M-Estimators

Yu Gu

September 16, 2021

Kロ ▶ K @R

 \sim \prec 舌 \sim ∍ $2Q$

Outline

- [The Argmax Theorem](#page-10-0)
- **[Rate of Convergence](#page-21-0)**
- **[Euclidean M-Estimators](#page-33-0)**

 $2Q$

4 ロ ▶ 4 伊

× \rightarrow \equiv \sim

Upper semicontinuity

A function $f: \mathbb{D} \mapsto \mathbb{R}$ is *upper semicontinuous* if it satisfies either of the following two conditions:

- (i) For all $c \in \mathbb{R}$, the set $\{x : f(x) \ge c\}$ is closed.
- (ii) For all $x_0 \in \mathbb{D}$, lim sup $_{x \to x_0} f(x) \le f(x_0)$.

Portmanteau theorem

 $X_n \rightarrow X$ if and only if

$$
\limsup_{n\to\infty} P^*(X_n \in F) \leq P(X \in F)
$$

for every closed *F*.

4 0 8

 \prec

 $2Q$

Maximal inequality with uniform entropy integral

Let F be a P-measurable class of measurable functions with measurable envelope function *F*. Then, for every $p \geq 1$,

 $\big\| \|\mathbb{G}_n\|_{\mathcal{F}}^* \|_{P,p} \lesssim J(1,\mathcal{F}) \|F\|_{P,2\vee p},$

where the uniform entropy integral is defined as

$$
J(\delta, \mathcal{F}) = \, \sup_{Q} \int_{0}^{\delta} \sqrt{1 + \log N\big(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\big)} \, d\epsilon.
$$

Maximal inequality with bracketing integral

Let $\mathcal F$ be a class of measurable functions with measurable envelope function *F*. Then

$$
\big\| \|\mathbb{G}_n\|_{\mathcal{F}}^*\big\|_{\rho,1} \lesssim J_{[]}\big(1,\mathcal{F},L_2(P)\big)\|{\mathcal{F}}\|_{\rho,2},
$$

where the bracketing integral is defined as

$$
J_{[]}(\delta, \mathcal{F}, \|\cdot\|):=\, \int_0^\delta \sqrt{1+\log N_{[]}\big(\epsilon\|F\|, \mathcal{F}, \|\cdot\|\big)} \, d\epsilon.
$$

Size of Lipschitz class of functions

Suppose the class of functions $\mathcal{F} = \{f_t:~t \in \mathcal{T}\}$ satisfies

 $|f_s(x) - f_t(x)| \leq d(s, t)F(x)$

for every $s, t \in \mathcal{T}$ and some fixed function *F*. Then, for any norm $\|\cdot\|$, $N_{\Pi}(2\epsilon \|F\|, \mathcal{F}, \|\cdot\|) \leq N(\epsilon, T, d).$

 QQ

M-estimators

- Consider a sequence $\{M_n(\theta): \theta \in \Theta\}$ of stochastic processes.
- *M-estimators* are (approximate) maximizers (or minimizers) $\hat{\theta}_n$ of criterion functions $\theta \mapsto M_n(\theta)$.
- **•** Examples:
	- \blacktriangleright maximum likelihood estimators
	- \blacktriangleright least squares estimators

 QQ

M-estimators (cont.)

- **•** Usually, the criterion function $\mathbb{M}_n(\theta)$ is an empirical process indexed by Θ.
- For i.i.d. observations X_1, \ldots, X_n , a common empirical criterion function is of the form

$$
\theta \mapsto \mathbb{M}_n(\theta) = \mathbb{P}_n m_\theta.
$$

• Let $\{M(\theta): \theta \in \Theta\}$ be a limiting process.

Problems of interest

- For M-estimators $\hat{\theta}_n$:
	- **EX** consistency for the true parameter θ_0
	- \blacktriangleright rate of convergence r_n
	- \blacktriangleright limiting distribution
- For local parameters $\hat{h}_n = r_n(\hat{\theta}_n \theta_0)$:
	- **Example 3** weak convergence to some random point \hat{h}
	- In Usually, \hat{h} is the maximizer of $\mathbb{M}(h)$.

Outline

4 ID F ×. \sim \rightarrow ÷ \mathbf{h} $2Q$

Preliminary arguments

- **•** If the argmax functional were continuous w.r.t. some metric on the space of criterion functions, then weak convergence of the criterion functions would imply weak convergence of the M-estimators by the continuous mapping theorem.
- In keeping with the setup for empirical process, we endow the space of criterion functions with the *uniform metric*.
- The argmax functional is continuous at functions M that have a unique, *well-separated* maximizer: $\mathbb{M}(\hat{h}) > \sup_{h \notin G} \mathbb{M}(h)$ almost surely for any neighborhood *G* of *h*ˆ.

Lemma 1

Let M*n,* M *be stochastic processes indexed by a metric space H. Let A and B be arbitrary subsets of H. Suppose that*

- (i) M(\hat{h}) > sup_{*h∉G,h∈A* M(h) *almost surely, for every open set G that*} *contains h.* ˆ
- $\mathbb{M}_n(\hat{h}_n) \geq \sup_h \mathbb{M}_n(h) o_p(1).$
- (iii) $\mathbb{M}_n \rightsquigarrow \mathbb{M}$ *in* $\ell^{\infty}(A \cup B)$ *.*

Then, for every closed set F,

$$
\limsup_{n\to\infty} P^*(\hat{h}_n\in F\cap A)\leq P(\hat{h}\in F\cup B^c).
$$

Note: $A = B = H \Rightarrow \hat{h}_n \leadsto \hat{h}$ (portmanteau theorem).

Proof

• By the continuous mapping theorem,

$$
\sup_{h\in F\cap A}\mathbb{M}_n(h)-\sup_{h\in B}\mathbb{M}_n(h)\rightsquigarrow \sup_{h\in F\cap A}\mathbb{M}(h)-\sup_{h\in B}\mathbb{M}(h)
$$

Thus, by Slutsky's lemma and the portmanteau theorem,

$$
\limsup_{n\to\infty} P^*(\hat{h}_n \in F \cap A)
$$
\n
$$
\leq \limsup_{n\to\infty} P^*\left(\sup_{h\in F \cap A} \mathbb{M}_n(h) \geq \sup_{h\in B} \mathbb{M}_n(h) - o_p(1)\right)
$$
\n
$$
\leq P\left(\sup_{h\in F \cap A} \mathbb{M}(h) \geq \sup_{h\in B} \mathbb{M}(h)\right).
$$

If $\hat{h} \notin F \cup B^c$, then $\hat{h} \in F^c \cap B$, which implies

$$
\sup_{h\in B} \mathbb{M}(h) \geq \mathbb{M}(\hat{h}) > \sup_{h\notin F^c, h\in A} \mathbb{M}(h) = \sup_{h\in F\cap A} \mathbb{M}(h).
$$

4 0 8

 QQ

Remarks

- The assumption that $\mathbb{M}_n \rightarrow \mathbb{M}$ uniformly in the whole parameter space is too strong.
- If dropping this assumption, additional properties of \hat{h}_n need to be established in order to obtain $\hat{h}_n \leadsto \hat{h}.$
- The Argmax theorem requires uniform tightness of \hat{h}_n and uniform convergence of M*ⁿ* on compact subspace.

Theorem 2 (Argmax theorem)

Let M*n,* M *be stochastic processes indexed by a metric space H. Suppose that*

- (i) *Almost all sample paths h* 7→ M(*h*) *are upper semicontinuous and possess a unique maximum at a (random) point* \hat{h} *, which as a random map in H is tight.*
- (ii) *The sequence h*ˆ *ⁿ is uniformly tight and satisfies* $\mathbb{M}_{n}(\hat{h}_{n})\geq\sup_{h}\mathbb{M}_{n}(h)-o_{\rho}(1).$

(iii) $\mathbb{M}_n \rightsquigarrow \mathbb{M}$ *in* $\ell^{\infty}(K)$ *for every compact* $K \subset H$. *Then* $\hat{h}_n \leadsto \hat{h}$ in H.

Proof

Step 1 Show that on compacta, a unique maximum of an upper semicontinuous function is well-separated. That is,

$$
\mathbb{M}(\hat{h}) > \sup_{h \notin G, h \in K} \mathbb{M}(h)
$$

almost surely, for every open set *G* that contains *h*ˆ.

- If this is not true, then there exist an open set *G* around \hat{h} and a sequence $h_m \in G^c \cap K$ such that $\mathbb{M}(h_m) \to \mathbb{M}(\hat{h})$.
- Since *K* is compact, $\{h_m\}$ has a subsequence $\{\tilde{h}_m\}$ that $\mathsf{converges}$ to some $h^* \in \mathbb{G}^c \cap \mathcal{K}$.
- By upper semicontinuity, $\mathbb{M}(h^*)\geq\limsup_m\mathbb{M}(\tilde{h}_m)=\mathbb{M}(\hat{h}).$
- This contradicts the uniqueness of \hat{h} , since $\hat{h} \in G$ while $h^* \in G^c$.

つひつ

Step 2 Apply the previous lemma with $A = B = K$ and obtain that for every closed set *F*,

$$
\limsup_{n\to\infty} P^*(\hat{h}_n \in F)
$$
\n
$$
\leq \limsup_{n\to\infty} P^*(\hat{h}_n \in F \cap K) + \limsup_{n\to\infty} P^*(\hat{h}_n \in K^c)
$$
\n
$$
\leq P(\hat{h} \in F \cup K^c) + \limsup_{n\to\infty} P^*(\hat{h}_n \in K^c)
$$
\n
$$
\leq P(\hat{h} \in F) + P(\hat{h} \in K^c) + \limsup_{n\to\infty} P^*(\hat{h}_n \in K^c).
$$

Due to uniform tightness of *h*ˆ *ⁿ* and tightness of *h*ˆ, *K* can be chosen to make the last two terms arbitrarily small.

Remarks

- The preceding lemma and the Argmax theorem are typically applied to a local parameter *h*, but they can also be applied to the original parameter θ .
- Since the limiting criterion function $\mathbb{M}(\theta)$ is typically nonrandom, the approach turns into a consistency proof.

Corollary 3 (Consistency)

Let M*ⁿ be stochastic processes indexed by a metric space* Θ*, and let* $M : \Theta \mapsto \mathbb{R}$ *be a deterministic function.*

(A) *Suppose that*

(i) $\mathbb{M}(\theta_0)$ > sup_{$\theta \notin G$} $\mathbb{M}(\theta)$ *for every open set G that contains* θ_0 *.*

 $(\mathsf{ii}) \mathbb{M}_n(\hat{\theta}_n) \geq \sup_{\theta} \mathbb{M}_n(\theta) - o_p(1)$.

(iii) $\mathbb{M}_n - \mathbb{M}$ || $\Theta \to 0$ *in outer probability.*

Then $\hat{\theta}_n \rightarrow \theta_0$ *in outer probability.*

- (B) *Suppose that*
	- (i) *The map* $\theta \mapsto M(\theta)$ *is upper semicontinuous with a unique maximum at* θ_0 *.*
	- (iii) *The sequence* $\hat{\theta}_n$ *is uniformly tight and satisfies* $\mathbb{M}_n(\hat{\theta}_n) > \sup_{\theta} \mathbb{M}_n(\theta) - o_p(1)$.

(iii) $\|M_n - M\|_K \to 0$ *in outer probability for every compact* $K \subset \Theta$ *. Then* $\hat{\theta}_n \to \theta_0$ *in outer probability.*

Equivalent condition for i.i.d. data

In the case of i.i.d. data, $\mathbb{M}_n(\theta) = \mathbb{P}_n m_\theta$ and $\mathbb{M} = \mathbb{P} m_\theta$, the uniform convergence in (iii) is valid if and only if the class of functions ${m_\theta : \theta \in \Theta}$ is Glivenko-Cantelli.

Outline

³ [Rate of Convergence](#page-21-0)

4 ID F

×. × ×. ÷ \mathbf{h} $2Q$

Preliminary arguments

- **If** M(θ) is twice differentiable at a point of maximum θ_0 , then $\mathbb{M}'(\theta_0)=0$ and $\mathbb{M}''(\theta_0)$ is negative definite.
- It is natural to assume that $\mathbb{M}(\theta)-\mathbb{M}(\theta_0)\lesssim -d^2(\theta,\theta_0)$ for every θ in a neighborhood of θ_0 .
- **•** The *modulus of continuity* of a stochastic process $\{X(t): t \in T\}$ is defined by

$$
m_X(\delta) := \sup_{s,t \in T:d(s,t) \leq \delta} |X(s) - X(t)|.
$$

An upper bound for the rate of convergence of $\hat{\theta}_n$ can be obtained from the modulus of continuity of $M_n - M$ at θ_0 .

Theorem 4 (Rate of convergence)

Let M*ⁿ be stochastic processes indexed by a semimetric space* Θ *and* M : Θ → R *a deterministic function. Suppose that*

(i) *For every* θ *in a neighborhood of* θ_0 *,*

$$
\mathbb{M}(\theta)-\mathbb{M}\left(\theta_0\right)\lesssim -d^2(\theta,\theta_0).
$$

(ii) *For every n and sufficiently small* δ*, the centered process* M*ⁿ* − M *satisfies*

$$
\mathcal{E}^* \sup_{d(\theta,\theta_0)<\delta} \left| \left(\mathbb{M}_n-\mathbb{M}\right)(\theta)-\left(\mathbb{M}_n-\mathbb{M}\right)(\theta_0) \right| \lesssim \frac{\phi_n(\delta)}{\sqrt{n}},
$$

for functions ϕ_n *such that* $\delta \mapsto \phi_n(\delta)/\delta^\alpha$ *is decreasing for some* $\alpha < 2$ *not depending on n.*

(iii) *The sequence* $\hat{\theta}_n$ *converges in outer probability to* θ_0 *and satisfies* $\mathbb{M}_{n}(\hat{\theta}_{n})\geq\mathbb{M}_{n}(\theta_{0})-O_{\rho}(r_{n}^{-2})$ for some sequence r_{n} such that

$$
r_n^2 \phi_n(r_n^{-1}) \leq \sqrt{n} \quad \text{ for every } n.
$$

Then r_nd($\hat{\theta}_n$, θ_0) = $O_p^*(1)$ *. If the displayed conditions are valid for every* θ *and* δ *, then the condition that* $\hat{\theta}_n$ *is consistent is unnecessary.*

∢ □ ▶ ∢ [□]

Remarks

- The theorem remains true if replacing the metric function *d* by an arbitrary function $\tilde{\mathbf{d}}$: $\Theta \times \Theta \mapsto [0, \infty)$ that satisfies $\tilde{\mathbf{d}}(\theta_n, \theta_0) \to 0$ whenever $d(\theta_n, \theta_0) \rightarrow 0$.
- When $\phi(\delta) = \delta^{\alpha}$, the rate r_n is at least $n^{1/(4-2\alpha)}$.
- In particular, the "usual" rate \sqrt{n} corresponds to $\phi(\delta) = \delta$.

Proof

Assume for simplicity that $\hat{\theta}_n$ truly maximizes $\mathbb{M}_n(\theta)$. We want to show

 $\mathsf{P}^\ast\left(r_n\mathsf{d}(\hat{\theta}_n,\theta_0)>2^{\mathsf{M}}\right)\rightarrow 0$ as $\mathsf{M}\rightarrow\infty,$ for every n large enough.

Ideas of proof:

• Partition the parameter space $\Theta \setminus {\theta_0}$ into disjoint "shells"

$$
S_{j,n}=\left\{\theta: 2^{j-1}
$$

with *j* ranging over the integers.

- For a given integer M , r_n d $(\hat{\theta}_n, \theta_0)>2^M$ implies that $\hat{\theta}_n$ is in one of the shells S_i , with $j > M$.
- **•** Bound above the probability that $\hat{\theta}_n \in S_{i,n}$.
	- For very large *j*, use the consistency of $\hat{\theta}_n$.
	- For smaller j , combine the remaining conditions.

 QQ

Fix $\eta > 0$ small enough such that

$$
\sup_{\theta: d(\theta,\theta_0)\leq \eta} \mathbb{M}(\theta) - \mathbb{M}\left(\theta_0\right) \lesssim -d^2(\theta,\theta_0)
$$

and such that for every $\delta \leq \eta$,

$$
E^* \sup_{d(\theta,\theta_0) < \delta} \left| \left(\mathbb{M}_n - \mathbb{M} \right) (\theta) - \left(\mathbb{M}_n - \mathbb{M} \right) (\theta_0) \right| \lesssim \frac{\phi_n(\delta)}{\sqrt{n}}.
$$

Such η exists by Conditions (i) and (ii).

4 0 8

 QQ

For *n* large enough,

$$
P^*\left(r_n d(\hat{\theta}_n, \theta_0) > 2^M\right)
$$

=
$$
P^*\left(2^M < r_n d(\hat{\theta}_n, \theta_0) \le \eta r_n/2\right) + P^*\left(r_n d(\hat{\theta}_n, \theta_0) > \eta r_n/2\right)
$$

$$
\le \sum_{j \ge M, 2^j \le \eta r_n} P^*(\hat{\theta}_n \in S_{j,n}) + P^*(d(\hat{\theta}_n, \theta_0) > \eta/2).
$$

The consistency of $\hat{\theta}_n$ for θ_0 guarantees that the second term converges to 0 as $n \to \infty$.

4 0 8

 $2Q$

Now we try to bound each term in the summation $\sum_{j\geq M,\, 2^j\leq \eta r_n}P^*(\hat{\theta}_n\in S_{j,n}).$

$$
\hat{\theta}_n \in S_{j,n} \Rightarrow \sup_{\theta \in S_{j,n}} \left[\mathbb{M}_n(\theta) - \mathbb{M}_n(\theta_0) \right] \ge 0,
$$

Condition $(i) \Rightarrow \mathbb{M}(\theta) - \mathbb{M}(\theta_0) \lesssim -d^2(\theta, \theta_0) \lesssim -\frac{2^{2j-2}}{r_n^2}, \ \forall \theta \in S_{j,n}.$

Thus, the summation can be bounded by

$$
\begin{aligned}&\sum_{j\geq M,\,2^j\leq \eta\tau_n}\boldsymbol{\mathit{P}}^*\left(\sup_{\theta\in S_{j,n}}\bigl|(\mathbb{M}_n-\mathbb{M})\,(\theta)-(\mathbb{M}_n-\mathbb{M})\,(\theta_0)\bigr|\gtrsim \frac{2^{2j-2}}{r_n^2}\right)\\&\lesssim \sum_{j\geq M}\frac{\phi_n(2^j/r_n)r_n^2}{\sqrt{n}2^{2j}}\lesssim \sum_{j\geq M}2^{j(\alpha-2)},\end{aligned}
$$

by Markov's inequality, Condition (ii), the condition that $r_n^2 \phi_n(r_n^{-1}) \leq \sqrt{n}$, and the fact that $\phi_n(c\delta) \leq c^{\alpha}\phi_n(\delta)$ for every $c > 1$ (since $\phi_n(\delta)/\delta^{\alpha}$ is decreasing). The term on the right converges to 0 as $M \to \infty$.

If Conditions (i) and (ii) are valid for every θ and δ , then we do not need to split $P^*\left(r_n d(\hat{\theta}_n, \theta_0)>2^M\right)$ into two parts. We can use the same arguments on the previous slide to complete the proof.

Under i.i.d. setting

• Recall Condition (ii) in the preceding theorem:

$$
E^* \sup_{d(\theta,\theta_0) < \delta} |(\mathbb{M}_n - \mathbb{M})(\theta) - (\mathbb{M}_n - \mathbb{M})(\theta_0)| \lesssim \frac{\phi_n(\delta)}{\sqrt{n}}
$$

• For i.i.d. data and empirical criterion functions $\mathbb{M}_n(\theta) = \mathbb{P}_n m_\theta$ and $\mathbb{M}(\theta) = Pm_{\theta}$, Condition (ii) involves the suprema of the empirical process $\mathbb{G}_n = \sqrt{n}(\mathbb{P}_n - \mathbb{P})$ indexed by classes of functions

$$
\mathcal{M}_{\delta}:=\left\{m_{\theta}-m_{\theta_0}:\, \mathbf{d}(\theta,\theta_0)<\delta\right\}.
$$

• It is reasonable to assume that these suprema are bounded uniformly in *n*.

Corollary 5

In the i.i.d. case, assume that

(i) *For every* θ *in a neighborhood of* θ_0 *,*

$$
P(m_{\theta}-m_{\theta_0})\lesssim -d^2(\theta,\theta_0).
$$

(ii) *There exists a function* ϕ *such that* $\delta \mapsto \phi(\delta)/\delta^\alpha$ *is decreasing for some* α < 2 *and, for every n.*

$$
E^* \|\mathbb{G}_n\|_{\mathcal{M}_\delta} \lesssim \phi(\delta).
$$

(iii) *The sequence* θ ˆ *ⁿ converges in outer probability to* θ⁰ *and satisfies* ${\mathbb P}_n$ $m_{\widehat{\theta}_n} \geq \sup_{\theta \in \Theta} {\mathbb P}_n$ $m_{\theta} - O_{\!rho}(r_n^{-2})$ for some sequence r_n such that

$$
r_n^2 \phi_n(r_n^{-1}) \leq \sqrt{n} \quad \text{ for every } n.
$$

Then $r_n d(\hat{\theta}_n, \theta_0) = O_p^*(1)$ *.*

Bounds on continuity modulus

- **It is important to derive a sharp bound on the modulus of continuity of** \mathbb{G}_n before applying the corollary.
- A simple but not necessarily efficient approach is to apply the maximal inequalities to the class \mathcal{M}_{δ} , which yield

 E_P^* ||G_n|| $M_\delta \lesssim J(1,\mathcal{M}_\delta)(P^*M_\delta^2)^{1/2},$ $\|E_P^*\| \mathbb{G}_n \|_{\mathcal{M}_\delta} \lesssim J_{[]}\big(1,\mathcal{M}_\delta,L_2(P)\big) (P^*M_\delta^2)^{1/2}.$

- **These bounds depend mostly on the envelope function** M_{δ} **.**
- Assuming that the entropy integrals are bounded as $\delta \downarrow 0$, we obtain an upper bound $\phi(\delta) = (P^*M_\delta^2)^{1/2}$ on the modulus.
- By the preceding corollary, r_n is at least the solution of

$$
r_n^4 P^* M_{1/r_n}^2 \sim n.
$$

 QQ

イロト イ母 トイラト イラト

Outline

- [The Argmax Theorem](#page-10-0)
- **[Rate of Convergence](#page-21-0)**

4 ID F

×. \sim \rightarrow ÷ \sim $2Q$

Overview

Key steps to obtain the limiting distribution of M-estimators of Euclidean parameters:

- Establish the consistency of $\hat{\theta}_n$ for the true parameter θ_0 .
- Establish the rate of convergence r_n of $\hat{\theta}_n$.
- Define *rescaled criterion functions* as a multiple of the map

 $h \mapsto M_n(\theta_0 + h/r_n) - M_n(\theta_0),$

which are maximized at local parameters $\hat{h}_n = r_n(\hat{\theta}_n - \theta_0).$

• Show that suitably rescaled criterion functions converge weakly to a limiting process M in $\ell^{\infty}(h : ||h|| \leq K)$ for every *K*.

If the sample paths $h \mapsto M(h)$ are upper semicontinuous and possess a unique maximizer \hat{h} , then by the Argmax theorem, $\hat{h}_n \leadsto \hat{h}$.

つひつ

Overview (cont.)

- **•** For illustration, we derive the limiting distribution of Euclidean M-estimators under the pointwise Lipschitz condition.
- We will combine the Argmax theorem and the rate of convergence theorem.
- More general results on Euclidean M-estimators are given in Theorem 3.2.10 of VW.

Notations

- \bullet The parameter space Θ is an open subset of Euclidean space, equipped with the Euclidean distance.
- We assume i.i.d observations and use the empirical process notations: $\mathbb{M}_n(\theta) = \mathbb{P}_n m_\theta$ and $\mathbb{M}(\theta) = P m_\theta$.
- Like before, for any $\delta > 0$, define the class of functions

$$
\mathcal{M}_{\delta}:=\left\{m_{\theta}-m_{\theta_0}:\, \mathbf{d}(\theta,\theta_0)<\delta\right\}.
$$

Assumptions

 Θ θ_0 is a point of maximum of $\mathbb{M}(\theta)$ in the interior of Θ .

 $\hat{\theta}_n$ maximize $\mathbb{M}_n(\theta)$ for every n and is consistent for $\theta_0.$

³ M(θ) has a nonsingular second derivative matrix *V*.

4 There exist some square-integrable functions \dot{m} and \dot{m}_{θ_0} such that

$$
|m_{\theta_1}(x)-m_{\theta_2}(x)|\leq \dot{m}(x)\,||\theta_1-\theta_2||\,,\qquad (1)
$$

$$
P\left(m_{\theta}-m_{\theta_0}-(\theta-\theta_0)^T\dot{m}_{\theta_0}\right)^2=o(||\theta-\theta_0||^2), \qquad (2)
$$

for all $\theta_1, \theta_2, \theta$ in some neighborhood of θ_0 .

√ *n* rate of convergence

• Under the Lipschitz assumption, $F_{\delta} = \delta \dot{m}$ is an envelope function for the class \mathcal{M}_{δ} . By the theorem on bracketing numbers,

$$
\textit{N}_{[]}\left(2\epsilon\, \| \mathcal{F}_{\delta}\|_{\mathit{P},2}\,,\mathcal{M}_{\delta},L_2(\mathit{P})\right)\leq\textit{N}(\epsilon,\mathit{B}(\theta_0,\delta),\|\cdot\|)\lesssim \epsilon^{-\mathit{P}}.
$$

• Applying the maximal inequality yields

$$
E^* ||G_n||_{\mathcal{M}_\delta} \lesssim ||F_\delta||_{P,2} \lesssim \delta.
$$

Thus, the modulus of continuity condition in the rate theorem is satisfied for $\phi(\delta) = \delta$. Hence, we obtain the \sqrt{n} rate for $\hat{\theta}_n$.

つひつ

Limiting distribution

O Define rescaled criterion functions

$$
\mathbb{U}_n(h) := n \left(\mathbb{M}_n \left(\theta_0 + h/\sqrt{n} \right) - \mathbb{M}_n \left(\theta_0 \right) \right)
$$

and local parameters $\hat{h}_n = \sqrt{n}(\hat{\theta}_n - \theta_0).$ Obviously, \hat{h}_n maximizes $\mathbb{U}_n(h)$ for every *n*.

We rewrite U*ⁿ* as

$$
\mathbb{U}_{n} = \mathbb{G}_{n} \left[\sqrt{n} \left(m_{\theta_{0} + h/\sqrt{n}} - m_{\theta_{0}} \right) - h^{T} \dot{m}_{\theta_{0}} \right] + h^{T} \mathbb{G}_{n} \dot{m}_{\theta_{0}} + n \left(\mathbb{M} \left(\theta_{0} + h/\sqrt{n} \right) - \mathbb{M} \left(\theta_{0} \right) \right) = \mathbb{E}_{n} (h) + h^{T} \mathbb{G}_{n} \dot{m}_{\theta_{0}} + \frac{1}{2} h^{T} V h + o(1).
$$

- **•** Provided that for any compact $K \subset \Theta$, $\|\mathbb{E}_n\|_K = o_p(1)$. Then $\mathbb{U}_n \rightsquigarrow \mathbb{U}$ in $\ell^{\infty}(K)$, where $\mathbb{U}(h) = h^T Z + \frac{1}{2}h^T Vh$, and Z is the Gaussian limiting distribution of $\mathbb{G}_n m_{\theta_0}$.
- By the Argmax theorem, $\hat{h}_n = \sqrt{n}(\hat{\theta}_n \theta_0) \rightsquigarrow \hat{h}$, where \hat{h} is the maximizer of U(*h*).

つひひ

K ロ ト K 伺 ト K ヨ ト K