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From previous talk

Hadamard-differentiable
A map ϕ : Dϕ 7→ E is Hadamard-differentiable at θ ∈ D, tangentially to a set
D0 ⊂ D, if there exists a continuous linear map ϕ′θ : D 7→ E such that

ϕ (θ + tnhn)− ϕ(θ)

tn
→ ϕ′θ(h)

as n → ∞, for all converging sequences tn → 0 and hn → h ∈ D0, with hn ∈ D and
θ + tnhn ∈ Dϕ for all n ≥ 1 sufficiently large.
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THEOREM 2.8 (functional delta method theorem)
For normed spaces D and E, let ϕ : Dϕ ⊂ D 7→ E be Hadamard-differentiable at θ
tangentially to D0 ⊂ D. Assume that rn (Xn− θ) X for some sequence of
constants rn → ∞, where Xn takes its values in Dϕ, and X is a tight process
taking its values in D0. Then rn (ϕ (Xn)− ϕ(θ)) ϕ′θ(X)

Proofs
Consider the map h 7→ rn(ϕ(θ+ r−1

n h
)
− ϕ(θ)

)
≡ gn(h), defined on the domain

Dn ≡
{

h : θ + r−1
n h ∈ Dϕ

}
and satisfies gn (hn) → ϕ′θ(h) for every hn → h ∈ D0

with hn ∈ Dn.
By extended continuous mapping theorem, we have

gn(rn(Xn − θ)) = rn(ϕ(Xn)− ϕ(θ)) → ϕ′θ(X)
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It suffices that ϕ is differentiable at just one single point θ, which is convenient in
empirical process where random elements are abstract and continuous
differentiability may fail.
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Xn (Xn) is a sequence of random elements in a normed space D based on the data
sequence {Xn,n ≥ 1}, while X̂n (Xn,Wn) is a bootstrapped version of Xn based on
both the data sequence and a sequence of weights W = {Wn,n ≥ 1}.

THEOREM 12.1 Delta method bootstrap
For normed spaces D and E, let ϕ : Dϕ ⊂ D 7→ E be Hadamard-differentiable at µ
tangentially to D0 ⊂ D, with derivative ϕ′µ. Let Xn and X̂n have values in Dϕ, with
rn (Xn − µ) X, where X is tight and takes its values in D0 for some sequence of
constants 0 < rn → ∞, the maps Wn 7→ h

(
X̂n
)

are measurable for every

h ∈ Cb(D) outer almost surely, and where rnc
(
X̂n − Xn

) P 
W

X, for a constant

0 < c <∞. Then rnc
(
ϕ
(
X̂n
)
− ϕ (Xn)

) P 
W
ϕ′µ(X)
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The sequence of ”conditional random laws” (given X1,X2, . . .) of √n
(
ϕ
(
X̂n
)
−

ϕ (Xn)) is asymptotically consistent in probability for estimating the laws of the
random elements √

n (ϕ (Xn)− ϕ(µ))
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Proofs for bootstrap delta method
We can show that Ûn ≡ rn

(
X̂n − Xn

)
 c−1X and rn

(
X̂n − µ

)
 Z

unconditionally, where Z is a tight random element. Using the same strategy as
proving the conditional multiplier central limit theorem.
Fix some h ∈ BL1(D), define Un ≡ rn (Xn − µ) and let X̃1 and X̃2 be two

independent copies of X, we have

| E∗h
(
Ûn + Un

)
− Eh

(
c−1X̃1 + X̃2

)
|

≤
∣∣∣EXnEWnh

(
Ûn + Un

)∗
− E∗EWnh

(
Ûn + Un

)∣∣∣→ 0

+ E∗
∣∣∣EWnh

(
Ûn + Un

)
− EX̃1

h
(

c−1X̃1 + Un
)∣∣∣→ 0

+
∣∣∣E∗EX̃1

h
(

c−1X̃1 + Un
)
− EX̃2

EX̃1
h
(

c−1X̃1 + X̃2
)∣∣∣→ 0

(Asymptotic measureability); (Ûn ≡ rn
(
X̂n − Xn

)
 c−1X, h ∈ BL1(D));

(Un  X, h ∈ BL1(D))
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(Proof Con’t)
h is arbituary, and by portmanteau theorem we have that unconditionally,

rn

(
X̂n − µ
Xn − µ

)
 
(

c−1X̃1 + X̃2
X̃2

)
Then we apply the functional delta method

rn


ϕ
(
X̂n
)
− ϕ(µ)

ϕ (Xn)− ϕ(µ)

X̂n − µ
Xn − µ

 


ϕ′µ

(
c−1X̃1 + X2

)
ϕ′µ (X2)

c−1X̃1 + X2
X2


Which implies

rnc
(
ϕ
(
X̂n
)
− ϕ (Xn)

X̂n − Xn

)
 
(
ϕ′µ(X)
X

)
since ϕ′µ is linear on D0
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(Proof Con’t)
With the map (x, y) 7→ x − ϕ′µ(y), we have unconditionally

rnc
(
ϕ
(
X̂n
)
− ϕ (Xn)

)
− ϕ′µ

(
rnc
(
X̂n − Xn

))
P→ 0

By bootstrap continuous mapping theorem,

ϕ′µ

(
rnc
(
X̂n − Xn

))
P 
W
ϕ′µ(X)

Thus completes the proof
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Composition

Let g : R 7→ R be a fixed map. Given an arbitrary set X , consider the map
ϕ : ℓ∞(X ) 7→ ℓ∞(X ) given by ϕ(A)(x) = g(A(x)).
One simple example is ϕ(f) = 1/f, In §2.2.4, we established that ϕ is
Hadamard-differentiable with derivative at θ equal to h 7→ −h/θ2

Lemma 12.2 Hadamard-differentiable of composition mapping
Let g : B ⊂ R 7→ R be differentiable with derivative continuous on all closed
subsets of B, and let Dϕ = {A ∈ ℓ∞(X ) : {R(A)}δ ⊂ B for some δ > 0}, where X
is a set, R(C) denotes the range of the function C ∈ ℓ∞(X ), and Dδ is the
δ-enlargement of the set D.
Then A 7→ g ◦A is Hadamard-differentiable as a map from Dϕ ⊂ ℓ∞(X ) to ℓ∞(X ),
at every A ∈ Dϕ.
The derivative is given by ϕ′A(α) = g′(A)α, where g′ is the derivative of g.
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Proof of Lemma 12.2.
Let tn be any real sequence with tn → 0, let {hn} ∈ ℓ∞(X ) be any sequence
converging to h ∈ ℓ∞(X ) uniformly, and define An = A + tnhn. Then, by the
conditions of the theorem, there exists a closed B1 ⊂ B such that
{R(A) ∪ R (An)}δ ⊂ B1 for some δ > 0 and all n large enough. Hence

sup
x∈X

∣∣∣∣g (A(x) + tnhn(x))− g(A(x))
tn

− g′(A(x))h(x)
∣∣∣∣→ 0

as n → ∞, since continuous functions on closed sets are bounded and thus g′ is
uniformly continuous on B1.�
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Integration

ϕ(A,B) =

∫
(a,b]

A(s)dB(s) and ψ(A,B)(t) =
∫
(a,t]

A(s)dB(s)

are Hadamard differentiable. Where A ∈ D[a, b] is a cadlag function on the interval
[a, b] ⊂ R and B ∈ BVM[a, b] is a cadlag function with total variation bounded by
a fixed constant M
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Lemma 12.3
Let DM ≡ D[a, b]× BVM[a, b]. For each fixed M <∞, the maps ϕ : DM 7→ R and
ψ : DM 7→ D[a, b] defined previously are Hadamard differentiable at each
(A,B) ∈ DM with

∫
(a,b] |dA| <∞..

The derivatives are given by

ϕ′A,B(α, β) =

∫
(a,b]

Adβ +

∫
(a,b]

αdB, and

ψ′
A,B(α, β)(t) =

∫
(a,t]

Adβ +

∫
(a,t]

αdB

Note that if β is not of bounded variation then
∫

Adβ can be defined via
integration by parts.
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Example (Wilcoxon statistics)
Let X1, . . . ,Xm and Y1, . . . ,Yn be independent samples from distributions F and
G on the reals. If Fm and Gn are the respective empirical distribution functions.
Then T =

∫
RGn(x)dFm(x) is the Mann-Whitney form of the Wilcoxon statistics,

and it’s an estimator of ϕ(G,F) =
∫

GdF = P(Y ≤ X)
Note that F,G,Fm and Gn all have total variation ≤ 1. Lemma 12.3 gives
ϕ′G,F(α, β) =

∫
R Gdβ +

∫
R αdF

If we assume m/(m + n) → λ ∈ [0, 1] as m ∧ n → ∞,√
mn

m + n

(
Gn − G
Fm − F

)
 
( √

λGG√
1 − λGF

)
where GF,GG are independent tight, F- and G-Brownian bridge processes.

√
mn

m + n(
∫
R
Gn(x)dFm(x)−

∫
GdF) 

√
λ

∫
R
GGdF +

√
1 − λ

∫
R

GdGF
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Example (Nelson-Aalen)
X = T ∧ C is the minimum of a failure time T and censoring time C, and
δ = 1{T ≤ C}. T and C are independent. Λ(t) =

∫ t
0 dF(s)/S(s−)

The Nelson-Aalen estimator for Λ based on samples is

Λ̂n(t) ≡
∫
[0,t]

dN̂n(s)
Ŷn(s)

N̂n(t) ≡ n−1
n∑

i=1
δi1 {Xi ≤ t} and Ŷn(t) ≡ n−1

n∑
i=1

1 {Xi ≥ t}
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Example (Nelson-Aalen Con’t)
{δ1{X ≤ t}, t ≥ 0} and {1{X ≥ t} : t ≥ 0} can be verified to be both Donsker
class, therefore

√
n
(

N̂n − N0
Ŷn − Y0

)
 
(

G1
G2

)
where N0(t) ≡ P(T ≤ t,C ≥ T),Y0(t) ≡ P(X ≥ t). G1 and G2 are tight Gaussian
processes.
The N-A estimator depends on the pairs

(
N̂n, Ŷn

)
through

(A,B) 7→
(

A, 1
B

)
7→
∫
[0,t]

1
BdA

In this case, the point (A, B) of interest is A = N0 and B = Y0.
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Example (Nelson-Aalen Con’t)
By Lemma 12.3 and chain rule of Hadamard differentiability, we can see such
composition map is Hadamard differentiable on a domain of type
{(A,B) :

∫
[0,τ ] |dA(t)| ≤ M, inf t∈[0,τ ] |B(t)| ≥ ϵ} for M < 0 and ϵ > 0 at every

point (A, B) such that 1/B is of bounded variation.
The derivative of such composition map is given by

(α, β) 7→
(
α,

−β
Y2

0

)
7→
∫
[0,t]

dα
Y0

−
∫
[0,t]

βdN0
Y2

0

By functional delta method

√
n
(
Λ̂n − Λ

)
 
∫
[0,(·)]

dG1
Y0

−
∫
[0,(·)]

G2dN0
Y2

0
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Example (Nelson-Aalen Con’t)
√

n
(
Λ̂n − Λ

)
 
∫
[0,(·)]

dG1
Y0

−
∫
[0,(·)]

G2dN0
Y2

0

The right side is equal to
∫
[0,(·)] dM/Y0, where M(t) ≡ G1(t)−

∫
[0,t]G2dΛ

M(t) can be shown to be a Gaussian martingale with independent increments.
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Proof for Lemma 12.3

Recall Lemma 12.3

ϕ(A,B) =

∫
(a,b]

A(s)dB(s) and ψ(A,B)(t) =
∫
(a,t]

A(s)dB(s)

are Hadamard differentiable at each (A,B) ∈ DM ≡ D[a, b]× BVM[a, b]
And the derivatives are given by

ϕ′A,B(α, β) =

∫
(a,b]

Adβ +

∫
(a,b]

αdB, and

ψ′
A,B(α, β)(t) =

∫
(a,t]

Adβ +

∫
(a,t]

αdB
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Proof of Lemma 12.3
For sequences tn → 0, αn → α, and βn → β, define
An ≡ A + tnαn and Bn ≡ B + tnβn. Require that (An,Bn) ∈ DM, therefore the
total variation of Bn is boudned by M∫

(a,t] AndBn −
∫
(a,t] AdB

tn
− ψ′

A,B (αn, βn)

=

∫
(a,t](A + tnαn)dBn −

∫
(a,t] AdB

tn
−

(∫
(a,t]

Adβn +

∫
(a,t]

αndB
)

=

∫
(a,t]

αd (Bn − B) +

∫
(a,t]

(αn − α) d (Bn − B)

Next show the right side goes to 0. First note that the second term goes to zero
uniformly over t ∈ (a, b] since both Bn and B have total variation boudned by M
and αn → α
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Proof of Lemma 12.3 Con’t
In terms of the first term

∫
(a,t] αd (Bn − B).

For a fixed ϵ > 0, since α is cadlag, there exists a partition
a = t0 < t1 < · · · < tm = b such that α varies less than ϵ over each interval
[ti−1, ti) , 1 ≤ i ≤ m, and m <∞.
Define α̃ = α(ti−1) over the interval [ti−1, ti) and α̃(b) = α(b)
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Proof of Lemma 12.3 Con’t
∥∥∥∥∥
∫
(a,t]

αd (Bn − B)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
∫
(a,t]

(α− α̃)d (Bn − B)

∥∥∥∥∥
∞

+

∥∥∥∥∥
∫
(a,t]

α̃d (Bn − B)

∥∥∥∥∥
∞

≤ ‖α− α̃‖∞2M +

m∑
i=1

|α (ti−1)| × |(Bn − B) (ti)− (Bn − B) (ti−1)|

+ |α(b)| × |(Bn − B) (b)|
≤ ϵ2M + (2m + 1) ‖Bn − B‖∞ ‖α‖∞

→ϵ2M
Thus we have proved ∫

(a,t] AndBn −
∫
(a,t] AdB

tn
→ ψ′

A,B (α, β)

and the desired Hadamard differentiability of ψ follows.Wenyi Xie (UNC) Functional Delta Method September 2, 2021 24 / 31
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The product integral
For a function A ∈ D(0, b], let ∆A(t) = A(t)− A(t−) and
Ac(t) ≡ A(t)−

∑
0<s≤t ∆A(s) be the jump part and continuous part of A,

respectively.

Product integral
The product integral is defined as

ϕ(A)(t) ≡
∏

0<s≤t
(1 + dA(s)) =

∏
0<s≤t

(1 +∆A(s)) exp (Ac(t))

The expression in the middle is simply a notation, as motivated by the
mathematical definition of the product integral.
We will also use the notation

ϕ(A)(s, t] =
∏

s<u≤t
(1 + dA(u)) ≡ ϕ(A)(t)

ϕ(A)(s)

for all 0 ≤ s < t
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Product integration Hadamard differentiability

Lemma 12.5
For fixed constants 0 < b,M <∞, the product integral
mapϕ : BVM[0, b] ⊂ D[0, b] 7→ D[0, b] is Hadamard differentiable with derivative

ϕ′A(α)(t) =
∫
(0,t]

ϕ(A)(0, u)ϕ(A)(u, t]dα(u)

When α ∈ D[0, b] has unbounded variation, the above quantity is welldefined by
integration by parts.
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Application
It can be shown that in the right-censored survival setting S(t) = ϕ(−Λ)(t), and
that the Kaplan-Meier estimator Ŝn(t) = ϕ

(
−Λ̂n

)
(t).

Apply Lemma 12.5, we can derive the asymptotic limit distribution of √n
(

Ŝn − S
)

Recall from slide 20, the asymtotic limit distribution of √n
(
Λ̂n − Λ

)
in D[0, τ ] is

√
n
(
Λ̂n − Λ

)
 
∫
[0,(·)]

dM/Y0 = Z

If the N-A estimator Λ̂n is of uniformly bounded total variation (with probability
tending to 1), then delta-method gives

√
n
(

Ŝn − S
)
 ϕ′−Λ(−Z) = −

∫
(0,(·)]

ϕ(−Λ)(0, u)ϕ(−Λ)(u, t]dZ

= −S(t)
∫
(0,(·)]

dZ
(1 −∆Λ)
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Inversion

For a non-decreasing function B ∈ D(−∞,∞), define the left-continuous inverse

r 7→ B−1(r) ≡ inf{x : B(x) ≥ r}

We will hereafter use the notation D̃[u, v] to denote all left-continuous functions
with right-hand limits (caglad) on [u, v] and D1[u, v] to denote the restriction of all
non-decreasing functions in D(−∞,∞) to the interval [u, v]
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Lemma 12.7
Let −∞ < p ≤ q <∞, and let the non-decreasing function A ∈ D(−∞,∞) be
continuously differentiable on the interval

[u, v] ≡
[
A−1(p)− ϵ,A−1(q) + ϵ

]
for some ϵ > 0, with derivative A′ being strictly positive and bounded over [u, v]
Then the inverse map B 7→ B−1 as a map

D1[u, v] ⊂ D[u, v] 7→ D̃[p, q]

is Hadamard differentiable at A tangentially to C[u, v], with derivative

α 7→ −
(
α/A′) ◦ A−1

There are also results similar to the one above but utilizes the knowledge about the
support of the distribution function F
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Application

An important application of these results is estimation and inference for the
quantile function p 7→ F−1(p) based on the empirical distribution function for i.i.d
data.
These results are applicable to other estimators of the distribution function F
besides the usual empirical distribution, provided the standardized estimators
converge to a tight limiting process over the necessary intervals.
We now apply Lemma 12.7 to the construction of quantile processes based on the
Kaplan-Meier estimator described above.
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Application to Kaplan-Meier quantile process

The Kaplan-Meier quantile process is defined as{
ξ̂(p) ≡ F̂−1

n (p), 0 < p ≤ q
}

Assume that F is continously differentiable on [0, τ ] with f bounded below by zero
and finite.
Combine with the results that

√
n
(

Ŝn − S
)
 −S(t)

∫
(0,(·)]

dZ
(1 −∆Λ)

√
n(ξ̂ − ξ)(·) −S(ξ(·))

f(ξ(·))

∫
(0,ξ(·)]

dZ
(1 −∆Λ)
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