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Upper semicontinuity

A function f : D 7→ R is upper semicontinuous if
it satisfies either of the following two conditions:

(i) For all c ∈ R, the set {x : f (x) ≥ c} is
closed.

(ii) For all x0 ∈ D, lim supx→x0
f (x) ≤ f (x0).
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Portmanteau theorem

Xn  X if and only if

lim sup
n→∞

P∗(Xn ∈ F ) ≤ P(X ∈ F )

for every closed F .
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Maximal inequality with uniform entropy integral

Let F be a P-measurable class of measurable functions with
measurable envelope function F . Then, for every p ≥ 1,∥∥‖Gn‖∗F

∥∥
P,p . J(1,F)‖F‖P,2∨p,

where the uniform entropy integral is defined as

J(δ,F) = sup
Q

∫ δ

0

√
1 + log N

(
ε‖F‖Q,2,F ,L2(Q)

)
dε.
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Maximal inequality with bracketing integral

Let F be a class of measurable functions with measurable envelope
function F . Then∥∥‖Gn‖∗F

∥∥
P,1 . J[]

(
1,F ,L2(P)

)
‖F‖P,2,

where the bracketing integral is defined as

J[](δ,F , ‖ · ‖) :=

∫ δ

0

√
1 + log N[]

(
ε‖F‖,F , ‖ · ‖

)
dε.
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Size of Lipschitz class of functions

Suppose the class of functions F = {ft : t ∈ T} satisfies

|fs(x)− ft (x)| ≤ d(s, t)F (x)

for every s, t ∈ T and some fixed function F . Then, for any norm ‖ · ‖,

N[](2ε‖F‖,F , ‖ · ‖) ≤ N(ε,T ,d).
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M-estimators

Consider a sequence {Mn(θ) : θ ∈ Θ} of stochastic processes.

M-estimators are (approximate) maximizers (or minimizers) θ̂n of
criterion functions θ 7→Mn(θ).

Examples:

I maximum likelihood estimators

I least squares estimators
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M-estimators (cont.)

Usually, the criterion function Mn(θ) is an empirical process
indexed by Θ.

For i.i.d. observations X1, . . . ,Xn, a common empirical criterion
function is of the form

θ 7→Mn(θ) = Pnmθ.

Let {M(θ) : θ ∈ Θ} be a limiting process.
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Problems of interest

For M-estimators θ̂n:

I consistency for the true parameter θ0

I rate of convergence rn

I limiting distribution

For local parameters ĥn = rn(θ̂n − θ0):

I weak convergence to some random point ĥ

I Usually, ĥ is the maximizer of M(h).

Yu Gu M-Estimators September 16, 2021 10 / 40



Outline

1 Preliminaries

2 The Argmax Theorem

3 Rate of Convergence

4 Euclidean M-Estimators

Yu Gu M-Estimators September 16, 2021 11 / 40



Preliminary arguments

If the argmax functional were continuous w.r.t. some metric on
the space of criterion functions, then weak convergence of the
criterion functions would imply weak convergence of the
M-estimators by the continuous mapping theorem.

In keeping with the setup for empirical process, we endow the
space of criterion functions with the uniform metric.

The argmax functional is continuous at functions M that have a
unique, well-separated maximizer: M(ĥ) > suph/∈G M(h) almost
surely for any neighborhood G of ĥ.
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Lemma 1
Let Mn, M be stochastic processes indexed by a metric space H. Let
A and B be arbitrary subsets of H. Suppose that

(i) M(ĥ) > suph/∈G,h∈A M(h) almost surely, for every open set G that
contains ĥ.

(ii) Mn(ĥn) ≥ suph Mn(h)− op(1).

(iii) Mn  M in `∞(A ∪ B).
Then, for every closed set F ,

lim sup
n→∞

P∗(ĥn ∈ F ∩ A) ≤ P(ĥ ∈ F ∪ Bc).

Note: A = B = H ⇒ ĥn  ĥ (portmanteau theorem).
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Proof

By the continuous mapping theorem,

sup
h∈F∩A

Mn(h)− sup
h∈B

Mn(h) sup
h∈F∩A

M(h)− sup
h∈B

M(h)

Thus, by Slutsky’s lemma and the portmanteau theorem,

lim sup
n→∞

P∗(ĥn ∈ F ∩ A)

(ii)
≤ lim sup

n→∞
P∗
(

sup
h∈F∩A

Mn(h) ≥ sup
h∈B

Mn(h)− op(1)

)
≤ P

(
sup

h∈F∩A
M(h) ≥ sup

h∈B
M(h)︸ ︷︷ ︸

⇒ĥ∈F∪Bc

)
.

If ĥ /∈ F ∪ Bc , then ĥ ∈ F c ∩ B, which implies

sup
h∈B

M(h) ≥ M(ĥ) > sup
h/∈F c ,h∈A

M(h) = sup
h∈F∩A

M(h).
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Remarks

The assumption that Mn  M uniformly in the whole parameter
space is too strong.

If dropping this assumption, additional properties of ĥn need to
be established in order to obtain ĥn  ĥ.

The Argmax theorem requires uniform tightness of ĥn and
uniform convergence of Mn on compact subspace.

Yu Gu M-Estimators September 16, 2021 15 / 40



Theorem 2 (Argmax theorem)
Let Mn, M be stochastic processes indexed by a metric space H.
Suppose that

(i) Almost all sample paths h 7→M(h) are upper semicontinuous
and possess a unique maximum at a (random) point ĥ, which as
a random map in H is tight.

(ii) The sequence ĥn is uniformly tight and satisfies
Mn(ĥn) ≥ suph Mn(h)− op(1).

(iii) Mn  M in `∞(K ) for every compact K ⊂ H.

Then ĥn  ĥ in H.
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Proof

Step 1 Show that on compacta, a unique maximum of an upper
semicontinuous function is well-separated. That is,

M(ĥ) > sup
h/∈G,h∈K

M(h)

almost surely, for every open set G that contains ĥ.
If this is not true, then there exist an open set G around ĥ and a
sequence hm ∈ Gc ∩ K such that M(hm)→M(ĥ).

Since K is compact, {hm} has a subsequence {h̃m} that
converges to some h∗ ∈ Gc ∩ K .

By upper semicontinuity, M(h∗) ≥ lim supm M(h̃m) = M(ĥ).

This contradicts the uniqueness of ĥ, since ĥ ∈ G while h∗ ∈ Gc .
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Proof (cont.)

Step 2 Apply the previous lemma with A = B = K and obtain that for
every closed set F ,

lim sup
n→∞

P∗(ĥn ∈ F )

≤ lim sup
n→∞

P∗(ĥn ∈ F ∩ K ) + lim sup
n→∞

P∗(ĥn ∈ K c)

≤ P(ĥ ∈ F ∪ K c) + lim sup
n→∞

P∗(ĥn ∈ K c)

≤ P(ĥ ∈ F ) + P(ĥ ∈ K c) + lim sup
n→∞

P∗(ĥn ∈ K c).

Due to uniform tightness of ĥn and tightness of ĥ, K can be chosen to
make the last two terms arbitrarily small.
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Remarks

The preceding lemma and the Argmax theorem are typically
applied to a local parameter h, but they can also be applied to
the original parameter θ.

Since the limiting criterion function M(θ) is typically nonrandom,
the approach turns into a consistency proof.
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Corollary 3 (Consistency)
Let Mn be stochastic processes indexed by a metric space Θ, and let
M : Θ 7→ R be a deterministic function.
(A) Suppose that

(i) M(θ0) > supθ/∈G M(θ) for every open set G that contains θ0.

(ii) Mn(θ̂n) ≥ supθMn(θ)− op(1).

(iii) ‖Mn −M‖Θ → 0 in outer probability.

Then θ̂n → θ0 in outer probability.
(B) Suppose that

(i) The map θ 7→ M(θ) is upper semicontinuous with a unique
maximum at θ0.

(ii) The sequence θ̂n is uniformly tight and satisfies
Mn(θ̂n) ≥ supθMn(θ)− op(1).

(iii) ‖Mn −M‖K → 0 in outer probability for every compact K ⊂ Θ.

Then θ̂n → θ0 in outer probability.
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Equivalent condition for i.i.d. data

In the case of i.i.d. data, Mn(θ) = Pnmθ and M = Pmθ, the uniform
convergence in (iii) is valid if and only if the class of functions
{mθ : θ ∈ Θ} is Glivenko-Cantelli.
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Preliminary arguments

If M(θ) is twice differentiable at a point of maximum θ0, then
M′(θ0) = 0 and M′′(θ0) is negative definite.

It is natural to assume that M(θ)−M(θ0) . −d2(θ, θ0) for every θ
in a neighborhood of θ0.

The modulus of continuity of a stochastic process {X (t) : t ∈ T}
is defined by

mX (δ) := sup
s,t∈T :d(s,t)≤δ

|X (s)− X (t)|.

An upper bound for the rate of convergence of θ̂n can be
obtained from the modulus of continuity of Mn −M at θ0.
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Theorem 4 (Rate of convergence)
Let Mn be stochastic processes indexed by a semimetric space Θ and M : Θ→ R a
deterministic function. Suppose that

(i) For every θ in a neighborhood of θ0,

M(θ)−M (θ0) . −d2(θ, θ0).

(ii) For every n and sufficiently small δ, the centered process Mn −M satisfies

E∗ sup
d(θ,θ0)<δ

∣∣(Mn −M) (θ)− (Mn −M) (θ0)
∣∣ . φn(δ)

√
n
,

for functions φn such that δ 7→ φn(δ)/δα is decreasing for some α < 2 not
depending on n.

(iii) The sequence θ̂n converges in outer probability to θ0 and satisfies
Mn(θ̂n) ≥ Mn(θ0)− Op(r−2

n ) for some sequence rn such that

r2
nφn(r−1

n ) ≤
√

n for every n.

Then rnd(θ̂n, θ0) = O∗p (1). If the displayed conditions are valid for every θ and δ, then
the condition that θ̂n is consistent is unnecessary.
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Remarks

The theorem remains true if replacing the metric function d by an
arbitrary function d̃ : Θ×Θ 7→ [0,∞) that satisfies d̃(θn, θ0)→ 0
whenever d(θn, θ0)→ 0.

When φ(δ) = δα, the rate rn is at least n1/(4−2α).

In particular, the “usual” rate
√

n corresponds to φ(δ) = δ.
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Proof

Assume for simplicity that θ̂n truly maximizes Mn(θ). We want to show

P∗
(

rnd(θ̂n, θ0) > 2M
)
→ 0 as M →∞, for every n large enough.

Ideas of proof:

Partition the parameter space Θ\{θ0} into disjoint “shells”

Sj,n =
{
θ : 2j−1 < rnd (θ, θ0) ≤ 2j

}
with j ranging over the integers.

For a given integer M, rnd(θ̂n, θ0) > 2M implies that θ̂n is in one of the
shells Sj,n with j ≥ M.

Bound above the probability that θ̂n ∈ Sj,n.
I For very large j , use the consistency of θ̂n.
I For smaller j , combine the remaining conditions.
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Proof (cont.)

Fix η > 0 small enough such that

sup
θ:d(θ,θ0)≤η

M(θ)−M (θ0) . −d2(θ, θ0)

and such that for every δ ≤ η,

E∗ sup
d(θ,θ0)<δ

∣∣(Mn −M) (θ)− (Mn −M) (θ0)
∣∣ . φn(δ)√

n
.

Such η exists by Conditions (i) and (ii).
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Proof (cont.)

For n large enough,

P∗
(

rnd(θ̂n, θ0) > 2M
)

= P∗
(

2M < rnd(θ̂n, θ0) ≤ ηrn/2
)

+ P∗
(

rnd(θ̂n, θ0) > ηrn/2
)

≤
∑

j≥M, 2j≤ηrn

P∗(θ̂n ∈ Sj,n) + P∗(d(θ̂n, θ0) > η/2).

The consistency of θ̂n for θ0 guarantees that the second term
converges to 0 as n→∞.
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Proof (cont.)

Now we try to bound each term in the summation
∑

j≥M, 2j≤ηrn
P∗(θ̂n ∈ Sj,n).

θ̂n ∈ Sj,n ⇒ sup
θ∈Sj,n

[
Mn(θ)−Mn (θ0)

]
≥ 0,

Condition (i)⇒ M(θ)−M (θ0) . −d2(θ, θ0) . −22j−2

r 2
n
, ∀θ ∈ Sj,n.

Thus, the summation can be bounded by

∑
j≥M, 2j≤ηrn

P∗
(

sup
θ∈Sj,n

∣∣(Mn −M) (θ)− (Mn −M) (θ0)
∣∣ & 22j−2

r 2
n

)

.
∑
j≥M

φn(2j/rn)r 2
n√

n22j
.
∑
j≥M

2j(α−2),

by Markov’s inequality, Condition (ii), the condition that r 2
nφn(r−1

n ) ≤
√

n, and
the fact that φn(cδ) ≤ cαφn(δ) for every c > 1 (since φn(δ)/δα is decreasing).
The term on the right converges to 0 as M →∞.
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Proof (cont.)

If Conditions (i) and (ii) are valid for every θ and δ, then we do not
need to split P∗

(
rnd(θ̂n, θ0) > 2M

)
into two parts. We can use the

same arguments on the previous slide to complete the proof.
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Under i.i.d. setting

Recall Condition (ii) in the preceding theorem:

E∗ sup
d(θ,θ0)<δ

∣∣(Mn −M) (θ)− (Mn −M) (θ0)
∣∣ . φn(δ)√

n

For i.i.d. data and empirical criterion functions Mn(θ) = Pnmθ and
M(θ) = Pmθ, Condition (ii) involves the suprema of the empirical
process Gn =

√
n(Pn − P) indexed by classes of functions

Mδ := {mθ −mθ0 : d(θ, θ0) < δ} .

It is reasonable to assume that these suprema are bounded
uniformly in n.
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Corollary 5
In the i.i.d. case, assume that

(i) For every θ in a neighborhood of θ0,

P (mθ −mθ0 ) . −d2(θ, θ0).

(ii) There exists a function φ such that δ 7→ φ(δ)/δα is decreasing for
some α < 2 and, for every n,

E∗ ‖Gn‖Mδ
. φ(δ).

(iii) The sequence θ̂n converges in outer probability to θ0 and satisfies
Pnmθ̂n

≥ supθ∈Θ Pnmθ −Op(r−2
n ) for some sequence rn such that

r2
nφn(r−1

n ) ≤
√

n for every n.

Then rnd(θ̂n, θ0) = O∗p (1).
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Bounds on continuity modulus

It is important to derive a sharp bound on the modulus of continuity of
Gn before applying the corollary.

A simple but not necessarily efficient approach is to apply the maximal
inequalities to the classMδ, which yield

E∗P‖Gn‖Mδ . J(1,Mδ)(P∗M2
δ )1/2,

E∗P‖Gn‖Mδ . J[]

(
1,Mδ, L2(P)

)
(P∗M2

δ )1/2.

These bounds depend mostly on the envelope function Mδ.

Assuming that the entropy integrals are bounded as δ ↓ 0, we obtain an
upper bound φ(δ) = (P∗M2

δ )1/2 on the modulus.

By the preceding corollary, rn is at least the solution of

r 4
n P∗M2

1/rn ∼ n.
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Overview

Key steps to obtain the limiting distribution of M-estimators of
Euclidean parameters:

Establish the consistency of θ̂n for the true parameter θ0.
Establish the rate of convergence rn of θ̂n.
Define rescaled criterion functions as a multiple of the map

h 7→Mn(θ0 + h/rn)−Mn(θ0),

which are maximized at local parameters ĥn = rn(θ̂n − θ0).
Show that suitably rescaled criterion functions converge weakly
to a limiting process M in `∞(h : ‖h‖ ≤ K ) for every K .

If the sample paths h 7→M(h) are upper semicontinuous and possess
a unique maximizer ĥ, then by the Argmax theorem, ĥn  ĥ.
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Overview (cont.)

For illustration, we derive the limiting distribution of Euclidean
M-estimators under the pointwise Lipschitz condition.

We will combine the Argmax theorem and the rate of
convergence theorem.

More general results on Euclidean M-estimators are given in
Theorem 3.2.10 of VW.
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Notations

The parameter space Θ is an open subset of Euclidean space,
equipped with the Euclidean distance.

We assume i.i.d observations and use the empirical process
notations: Mn(θ) = Pnmθ and M(θ) = Pmθ.

Like before, for any δ > 0, define the class of functions

Mδ := {mθ −mθ0 : d(θ, θ0) < δ} .
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Assumptions

1 θ0 is a point of maximum of M(θ) in the interior of Θ.

2 θ̂n maximize Mn(θ) for every n and is consistent for θ0.

3 M(θ) has a nonsingular second derivative matrix V .

4 There exist some square-integrable functions ṁ and ṁθ0 such
that

|mθ1 (x)−mθ2 (x)| ≤ ṁ(x) ‖θ1 − θ2‖ , (1)

P
(
mθ −mθ0 − (θ − θ0)T ṁθ0

)2
= o(‖θ − θ0‖2), (2)

for all θ1, θ2, θ in some neighborhood of θ0.
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√
n rate of convergence

Under the Lipschitz assumption, Fδ = δṁ is an envelope function
for the classMδ. By the theorem on bracketing numbers,

N[]

(
2ε ‖Fδ‖P,2 ,Mδ,L2(P)

)
≤ N(ε,B(θ0, δ), ‖ · ‖) . ε−p.

Applying the maximal inequality yields

E∗ ‖Gn‖Mδ
. ‖Fδ‖P,2 . δ.

Thus, the modulus of continuity condition in the rate theorem is
satisfied for φ(δ) = δ. Hence, we obtain the

√
n rate for θ̂n.
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Limiting distribution

Define rescaled criterion functions

Un(h) := n
(
Mn
(
θ0 + h/

√
n
)
−Mn (θ0)

)
and local parameters ĥn =

√
n(θ̂n − θ0). Obviously, ĥn maximizes Un(h)

for every n.

We rewrite Un as

Un = Gn

[√
n
(

mθ0+h/
√

n −mθ0

)
− hT ṁθ0

]
+ hTGnṁθ0 + n

(
M
(
θ0 + h/

√
n
)
−M (θ0)

)
= En(h) + hTGnṁθ0 +

1
2

hT Vh + o(1).

Provided that for any compact K ⊂ Θ, ‖En‖K = op(1). Then Un  U in
`∞(K ), where U(h) = hT Z + 1

2 hT Vh, and Z is the Gaussian limiting
distribution of Gnṁθ0 .

By the Argmax theorem, ĥn =
√

n(θ̂n − θ0) ĥ, where ĥ is the
maximizer of U(h).
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