Z-estimators

Jianqiao Wang

September 9, 2021

Jianqiao Wang

Z-estimators

September 9, 2021 1 / 32

Image: A matrix

Image: A matrix

э

A Z-estimator $\hat{\theta}_n$ is the approximate zero of a data-dependent function. More precisely, let the parameter space be Θ and $\Psi_n : \Theta \to \mathbb{L}$ be a data-dependent function between two norm spaces, with norms $\|\cdot\|$ and $\|\cdot\|_{\mathbb{L}}$. A quantity $\hat{\theta}_n \in \Theta$ is a Z-estimator if

 $\|\Psi_n(\hat{\theta}_n)\|_{\mathbb{L}} \stackrel{P}{\to} 0$

The main consistency result is stated in Chapter 2 and we will now extend it to the bootstrapped Z-estimator.

The map $\Psi: \Theta \to \mathbb{L}$ is identifiable at $\theta_0 \in \Theta$ if

$$\|\Psi(\theta_n)\|_{\mathbb{L}} \to 0 \text{ implies } \|\theta_n - \theta_0\| \to 0 \text{ for any } \{\theta_n\} \in \Theta$$

We will use the bootstrap-weighted empirical process \mathbb{P}_n° to denote either the nonparametric bootstrapped empirical process or the multiplier bootstrapped empirical process defined by $f \to \mathbb{P}_n^\circ f = n^{-1} \sum_{i=1}^n (\xi_i/\bar{\xi}) f(X_i)$, where ξ_1, \ldots, ξ_n are i.i.d. positive

weights with $0 < \mu = E\xi_1$ and $\overline{\xi} = n^{-1} \sum_{i=1}^n \xi_i$.

Theorem (Master Z-estimator theorem for consistency)

Let $\theta \mapsto \Psi(\theta) = P\psi_{\theta}, \theta \mapsto \Psi_n(\theta) = \mathbb{P}_n\psi_{\theta}$ and $\theta \mapsto \Psi_n^{\circ}(\theta) = \mathbb{P}_n^{\circ}\psi_{\theta}$ where Ψ is identifiable and the class $\{\psi_{\theta} : \theta \in \Theta\}$ is P-Glivenko-Cantelli. Then, provided $\|\Psi_n(\hat{\theta}_n)\|_{\mathbb{L}} = o_P(1)$ and

$$P(\|\Psi_n^{\circ}(\hat{ heta}_n^{\circ})\|_{\mathbb{L}} > \eta|\mathcal{X}_n) = o_P(1) ext{ for every } \eta > 0$$
 (1)

we have both $\|\hat{\theta}_n - \theta_0\| = o_P(1)$ and $P(\|\hat{\theta}_n^\circ - \theta_0\| > \eta |\mathcal{X}_n) = o_P(1)$ for every $\eta > 0$.

Proof

 $\|\hat{\theta}_n - \theta_0\| = o_P(1)$ is a conclusion from theorem 2.10. For conditional bootstrap result, (1) implies that for some sequence $\eta_n \downarrow 0$, $P(\|\Psi(\hat{\theta}_n^\circ)\|_{\mathbb{L}} > \eta_n | \mathcal{X}_n) = o_P(1)$, since

$$P(\sup_{\theta\in\Theta} \|\Psi_n^{\circ}(\theta) - \Psi(\theta)\| > \eta|\mathcal{X}_n) = o_P(1)$$

for all $\eta>$ 0 by theorem 10.13 and 10.15. Thus, for any $\epsilon>$ 0,

$$\begin{split} P(\|\hat{\theta}_n^{\circ} - \theta_0\| > \epsilon |\mathcal{X}_n) \leq & P(\|\hat{\theta}_n^{\circ} - \theta_0\| > \epsilon, \|\Psi(\hat{\theta}_n^{\circ})\|_{\mathbb{L}} \leq \eta_n |\mathcal{X}_n) \\ &+ P(\|\Psi(\hat{\theta}_n^{\circ})\|_{\mathbb{L}} > \eta_n |\mathcal{X}_n) \\ &\stackrel{P}{\to} 0. \end{split}$$

6/32

Identifiability condition of Ψ implies that for all $\delta > 0$ there exists an $\eta > 0$ such that $\|\Psi(\theta)\|_{\mathbb{L}} < \eta$ implies $\|\theta - \theta_0\| < \delta$.

Theorem (Theorem 2.11 in Chapter 2)

Assume that $\Psi(\theta_0) = 0$ for some θ_0 in the interior of Θ , $\sqrt{n}\Psi_n(\hat{\theta}_n) \xrightarrow{P} 0$, and $\|\hat{\theta}_n - \theta_0\| \xrightarrow{P} 0$ for the random sequence $\{\hat{\theta}_n\} \in \Theta$. Assume also that $\sqrt{n}(\Psi_n - \Psi)(\theta_0) \rightsquigarrow Z$, for some tight random Z, and that

$$\frac{\|\sqrt{n}(\Psi_n(\hat{\theta}_n) - \Psi(\hat{\theta}_n)) - \sqrt{n}(\Psi_n(\theta_0) - \Psi(\theta_0))\|_{\mathbb{L}}}{1 + \sqrt{n}\|\hat{\theta}_n - \theta_0\|} \xrightarrow{P} 0$$
(2)

If $\theta \mapsto \Psi(\theta)$ is Frechet-differentiable at θ_0 with continuously-invertible derivative $\dot{\Psi}_{\theta_0}$, then

$$\|\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + \sqrt{n}(\Psi_n - \Psi)(\theta_0)\|_{\mathbb{L}} \xrightarrow{P} 0$$
(3)

and thus $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}(Z).$

A map $\phi : \Theta \subset \mathbb{D} \mapsto \mathbb{L}$ is *Frechet-differentiable* at $\theta \in \Theta$ if there exists a continuous linear map $\phi'_{\theta} : \mathbb{D} \mapsto \mathbb{L}$ with

$$\frac{\|\phi(\theta+h_n)-\phi(\theta)-\phi'_{\theta}(h_n)\|_{\mathbb{L}}}{1+\sqrt{n}\|\hat{\theta}_n-\theta_0\|} \to 0$$

for all sequences $\{h_n\} \subset \mathbb{D}$ with $||h_n|| \to 0$ and $\theta + h_n \in \Theta$ for all $n \ge 1$.

An operator A is *continuous invertible* if A is invertible with the property that for a constant c > 0 and all $\theta_1, \theta_2 \in \Theta$,

$$\| \mathsf{A}(heta_1) - \mathsf{A}(heta_2) \|_{\mathbb{L}} \geq c \| heta_1 - heta_2 \|.$$

Proof

By the definitions of $\hat{\theta}_n$ and θ_0 and assumption (2),

$$\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n(\hat{\theta}_n) - \Psi(\hat{\theta}_n)) + o_P(1)$$

$$= -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P(1 + \sqrt{n} \|\hat{\theta}_n - \theta_0\|).$$

$$(4)$$

Since Ψ_{θ_0} is continuously invertible, there exists a constant c > 0 such that $\|\dot{\Psi}_{\theta_0}(\theta - \theta_0)\| \ge c \|\theta - \theta_0\|$ for all θ and θ_0 in $\overline{lin}\Theta$. Combining this with the Frechet differentiability of Ψ yields $\|\Psi(\theta) - \Psi(\theta_0)\| \ge c \|\theta - \theta_0\| + o(\|\theta - \theta_0\|)$. Combining this with above equation, we obtain

$$\sqrt{n}\|\hat{ heta}_n- heta_0\|(c+o_P(1))\leq O_P(1)+o_P(1+\sqrt{n}\|\hat{ heta}_n- heta_0\|).$$

Now we have that $\hat{\theta}_n$ is \sqrt{n} -consistent for θ_0 wit respect to $\|\cdot\|$. By the differentiability of Ψ , the left side of (4) can be replaced by $\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P(1 + \sqrt{n}\|\hat{\theta}_n - \theta_0\|)$. And the error terms on both sides is $o_P(1)$. We obtain (3).

Next the continuity of $\dot{\Psi}_{\theta_0}^{-1}$ and the continuous maping theorem yield $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}(Z).$

The following lemma allows us to weaken the Frechet differentiability requirement to Hadamard differentiability when it is also know that $\sqrt{n}(\hat{\theta}_n - \theta_0)$ is asymptotically tight:

Lemma

Assume the conditions of theorem 2.11 except that consistency of $\hat{\theta}_n$ is strengthened to asymptotic tightness of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ and the Frechet differentiability of Ψ is weakened to Hadamard differentiability at θ_0 . Then the results of theorem 2.11 still hold.

The asymptotic tightness of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ enables expression (4) to imply $\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P(1)$. The Hadamard differentiability of Ψ yields $\sqrt{n}(\Psi(\hat{\theta}_n) - \Psi(\theta_0)) = \sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P(1)$. Combining, we have $\sqrt{n}\dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) = -\sqrt{n}(\Psi_n - \Psi)(\theta_0) + o_P(1)$.

Weak Convergence

We now consider the special case where the data involved are i.i.d., i.e. $\Psi_n(\theta)(h) = \mathbb{P}_n \psi_{\theta,h}$ and $\Psi(\theta)(h) = P \psi_{\theta,h}$, for measurable functions $\psi_{\theta,h}$, where *h* ranges over an index set \mathcal{H} . The following lemma gives us reasonably verifiable sufficient conditions for (2) to hold:

Lemma

Suppose the class of functions $\{\psi_{\theta,h} - \psi_{\theta_0,h} : \|\theta - \theta_0\| \le \delta, h \in \mathcal{H}\}$ is *P*-Donsker for some $\delta > 0$ and

$$\sup_{h\in\mathcal{H}} P(\psi_{\theta,h} - \psi_{\theta_0,h})^2 \to 0, \text{ as } \theta \to \theta_0$$

Then if $\Psi_n(\hat{\theta}_n) = o_P(n^{-1/2})$ and $\hat{\theta}_n \xrightarrow{P} \theta_0$,

$$\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0) = o_P(1)$$

Proof

Let $\Theta_{\delta} \equiv \{\theta : \|\theta - \theta_0\| \le \delta\}$ and define the extraction function $f: \ell^{\infty}(\Theta_{\delta} \times \mathcal{H}) \times \Theta_{\delta} \mapsto \ell^{\infty}(\mathcal{H})$ as $f(z, \theta)(h) \equiv z(\theta, h)$, where $z \in \ell^{\infty}(\Theta_{\delta} \times \mathcal{H})$. Note that f is continuous at every point (z, θ_1) such that $\sup_{h \in \mathcal{H}} |z(\theta, h) - z(\theta_1, h)| \to 0$ as $\theta \to \theta_1$. Define the stochastic process $Z_n(\theta, h) \equiv \mathbb{G}_n(\psi_{\theta,h} - \psi_{\theta_0,h})$ indexed by $\Theta_{\delta} \times \mathcal{H}$. As assumed, the process Z_n converges weakly in $\ell^{\infty}(\Theta_{\delta} \times \mathcal{H})$ to a tight Gaussian process Z_0 with continuous sample paths with respect to the metric ρ defined by $\rho^2((\theta_1, h_1), (\theta_2, h_2)) = P(\psi_{\theta_1, h_1} - \psi_{\theta_2, h_1} - \psi_{\theta_2, h_2} + \psi_{\theta_2, h_2})^2$. Since, $\sup_{h \in \mathcal{H}} \rho((\theta, h), (\theta_0, h)) \to 0$ by assumption, we have that f is continuous at most all sample paths of Z_0 . By Slutsky's theorem, $(Z_n, \hat{\theta}_n) \rightsquigarrow (Z_0, \theta_0)$. The continuous mapping theorem now implies that

$$Z_n(\hat{\theta}_n) = f(Z_n, \hat{\theta}_n) \rightsquigarrow f(Z_0, \theta_0) = 0.$$

イロト 不得下 イヨト イヨト 二日

In addition to the assumptions in above lemma, we are willing to assume

$$\{\psi_{\theta_0,h}:h\in\mathcal{H}\}$$

is P-Donsker, then $\sqrt{n}(\Psi_n - \Psi)(\theta_0) \rightsquigarrow Z$ and all of the weak convergence assumptions of theorem 2.11 are satisfied.

Alternatively, we could just assume that

$$\mathcal{F}_{\delta} \equiv \{\psi_{\theta,h} : \|\theta - \theta_0\| < \delta, h \in \mathcal{H}\}$$

is P-Donsker for some $\delta > 0$.

Now, consider the two bootstrapped Z-estimators previously discussed, multinomial bootstrap and multiplier bootstrap. For the multiplier bootstrap we make the additional requirements that $0 < \tau^2 = var(\xi_1) < \infty$ and $\|\xi_1\|_{2,1} \le \infty$. We use $\stackrel{P}{\underset{\circ}{\longrightarrow}}$ to denote either $\stackrel{P}{\underset{\xi}{\longrightarrow}}$ or $\stackrel{P}{\underset{W}{\longrightarrow}}$ depending on which bootstrap is being used. Let the constant $k_0 = \tau/\mu$ for the multiplier bootstrap and $k_0 = 1$ for the multinomial bootstrap.

Weak Convergence

Theorem

Assume $\Psi(\theta_0) = 0$ and the following hold:

- (A) $\theta \mapsto \Psi(\theta)$ is identifiable.
- (B) The class $\{\psi_{\theta,h}; \theta \in \Theta, h \in \mathcal{H}\}$ is P-Glivenko-Cantelli.
- (C) The class $\mathcal{F}_{\delta} \equiv \{\psi_{\theta,h} : h \in \mathcal{H}\}$ is P-Donsker for some $\delta > 0$.
- (D) $\sup_{h\in\mathcal{H}} P(\psi_{\theta,h} \psi_{\theta_0,h})^2 \to 0$, as $\theta \to \theta_0$, for some $\delta > 0$.
- (E) $\|\Psi_n(\hat{\theta}_n)\|_{\mathbb{L}} = o_P(n^{-1/2})$ and $P(\sqrt{n}\|\Psi_n^{\circ}(\hat{\theta}_n^{\circ})\|_{\mathbb{L}} > \eta|\mathcal{X}_n) = o_P(1)$ for every $\eta > 0$.
- (F) $\theta \mapsto \Psi(\theta)$ is Frechet-differentiable at θ_0 with continuously invertible derivative $\dot{\Psi}_{\theta_0}$.

Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}Z$, where $Z \in \ell^{\infty}(\mathcal{H})$ is the tight, mean zero Gaussian limiting distribution of $\sqrt{n}(\Psi_n - \Psi)(\theta_0)$, and $\sqrt{n}(\hat{\theta}_n^{\circ} - \hat{\theta}_n) \underset{\circ}{\overset{P}{\longrightarrow}} k_0 Z$

17 / 32

Condition (A) is identifiability. Condition (B) and (C) are consistency and asymptotic normality conditions for the estimating equation. Condition (D) is an asymptotic equicontinuity condition for the estimating equation at θ_0 . Condition (E) simply states that the estimators are approximate zeros of the estimating equation, while condition (F) specifies the smoothness and invertibility requirements of the derivative of Ψ .

In Section 2.2.5, right-censored Kaplan-Meier estimator is shown to be a Z-estimator with a certain estimating equation $\Psi_n(\theta) = \mathbb{P}_n \psi_{\theta}(t)$, where

$$\psi_{ heta}(t)=1\{U>t\}+(1-\delta)1\{U\leq t\}1\{ heta(U)>0\}rac{ heta(t)}{ heta(U)}- heta(t)$$

where U, δ is the observed right-censored survival time and censoring indicator. The limiting estimating function $\Psi(\theta) = P\psi_{\theta}$ is

$$\Psi(\theta)(t) = heta_0(t)L(t) + \int_0^t rac{ heta_0(u)}{ heta(u)} dG(u) heta(t) - heta(t)$$

where G is the censoring distribution and L = 1 - G. t and $[0, \tau]$ play the roles of h and \mathcal{H} .

Example: Right-censored Kaplan-Meier Estimator

Verify identifiablity: let

$$\epsilon_n(t) = \frac{\theta_0(t)}{\theta_n(t)} - 1$$

Then $\Psi(heta_n)(t)
ightarrow 0$ uniformly over $t \in [0, au]$ implies that

$$u_n(t) = \epsilon_n(t)L(t) + \int_0^t \epsilon_n(u)dG(u) \to 0$$

uniformly over $[0, \tau]$.

By solving this integral equation, we obatin

$$\epsilon_n(t) = u_n(0) + \int_0^t \frac{du_n(s)}{L(s-)}$$

which implies $\epsilon_n(t) \to 0$ uniformly. Thus, $\|\theta_n - \theta_0\|_{\infty} \to 0$.

Example: Right-censored Kaplan-Meier Estimator

Condition (B), (C) and (F) were established in Chapter 2. As $\|\theta - \theta_0\|_{\infty} \to 0$, we can directly verify condition (D) by

$$\sup_{h\in\mathcal{H}}P(\psi_{\theta,h}-\psi_{\theta_0,h})^2\to 0$$

If $\hat{\theta}_n$ is Kaplen-Meier estimator, then $\|\Psi_n(\hat{\theta}_n)(t)\|_{\infty} = 0$ almost surely. If the bootstrapped version is

$$\hat{\theta}_n^{\circ}(t) = \prod_{j:\tilde{\tau}_j \leq t} \left(1 - \frac{n \mathbb{P}_n^{\circ}[\delta 1\{U = \tilde{T}_j\}]}{n \mathbb{P}_n^{\circ}[1\{U \geq \tilde{T}_j\}]}\right)$$

where \tilde{T}_j are observed failure times, then $\|\Psi_n^{\circ}(\hat{\theta}_n^{\circ})\|_{\infty} = 0$ almost surely. Then we can obtain consistency, weak convergence, and bootstrap consistency for the Kaplan-Meier estimator.

An alternative approach to Z-estimators is to view the extraction of the zero from the estimating equation as a continuous mapping. Let Θ be the subset of a Banach space and \mathbb{L} to be a Banach space. Let $\ell^{\infty}(\Theta, \mathbb{L})$ to be the Banach space of all uniformly norm-bounded functions $z: \Theta \mapsto \mathbb{L}$. Let $Z(\Theta, \mathbb{L})$ be the subset consisting of all maps with at least one zero, and let $\Phi(\Theta, \mathbb{L})$ be the collection of all maps $\phi : Z(\Theta, \mathbb{L}) \mapsto \Theta$ that for each element $z \in Z(\Theta, \mathbb{L})$ extract one of its zeros $\phi(z)$. This structure allows for multiple zeros. Define $\ell_0^{\infty}(\Theta, \mathbb{L})$ to be the elements $z \in \ell^{\infty}(\Theta, \mathbb{L})$ for which $||z(\theta) - z(\theta_0)||_{\mathbb{L}} \to 0$ as $\theta \to \theta_0$.

Theorem (13.5)

Assume $\Psi : \Theta \to \mathbb{L}$ is uniformly norm-bounded over Θ , $\Psi(\theta_0) = 0$, and identifiable. Let Ψ also be Frechet differentiable at θ_0 with continuously invertible derivative $\dot{\Psi}_{\theta_0}$. Then the continuous linear operator $\phi'_{\Psi} : \ell_0^{\infty}(\Theta, \mathbb{L}) \mapsto lin\Theta$ defined by $z \mapsto \phi'_{\Psi}(z) \equiv -\dot{\Psi}_{\theta_0}^{-1}(z(\theta_0))$ satisfies:

$$\sup_{\phi \in \Phi(\Theta,\mathbb{L})} \| \frac{\phi(\Psi + t_n z_n) - \phi(\Psi)}{t_n} - \phi'_{\Psi}(z(\theta_0)) \| \to 0$$

as $n \to \infty$, for any sequences $(t_n, z_n) \in (0, \infty) \times \ell^{\infty}(\Theta, \mathbb{L})$ such that $t_n \downarrow 0, \Psi + t_n z_n \in Z(\Theta, \mathbb{L})$, and $z_n \to z \in \ell_0^{\infty}(\Theta, \mathbb{L})$.

Let $0 < t_n \downarrow 0$ and $z_n \to z \in \ell_0^{\infty}(\Theta, \mathbb{L})$ such that $\Psi + t_n z_n \in Z(\Theta, \mathbb{L})$. Choose any sequence $\{\phi_n\} \in \Phi(\Theta, \mathbb{L})$, and note that $\theta_n \equiv \phi_n(\Psi + t_n Z_n)$ satisfies $\Psi(\theta_n) + t_n z_n = 0$ by construction. Hence $\Psi(\theta_n) = O(t_n)$. By indentifiability, $\theta_n \to \theta_0$. By the Frechet differentiability of Ψ ,

$$\liminf_{n\to\infty}\frac{\|\Psi(\theta_n)-\Psi(\theta_0)\|_{\mathbb{L}}}{\|\theta_n-\theta_0\|}\geq \liminf_{n\to\infty}\frac{\|\dot{\Psi}_{\theta_0}(\theta_n-\theta_0)\|_{\mathbb{L}}}{\|\theta_n-\theta_0\|}\geq \inf_{\|g\|=1}\|\dot{\Psi}_{\theta_0}(g)\|_{\mathbb{L}}$$

where g ranges over $lin\Theta$. Since the inverse of Ψ_{θ_0} is continuous, the right side of the above is positive. Thus there exists a universal constant $c < \infty$ for which $\|\theta_n - \theta_0\| < c \|\Psi(\theta_n) - \Psi(\theta_0)\|_{\mathbb{L}} = c \|t_n z_n(\theta_n)\|_{\mathbb{L}}$ for all n large enough.

Hence $\|\theta_n - \theta_0\| = O(t_n)$. By Frechet differentiability, $\Psi(\theta_n) - \Psi(\theta_0) = \dot{\Psi}_{\theta_0}(\theta_n - \theta_0) + o(\|\theta_n - \theta_0\|)$, where $\dot{\Psi}_{\theta_0}$ is linear and continuous on $lin\Theta$. The remainder term is $o(t_n)$ by previous arguments. Combining this with the fact that $t_n^{-1}(\Psi(\theta_n) - \Psi(\theta_0)) = -z_n(\theta_n) \rightarrow z(\theta_0)$, we obtain $\theta_n - \theta$ is $1 \notin \Psi(\theta_n) - \Psi(\theta_0)$

$$\frac{\sigma_n-\sigma}{t_n}=\dot{\Psi}_{\theta_0}^{-1}(\frac{\Psi(\sigma_n)-\Psi(\sigma_0)}{t_n}+o(1))\rightarrow-\dot{\Psi}_{\theta_0}^{-1}(z(\theta_0))$$

The conclusion now follows since the sequence ϕ_n was arbitrary.

The following simple corollary allows the delta method to be applied to Z-estimators. Let $\tilde{\phi} : \ell^{\infty}(\Theta, \mathbb{L}) \mapsto \Theta$ be a map such that for each $x \in \ell^{\infty}(\Theta, \mathbb{L}), \tilde{\phi}(x) = \theta_1 \neq \theta_0$ when $x \notin Z(\Theta, \mathbb{L})$ and $\tilde{\phi}(x) = \phi(x)$ for some $\phi \in \Phi(\Theta, \mathbb{L})$ otherwise.

Corollary

Suppose Ψ satisfies the conditions of theorem 13.5, $\hat{\theta}_n = \tilde{\phi}(\Psi_n)$, and Ψ_n has at least one zero for all n large enough, outer almost surely. Suppose also that $r_n(\Psi_n - \Psi) \rightsquigarrow X$ in $\ell^{\infty}(\Theta, \mathbb{L})$, with X tight and $\|X(\theta)\|_{\mathbb{L}} \to 0$ as $\theta \to \theta_0$ almost surely. Then $r_n(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}X(\theta_0)$. A drawback with this approach is that root finding algorithms in practice are seldom exact, and room needs to be allowed for computational error. The following corollary yields a very general Z-estimator result based on a modified delta method. We make the fairly realistic assumption that the Z-estimator $\hat{\theta}_n$ is computed from Ψ_n using a deterministic algorithm (e.g., a computer program) that is allowed to depend on *n* and which is not required to yield an exact root of Ψ_n .

Corollary

Suppose Ψ satisfies the conditions of theorem 13.5, and $\hat{\theta}_n = A_n(\Psi_n)$ for some sequence of deterministic algorithms $A_n : \ell^{\infty}(\Theta, \mathbb{L}) \mapsto \Theta$ and random sequence $\Psi_n : \Theta \mapsto \mathbb{L}$ of estimating equations such that $\Psi_n \xrightarrow{P} \Psi$ in $\ell^{\infty}(\Theta, \mathbb{L})$ and $\Psi_n(\hat{\theta}_n) = o_P(r_n^{-1})$, where $0 < r_n \to \infty$ is a sequence of constants for which $r_n(\Psi_n - \Psi) \rightsquigarrow X$ in $\ell^{\infty}(\Theta_0, \mathbb{L})$ for some closed $\Theta_0 \subset \Theta$ containing an open neighborhood of θ_0 , with X tight and $\|X(\theta)\|_{\mathbb{L}} \to 0$ as $\theta \to \theta_0$ almost surely. Then $r_n(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}X(\theta_0)$. Let $X_n \equiv r_n(\Psi_n - \Psi)$. By theorem 7.26, there exists a new probability space $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P})$ on which: $E^*f(\tilde{\Psi}_n) = E^*f(\Psi_n)$ for all bounded $f : \ell^{\infty}(\Theta, \mathbb{L}) \mapsto \mathbb{R}$ and all $n \geq 1$; $\tilde{\Psi}_n \stackrel{as*}{\to} \Psi$ in $\ell^{\infty}(\Theta, \mathbb{L})$; $r_n(\tilde{\Psi}_n - \Psi) \stackrel{as*}{\to} \tilde{X}$ in $\ell^{\infty}(\Theta_0, \mathbb{L})$; \tilde{X} and X have the same distributions; and $r_n(A_n(\tilde{\Psi}_n) - \theta_0)$ and $r_n(A_n(\Psi_n) - \theta_0)$ have the same distributions. Note that for any bounded f, $\tilde{\Psi}_n \mapsto f(\tilde{\Psi}_n(A_n(\tilde{\Psi}_n))) = g(\tilde{\Psi}_n)$ for some bounded g. Thus $\tilde{\Psi}_n(\tilde{\theta}_n) = o_{\tilde{P}}(r_n^{-1})$ for $\tilde{\theta}_n \equiv A_n(\tilde{\Psi}_n)$.

Proof

Hence for any subsequence n' there exists a further subsequence n'' such that $\tilde{\Psi}_{n''} \stackrel{as_*}{\to} \Psi$ in $\ell^{\infty}(\Theta, \mathbb{L})$, $r_{n''}(\tilde{\Psi}_{n''} - \Psi) \stackrel{as_*}{\to} \tilde{X}$ in $\ell^{\infty}(\Theta_0, \mathbb{L})$, and $\tilde{\Psi}_{n''}(\tilde{\theta}_{n''}) \stackrel{as_*}{\to} 0$ in \mathbb{L} . Thus also $\Psi(\tilde{\theta}_{n''}) \stackrel{as_*}{\to} 0$, which implies $\tilde{\theta}_{n''} \stackrel{as_*}{\to} \theta_0$. Note that $\tilde{\theta}_{n''}$ is a zero of $\tilde{\Psi}_{n''}(\theta) - \tilde{\Psi}_{n''}(\tilde{\theta}_{n''})$ by definition and is contained in Θ_0 for all n large enough. Hence, for all n large enough, $r_{n''}(\tilde{\theta}_{n''} - \theta_0) = r_{n''}(\phi_{n''}(\tilde{\Psi}_{n''} - \tilde{\Psi}_{n''}(\tilde{\theta}_{n''})) - \phi_{n''}(\Psi))$ for some sequence $\phi_n \in \Phi(\Theta_0, \mathbb{L})$ possibly dependent on sample realization $\tilde{\omega} \in \tilde{\Omega}$. This implies that for all n large enough, by theorem 13.5,

$$\begin{aligned} &\|r_{n''}(\tilde{\theta}_{n''}-\theta_0)-\phi'_{\Psi}(\tilde{X})\|\\ &\leq \sup_{\phi\in\Phi(\Theta_0,\mathbb{L})}|r_{n''}(\phi(\tilde{\Psi}_{n''}-\tilde{\Psi}_{n''}(\tilde{\theta}_{n''}))-\phi(\Psi))-\phi'_{\Psi}(\tilde{X})|\\ &\stackrel{as*}{\to} 0. \end{aligned}$$

This implies $||r_{n''}(A_{n''}(\tilde{\Psi}_{n''}) - \theta_0) - \phi'_{\Psi}(\tilde{X})|| \xrightarrow{as*} 0$. Since this hold for every subsequence, we have $r_n(A_n(\tilde{\Psi}_n) - \theta_0) \rightsquigarrow \phi'_{\Psi}(\tilde{X})$. This implies $r_n(A_n(\Psi_n) - \theta_0) \rightsquigarrow \phi'_{\Psi}(X)$.

э

The following corollary extends the previous result to generalized bootstrapped processes. Let Ψ_n° be a bootstrapped version of Ψ_n based on both the data sequence X_n and a sequence of weights $W = \{W_n, n \ge 1\}$.

Corollary

Assume the conditions of previous corollary and, in addition that $\hat{\theta}_n^{\circ} = A_n(\Psi_n^{\circ})$ for a sequence of bootstrapped estimating equations $\Psi_n^{\circ}(X_n, W_n)$, with $\Psi_n^{\circ} - \Psi \stackrel{P}{\underset{W}{\longrightarrow}} 0$ and $r_n \Psi_n^{\circ}(\hat{\theta}_n^{\circ}) \stackrel{P}{\underset{W}{\longrightarrow}} 0$ in $\ell^{\infty}(\Theta, \mathbb{L})$, and with $r_n c(\Psi_n^{\circ} - \Psi) \stackrel{P}{\underset{W}{\longrightarrow}} X$ in $\ell^{\infty}(\Theta_0, \mathbb{L})$ for some $0 < c < \infty$, where the maps $W_n \mapsto h(\Psi_n^{\circ})$ are measurable for every $h \in C_b(\ell^{\infty}(\Theta, \mathbb{L}))$ outer almost surely. Then $r_n c(\hat{\theta}_n^{\circ} - \hat{\theta}_n) \stackrel{P}{\underset{W}{\longrightarrow}} \phi'_{\Psi}(X)$.