A,B}'(\alpha,\beta) &= \int_{(a,b]} A d\beta + \int_{(a,b]} \alpha dB, \quad \text{ and} \\ \psi_{A,B}'(\alpha,\beta)(t) &= \int_{(a,t]} A d\beta + \int_{(a,t]} \alpha dB \end{split}$$

Note that if β is not of bounded variation then $\int A d\beta$ can be defined via integration by parts.

Example (Wilcoxon statistics)

Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from distributions F and G on the reals. If \mathbb{F}_m and \mathbb{G}_n are the respective empirical distribution functions. Then $T = \int_{\mathbb{R}} \mathbb{G}_n(x) d\mathbb{F}_m(x)$ is the Mann-Whitney form of the Wilcoxon statistics, and it's an estimator of $\phi(G, F) = \int G dF = P(Y \leq X)$ Note that F, G, \mathbb{F}_m and \mathbb{G}_n all have total variation ≤ 1 . Lemma 12.3 gives $\phi'_{G,F}(\alpha,\beta) = \int_{\mathbb{R}} G d\beta + \int_{\mathbb{R}} \alpha dF$ If we assume $m/(m+n) \to \lambda \in [0,1]$ as $m \wedge n \to \infty$,

$$\sqrt{\frac{mn}{m+n}} \left(\begin{array}{c} \mathbb{G}_n - G \\ \mathbb{F}_m - F \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \sqrt{\lambda} \mathbb{G}_G \\ \sqrt{1-\lambda} \mathbb{G}_F \end{array} \right)$$

where $\mathbb{G}_F, \mathbb{G}_G$ are independent tight, F- and G-Brownian bridge processes.

$$\sqrt{\frac{mn}{m+n}} (\int_{\mathbb{R}} \mathbb{G}_n(x) d\mathbb{F}_m(x) - \int G dF) \rightsquigarrow \sqrt{\lambda} \int_{\mathbb{R}} \mathbb{G}_G dF + \sqrt{1-\lambda} \int_{\mathbb{R}} G d\mathbb{G}_F$$

of CHAPEL HILI

Example (Nelson-Aalen)

 $X = T \wedge C$ is the minimum of a failure time T and censoring time C, and $\delta = 1\{T \leq C\}$. T and C are independent. $\Lambda(t) = \int_0^t dF(s)/S(s-)$ The Nelson-Aalen estimator for Λ based on samples is

$$\hat{\Lambda}_n(t) \equiv \int_{[0,t]} \frac{d\hat{N}_n(s)}{\hat{Y}_n(s)}$$

$$\hat{N}_n(t) \equiv n^{-1} \sum_{i=1}^n \delta_i \mathbbm{1} \{ X_i \le t \} \text{ and } \hat{Y}_n(t) \equiv n^{-1} \sum_{i=1}^n \mathbbm{1} \{ X_i \ge t \}$$

Example (Nelson-Aalen Con't)

 $\{\delta 1\{X\leq t\},t\geq 0\}$ and $\{1\{X\geq t\}:t\geq 0\}$ can be verified to be both Donsker class, therefore

$$\sqrt{n} \left(\begin{array}{c} \hat{N}_n - N_0 \\ \hat{Y}_n - Y_0 \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \mathbb{G}_1 \\ \mathbb{G}_2 \end{array} \right)$$

where $N_0(t) \equiv P(T \leq t, C \geq T)$, $Y_0(t) \equiv P(X \geq t)$. \mathbb{G}_1 and \mathbb{G}_2 are tight Gaussian processes.

The N-A estimator depends on the pairs (\hat{N}_n, \hat{Y}_n) through

$$(A, B) \mapsto \left(A, \frac{1}{B}\right) \mapsto \int_{[0,t]} \frac{1}{B} dA$$

In this case, the point (A, B) of interest is $A = N_0$ and $B = Y_0$.

Example (Nelson-Aalen Con't)

By Lemma 12.3 and chain rule of Hadamard differentiability, we can see such composition map is Hadamard differentiable on a domain of type $\{(A,B): \int_{[0,\tau]} |dA(t)| \leq M, \inf_{t \in [0,\tau]} |B(t)| \geq \epsilon\} \text{ for } M < 0 \text{ and } \epsilon > 0 \text{ at every point (A, B) such that } 1/B \text{ is of bounded variation.}$ The derivative of such composition map is given by

$$(\alpha,\beta)\mapsto \left(\alpha,\frac{-\beta}{Y_0^2}\right)\mapsto \int_{[0,t]}\frac{d\alpha}{Y_0} - \int_{[0,t]}\frac{\beta\,dN_0}{Y_0^2}$$

By functional delta method

$$\sqrt{n} \left(\hat{\Lambda}_n - \Lambda \right) \rightsquigarrow \int_{[0,(\cdot)]} \frac{d\mathbb{G}_1}{Y_0} - \int_{[0,(\cdot)]} \frac{\mathbb{G}_2 dN_0}{Y_0^2}$$

Example (Nelson-Aalen Con't)

$$\sqrt{n}\left(\hat{\Lambda}_n - \Lambda\right) \rightsquigarrow \int_{[0,(\cdot)]} \frac{d\mathbb{G}_1}{Y_0} - \int_{[0,(\cdot)]} \frac{\mathbb{G}_2 dN_0}{Y_0^2} \quad$$

The right side is equal to $\int_{[0,(\cdot)]} d\mathbb{M}/Y_0$, where $\mathbb{M}(t) \equiv \mathbb{G}_1(t) - \int_{[0,t]} \mathbb{G}_2 d\Lambda$ $\mathbb{M}(t)$ can be shown to be a Gaussian martingale with independent increments.

Proof for Lemma 12.3

Recall Lemma 12.3

$$\phi(A,B) = \int_{(a,b]} A(s) dB(s) \quad \text{ and } \quad \psi(A,B)(t) = \int_{(a,t]} A(s) dB(s)$$

are Hadamard differentiable at each $(A,B)\in\mathbb{D}_M\equiv D[a,b]\times BV_M[a,b]$ And the derivatives are given by

$$\phi_{A,B}'(\alpha,\beta) = \int_{(a,b]} A \, d\beta + \int_{(a,b]} \alpha \, dB, \quad \text{and}$$
$$\psi_{A,B}'(\alpha,\beta)(t) = \int_{(a,t]} A \, d\beta + \int_{(a,t]} \alpha \, dB$$

Proof of Lemma 12.3

For sequences $t_n \to 0, \alpha_n \to \alpha$, and $\beta_n \to \beta$, define $A_n \equiv A + t_n \alpha_n$ and $B_n \equiv B + t_n \beta_n$. Require that $(A_n, B_n) \in \mathbb{D}_M$, therefore the total variation of B_n is bounded by M

$$\frac{\int_{(a,t]} A_n dB_n - \int_{(a,t]} A dB}{t_n} - \psi'_{A,B} (\alpha_n, \beta_n)$$

$$= \frac{\int_{(a,t]} (A + t_n \alpha_n) dB_n - \int_{(a,t]} A dB}{t_n} - \left(\int_{(a,t]} A d\beta_n + \int_{(a,t]} \alpha_n dB \right)$$

$$= \int_{(a,t]} \alpha d (B_n - B) + \int_{(a,t]} (\alpha_n - \alpha) d (B_n - B)$$

Next show the right side goes to 0. First note that the second term goes to zero uniformly over $t \in (a, b]$ since both B_n and B have total variation bounded by M and $\alpha_n \to \alpha$

Proof of Lemma 12.3 Con't

In terms of the first term $\int_{(a,t]} \alpha d (B_n - B)$. For a fixed $\epsilon > 0$, since α is cadlag, there exists a partition $a = t_0 < t_1 < \cdots < t_m = b$ such that α varies less than ϵ over each interval $[t_{i-1}, t_i), 1 \leq i \leq m$, and $m < \infty$. Define $\tilde{\alpha} = \alpha(t_{i-1})$ over the interval $[t_{i-1}, t_i)$ and $\tilde{\alpha}(b) = \alpha(b)$

Proof of Lemma 12.3 Con't

$$\begin{aligned} \left\| \int_{(a,t]} \alpha d(B_n - B) \right\|_{\infty} \\ \leq \left\| \int_{(a,t]} (\alpha - \tilde{\alpha}) d(B_n - B) \right\|_{\infty} + \left\| \int_{(a,t]} \tilde{\alpha} d(B_n - B) \right\|_{\infty} \\ \leq \left\| \alpha - \tilde{\alpha} \right\|_{\infty} 2M + \sum_{i=1}^{m} |\alpha(t_{i-1})| \times |(B_n - B)(t_i) - (B_n - B)(t_{i-1})| \\ + |\alpha(b)| \times |(B_n - B)(b)| \\ \leq \epsilon 2M + (2m + 1) \|B_n - B\|_{\infty} \|\alpha\|_{\infty} \\ \rightarrow \epsilon 2M \end{aligned}$$

Thus we have proved

$$\frac{\int_{(a,t]} A_n dB_n - \int_{(a,t]} A dB}{t_n} \to \psi'_{A,B}(\alpha,\beta)$$

and the desired Hadamard differentiability of a/2 follows Wenyi Xie (UNC)

The product integral

For a function $A \in D(0, b]$, let $\Delta A(t) = A(t) - A(t-)$ and $A^c(t) \equiv A(t) - \sum_{0 \le s \le t} \Delta A(s)$ be the jump part and continuous part of A, respectively.

Product integral

The product integral is defined as

$$\phi(A)(t) \equiv \prod_{0 < s \le t} (1 + dA(s)) = \prod_{0 < s \le t} (1 + \Delta A(s)) \exp(A^{c}(t))$$

The expression in the middle is simply a notation, as motivated by the mathematical definition of the product integral.

We will also use the notation

1

$$\phi(A)(s,t] = \prod_{s < u \le t} (1 + dA(u)) \equiv \frac{\phi(A)(t)}{\phi(A)(s)}$$

for all $0 \leq s < t$

Product integration Hadamard differentiability

Lemma 12.5

For fixed constants $0 < b, M < \infty$, the product integral map $\phi : BV_M[0, b] \subset D[0, b] \mapsto D[0, b]$ is Hadamard differentiable with derivative

$$\phi_A'(\alpha)(t) = \int_{(0,t]} \phi(A)(0,u)\phi(A)(u,t]d\alpha(u)$$

When $\alpha \in D[0, b]$ has unbounded variation, the above quantity is welldefined by integration by parts.

Application

It can be shown that in the right-censored survival setting $S(t) = \phi(-\Lambda)(t)$, and that the Kaplan-Meier estimator $\hat{S}_n(t) = \phi\left(-\hat{\Lambda}_n\right)(t)$.

Apply Lemma 12.5, we can derive the asymptotic limit distribution of $\sqrt{n} \left(\hat{S}_n - S \right)$ Recall from slide 20, the asymtotic limit distribution of $\sqrt{n} \left(\hat{\Lambda}_n - \Lambda \right)$ in $D[0, \tau]$ is

$$\sqrt{n}\left(\hat{\Lambda}_n - \Lambda\right) \rightsquigarrow \int_{[0,(\cdot)]} d\mathbb{M}/Y_0 = \mathbb{Z}$$

If the N-A estimator $\hat{\Lambda}_n$ is of uniformly bounded total variation (with probability tending to 1), then delta-method gives

$$\sqrt{n}\left(\hat{S}_n - S\right) \rightsquigarrow \phi'_{-\Lambda}(-\mathbb{Z}) = -\int_{(0,(\cdot)]} \phi(-\Lambda)(0,u)\phi(-\Lambda)(u,t]d\mathbb{Z}$$
$$= -S(t)\int_{(0,(\cdot)]} \frac{d\mathbb{Z}}{(1-\Delta\Lambda)}$$

Inversion

For a non-decreasing function $B \in D(-\infty, \infty)$, define the left-continuous inverse

$$r \mapsto B^{-1}(r) \equiv \inf\{x \colon B(x) \ge r\}$$

We will hereafter use the notation $\tilde{D}[u, v]$ to denote all left-continuous functions with right-hand limits (caglad) on [u, v] and $D_1[u, v]$ to denote the restriction of all non-decreasing functions in $D(-\infty, \infty)$ to the interval [u, v]

Lemma 12.7

Let $-\infty , and let the non-decreasing function <math>A \in D(-\infty,\infty)$ be continuously differentiable on the interval

$$[u, v] \equiv \left[A^{-1}(p) - \epsilon, A^{-1}(q) + \epsilon\right]$$

for some $\epsilon>0$, with derivative A' being strictly positive and bounded over [u,v]. Then the inverse map $B\mapsto B^{-1}$ as a map

$$D_1[u, v] \subset D[u, v] \mapsto \tilde{D}[p, q]$$

is Hadamard differentiable at A tangentially to C[u, v], with derivative

$$\alpha \mapsto -\left(\alpha/A'\right) \circ A^{-1}$$

There are also results similar to the one above but utilizes the knowledge about the support of the distribution function F

Application

An important application of these results is estimation and inference for the quantile function $p \mapsto F^{-1}(p)$ based on the empirical distribution function for i.i.d data.

These results are applicable to other estimators of the distribution function F besides the usual empirical distribution, provided the standardized estimators converge to a tight limiting process over the necessary intervals.

We now apply Lemma 12.7 to the construction of quantile processes based on the Kaplan-Meier estimator described above.

Application to Kaplan-Meier quantile process

The Kaplan-Meier quantile process is defined as

$$\left\{ \hat{\xi}(p) \equiv \hat{F}_n^{-1}(p), 0$$

Assume that F is continously differentiable on $[0, \tau]$ with f bounded below by zero and finite.

Combine with the results that

$$\sqrt{n} \left(\hat{S}_n - S \right) \rightsquigarrow -S(t) \int_{(0,(\cdot)]} \frac{d\mathbb{Z}}{(1 - \Delta\Lambda)}$$
$$\sqrt{n} (\hat{\xi} - \xi)(\cdot) \rightsquigarrow -\frac{S(\xi(\cdot))}{f(\xi(\cdot))} \int_{(0,\xi(\cdot)]} \frac{d\mathbb{Z}}{(1 - \Delta\Lambda)}$$

