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Upper semicontinuity

A function f: D — R is upper semicontinuous if

it satisfies either of the following two conditions:
(i) Forallc e R,theset{x: f(x)>c}is p

closed. >
(i) Forall xo € D, limsup,_,, f(x) < f(xo).
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Portmanteau theorem

Xn ~» X if and only if

n—oo

limsup P*(X, € F) < P(X € F)
for every closed F.

o = = = Qe
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Maximal inequality with uniform entropy integral

Let 7 be a P-measurable class of measurable functions with
measurable envelope function F. Then, for every p > 1,

lGall[lp, S I, F)IFllp2vp,

where the uniform entropy integral is defined as

5
J(6, F) = sup/ 1+ 108 (el Fllaz. F. Lo(Q)) de
Q Jo
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Maximal inequality with bracketing integral

Let F be a class of measurable functions with measurable envelope
function F. Then

HGnllF|lpy < o (1, F, L2(P))[IFllp.2,

where the bracketing integral is defined as

S F - / 1+ log Ny (el FIL 7. - ) de
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Size of Lipschitz class of functions

Suppose the class of functions F = {f; : t € T} satisfies
Ifs(x) = £(X)| < d(s, ) F(x)
for every s,t € T and some fixed function F. Then, for any norm || - ||,

Ny(el[ Il 7 11 - 1) < N(e, T, d).
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M-estimators

@ Consider a sequence {M,(0) : 6 € ©} of stochastic processes.

@ M-estimators are (approximate) maximizers (or minimizers) 4, of
criterion functions 6 — M,(9).

@ Examples:

» maximum likelihood estimators

» least squares estimators

Yu Gu M-Estimators September 16, 2021 8/40



M-estimators (cont.)

@ Usually, the criterion function M,(#) is an empirical process
indexed by ©.

@ For i.i.d. observations Xj, ..., X,, a common empirical criterion
function is of the form

0 — M, (0) = Prmy.

@ Let {M(9) : 6 € ©} be a limiting process.
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Problems of interest

@ For M-estimators 0,:

» consistency for the true parameter 6
» rate of convergence r,

» limiting distribution

@ For local parameters h, = r,(0, — 6):

» weak convergence to some random point h

» Usually, h is the maximizer of M(h).
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Preliminary arguments

@ If the argmax functional were continuous w.r.t. some metric on
the space of criterion functions, then weak convergence of the
criterion functions would imply weak convergence of the
M-estimators by the continuous mapping theorem.

@ In keeping with the setup for empirical process, we endow the
space of criterion functions with the uniform metric.

@ The argmax functional is continuous at functions M that have a

unique, well-separated maximizer: M(h) > sup,¢ g M(h) almost
surely for any neighborhood G of h.
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Lemma 1

LetM,, M be stochastic processes indexed by a metric space H. Let
A and B be arbitrary subsets of H. Suppose that

(i) M(h) > suppea,nea M(h) almost surely, for every open set G that
contains h.

(i) Mp(hn) > supy, Mn(h) — 0p(1)-
(i) M, ~ M in ¢>=(AU B).
Then, for every closed set F,

limsup P*(h, € Fn A) < P(h e Fu B°).

n— oo

Note: A= B = H = h, ~ h (portmanteau theorem).
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Proof

@ By the continuous mapping theorem,

sup Mj,(h) — supMn(h) ~ sup M(h) — sup M(h)
heFNA heFnA heB

@ Thus, by Slutsky’s lemma and the portmanteau theorem,

limsup P*(Py € F N A)

n—oo

0)

< limsup P* ( sup My(h) > supM,(h) — 0p(1)>
n— oo heFNA heB

< P( sup M(h) > supM(h))

heFNA

=heFuBe
@ If h¢ FUB®, then h e F° N B, which implies

supM(h) > M(h) > sup M(h) = sup M(h).
heB hgF¢ heA heFNA
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Remarks

@ The assumption that M, ~» M uniformly in the whole parameter
space is too strong.

o If dropping this assumption, additional properties of hn need to
be established in order to obtain h, ~ h.

@ The Argmax theorem requires uniform tightness of A, and
uniform convergence of M, on compact subspace.
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Theorem 2 (Argmax theorem)

Let M,, M be stochastic processes indexed by a metric space H.
Suppose that
(i) Almost all sample paths h — M(h) are upper semicontinuous
and possess a unique maximum at a (random) point h, which as
a random map in H is tight.

(ii) The sequence hy, is uniformly tight and satisfies
Mp(hn) > sup, Mp(h) — 0p(1).

(iii) M, ~» M in £>°(K) for every compact K C H.

Then hy, ~ hin H.
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Proof

Step 1 Show that on compacta, a unique maximum of an upper
semicontinuous function is well-separated. That is,

M(h) > sup M(h)
h¢ G,heK

almost surely, for every open set G that contains h.
@ If this is not true, then there exist an open set G around hand a

~

sequence h, € G° N K such that M(h,) — M(h).

@ Since K is compact, {h,} has a subsequence {h,} that
converges to some h* € G°N K.

@ By upper semicontinuity, M(h*) > lim sup,, M(hn) = M(h).

@ This contradicts the uniqueness of h, since h € G while h* € G¢.
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Proof (cont.)

Step 2 Apply the previous lemma with A = B = K and obtain that for
every closed set F,

limsup P*(h, € F)

n—oo

< limsup P*(h, € FN K) + limsup P*(h, € K°)

n—oo n—oo

< P(he FUK®) + limsup P*(h, € K°)

n—oo

< P(he F)+ P(he K° + limsup P*(h, € K°).

n—oo

Due to uniform tightness of ﬁ,, and tightness of h, K can be chosen to
make the last two terms arbitrarily small.
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Remarks

@ The preceding lemma and the Argmax theorem are typically
applied to a local parameter h, but they can also be applied to
the original parameter 6.

@ Since the limiting criterion function M(#) is typically nonrandom,
the approach turns into a consistency proof.
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Corollary 3 (Consistency)
Let M, be stochastic processes indexed by a metric space ©, and let
M : © — R be a deterministic function.
(A) Suppose that
(i) M(6o) > supyg M(0) for every open set G that contains .
(i) Min(8n) > supy Min(6) — 0p(1).
(iii) |Mp — M]|le — 0 in outer probability.
Then 6, — 6y in outer probability.
(B) Suppose that

(i) The map 6 — M(6) is upper semicontinuous with a unique
maximum at 0.

(i) The sequence 0, is uniformly tight and satisfies
Mn(0n) = supy Min(6) — 0p(1)-

(iii) ||M, — M||x — 0 in outer probability for every compact K C ©.
Then 6, — 6y in outer probability.

Yu Gu M-Estimators September 16, 2021 20/40



Equivalent condition for i.i.d. data

In the case of i.i.d. data, M,(6) = P,my and M = Pmy, the uniform
convergence in (iii) is valid if and only if the class of functions
{my : 6 € ©} is Glivenko-Cantelli.
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Preliminary arguments

o If M(6) is twice differentiable at a point of maximum 6, then
M’'(69) = 0 and M"(6p) is negative definite.

@ It is natural to assume that M(0) — M(6p) < —d?(0, 6p) for every 0
in a neighborhood of 6.

@ The modulus of continuity of a stochastic process {X(t): t € T}
is defined by

mx(d) = sup  |X(s) = X(B)|-
s,teT:d(s,t)<s

An upper bound for the rate of convergence of 4, can be
obtained from the modulus of continuity of M, — M at 6.

Yu Gu M-Estimators September 16, 2021 23/40



Theorem 4 (Rate of convergence)

Let M, be stochastic processes indexed by a semimetric space © andM : © — R a
deterministic function. Suppose that

(i) Forevery 6 in a neighborhood of 6,

M(6) — M (6o) < —d?(6, 0p).
(if) For every n and sufficiently small §, the centered process M, — M satisfies
¢n (0 )

E* sup |(Mn—M)(6) — (Mn—M)(60)| S
d(6,6p)<é

for functions ¢n such that § — ¢n(5)/0% is decreasing for some o < 2 not
depending on n.
(iiiy The sequence O, converges in outer probability to 6, and satisfies
Mn(0n) > Mn(6p) — Op(ry2) for some sequence ry such that
rAgn(ry ') < v/n  forevery n.

Then rad(6n, 60) = O;(1). If the displayed conditions are valid for every 6 and 6, then
the condition that 8, is consistent is unnecessary.
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Remarks

@ The theorem remains true if replacing the metric function d by an
arbitrary function d : © x © — [0, 00) that satisfies d(6,,6p) — 0
whenever d(0,,6p) — 0.

@ When ¢(5) = 6, the rate r, is at least n'/(4=2%),

@ In particular, the “usual” rate v/n corresponds to ¢(8) = 6.
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Proof

Assume for simplicity that 6, truly maximizes M,(6). We want to show

P* (rnd(én,eo) > 2M> — 0 as M — oo, for every nlarge enough.
Ideas of proof:

@ Partition the parameter space ©\{6o} into disjoint “shells”

Sin= {9 27 < rd (6, 060) < 2/'}

with j ranging over the integers.

@ For a given integer M, r,d(n, 6) > 2™ implies that 6, is in one of the
shells §; , with j > M.

@ Bound above the probability that 4, € S .

» For very large j, use the consistency of f,,.
» For smaller j, combine the remaining conditions.
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Proof (cont.)

Fix n > 0 small enough such that

sup  M(6) — M (Ag) < —d?(6, 6o)
0:d(0,00)<n

and such that for every § < n,
. B o én(0)
sup  |(Mn — M) (0) — (Mp — M) (60)| S
d(0,00)<6 n

Such 7 exists by Conditions (i) and (ii).
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Proof (cont.)

For n large enough,
p* (rnd(én, 0o) > 2M)

< P*(Bn € Sjn) + P*(d(6n, 60) > 1/2).
J=M, 2i<nr,

The consistency of , for 6, guarantees that the second term
converges to 0 as n — co.
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Proof (cont.)

Now we try to bound each term in the summation >y 5, P*(6n € S;n).

On € Sjn= sup [Mn(é’) — M, (90)] >0,
0€S;
22j—2
Condition (i) = M(0) — M (6o) < —d*(0,00) < —

n

, Vo e Sj,n.

Thus, the summation can be bounded by

> P*<sup| M)(G)—(Mn—M)(ﬂo)Iizrl; >

J>M, 2i<nrm 0€S),n n
2/r r2
< bn )i < j(a=2),
5 A2 5
j>M j>M

by Markov’s inequality, Condition (i), the condition that r2¢.(r; ') < +/n, and
the fact that ¢n(cd) < ¢ én(8) for every ¢ > 1 (since ¢n(8)/6* is decreasing).
The term on the right converges to 0 as M — oc.
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Proof (cont.)

If Conditions (i) and (ii) are valid for every # and §, then we do not
need to split P* (rnd(én, 6o) > 2"”) into two parts. We can use the
same arguments on the previous slide to complete the proof.
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Under i.i.d. setting

@ Recall Condition (ii) in the preceding theorem:

B sup |(M, — M) (8) — (M, — M) (60)] < 22

d(6,60)<5 vn

@ Fori.i.d. data and empirical criterion functions M,(0) = P,m, and
M(#) = Pmy, Condition (ii) involves the suprema of the empirical
process G, = /n(P, — P) indexed by classes of functions

M;s = {m.g — My, : d(@,ao) < 5} .

@ Itis reasonable to assume that these suprema are bounded
uniformly in n.
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Corollary 5
In the i.i.d. case, assume that

(i) Forevery 0 in a neighborhood of 0y,
P (mg — mg,) < —d?(6,60).

~

(i) There exists a function ¢ such that 6 — &(5)/6> is decreasing for
some « < 2 and, for every n,

E*|Gnll p; S ¢(9)-

(i) The sequence 0, converges in outer probability to 6, and satisfies
Ppmy > supgee Pnmy — Op(ry 2) for some sequence r, such that

rien(ry ') < v/ for every n.

Then rad(0n,00) = O5(1).
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Bounds on continuity modulus

@ Itis important to derive a sharp bound on the modulus of continuity of
Gn, before applying the corollary.

@ A simple but not necessarily efficient approach is to apply the maximal
inequalities to the class M, which yield

E5||Gnllams S J(1, Ms)(P*M5)'2,
EBl|Gnllas S Jy(1, Ms, La(P))(P*M3)"/2.
@ These bounds depend mostly on the envelope function M;s.

@ Assuming that the entropy integrals are bounded as § | 0, we obtain an
upper bound $(8) = (P*M2)'/? on the modulus.

@ By the preceding corollary, r, is at least the solution of

4 o* p g2
mP*My,, ~n
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Overview

Key steps to obtain the limiting distribution of M-estimators of
Euclidean parameters:

@ Establish the consistency of 4, for the true parameter 6.
@ Establish the rate of convergence r, of 0,
@ Define rescaled criterion functions as a multiple of the map

h— Mp(bo + h/rm) — Mp(6o),

which are maximized at local parameters h, = r(6, — 6o).

@ Show that suitably rescaled criterion functions converge weakly
to a limiting process M in ¢>(h: ||h|| < K) for every K.

If the sample paths h — M(h) are upper semicontinuous and possess
a unique maximizer h, then by the Argmax theorem, h;, ~ h.
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Overview (cont.)

@ For illustration, we derive the limiting distribution of Euclidean
M-estimators under the pointwise Lipschitz condition.

@ We will combine the Argmax theorem and the rate of
convergence theorem.

@ More general results on Euclidean M-estimators are given in
Theorem 3.2.10 of VW.
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Notations

@ The parameter space © is an open subset of Euclidean space,
equipped with the Euclidean distance.

@ We assume i.i.d observations and use the empirical process
notations: M,(0) = P,my and M(60) = Pmy.

@ Like before, for any § > 0, define the class of functions

Ms = {mg — My, : d(0,90) < 5} .
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Assumptions

@ 0, is a point of maximum of M(6) in the interior of ©.
Q@ 6, maximize M,(9) for every n and is consistent for 6;.
© M(0) has a nonsingular second derivative matrix V.

@ There exist some square-integrable functions m and i, such
that

Mg, (x) — Mg, (x)] < M(x) |63 — 02, (1)
P (Mg — Mg, — (6 — 60)"1g,)* = (16 — o|?), )

for all 64, 02, 6 in some neighborhood of 6,.
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v/n rate of convergence

@ Under the Lipschitz assumption, Fs = §m is an envelope function
for the class M;. By the theorem on bracketing numbers,

Ny (2¢[1Fsllpz - Ms: La(P)) < N(e, B(60,0). |- ) S ™.
@ Applying the maximal inequality yields
E*[|Gnllpg, S IFsllpz < 6.

@ Thus, the modulus of continuity condition in the rate theorem is
satisfied for ¢(§) = §. Hence, we obtain the /n rate for .
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Limiting distribution
@ Define rescaled criterion functions
Un(h) := n(Mx (60 + h/v/n) — M, (60))

and local parameters h, = v/n(8, — 65). Obviously, h, maximizes Un(h)
for every n.

@ We rewrite U, as
U, = Gn [\/ﬁ (m60+h/ﬁ — mgo) — hTf.ngoj|
+ h'Gnig, + n (M (0 + h/v/n) — M (60))
= En(h) + h' Gpritg, + %hT Vh + o(1).
@ Provided that for any compact K C ©, ||En||k = 0p(1). Then U, ~> U in

¢>°(K), where U(h) = h"Z + }h Vh, and Z is the Gaussian limiting
distribution of G, .

@ By the Argmax theorem, h, = +/n(8, — 6o) ~ h, where his the
maximizer of U(h).
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