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Introduction

In the following slides, we will follow chapter 17 in presenting the
technical background needed for the development of
semiparametric inference theory.

We will begin first with a general treatment of projections,
followed by thorough consideration of Hilbert spaces. Finally, we
will revisit the Banach space as covered in Chapter 6.

In all, our intention is to provide the background needed for a
“semiparametric efficiency calculus”, the development of which will
be the focus of the first few chapters in this unit.
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17.1 Projections

The projection of an object T onto a space S is the element Ŝ ∈ S
which is “closest” to T in some sense.

In the semiparametric case, the object T is usually a random
variable, and the spaces of interest contain square-integrable
random variables.

Theorem 17.1 gives us a simple method for identifying the
projection of T in this setting.
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Theorem 17.1

Theorem 17.1

Let S be a linear space of real random variables with finite
second moments. Then Ŝ is the projection of T onto S if
and only if:

(i) Ŝ ∈ S

(ii) E(T − Ŝ)S = 0 for all S ∈ S.

If S1 and S2 are both projections, then S1 = S2 almost
surely. If S contains the constants, then ET = EŜ and
cov(T − Ŝ, S) = 0 for all S ∈ S.
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Theorem 17,1 Proof

Proof: =⇒
Begin by assuming that conditions (i) and (ii) hold. Then for any
S ∈ S, we have:

E(T −S)2 = E(T − Ŝ)2 + 2E(T − Ŝ)(Ŝ−S) +E(Ŝ−S)2 (17.1)

However, condition (ii) forces the middle term to be zero, such
that E(T − S)2 ≥ E(T − Ŝ)2, with strict inequality whenever
E(Ŝ − S)2 > 0.

Thus, Ŝ is almost surely unique projection of T onto S.
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Theorem 17.1 Proof

Proof: ⇐=
Assume that Ŝ is a projection, and note that for any α ∈ R and
any S ∈ S,

E(T − Ŝ − αS)2 − E(T − Ŝ)2 = −2αE(T − Ŝ)S + α2ES2

Since Ŝ is a projection, the left side is strictly nonnegative for
every α.

However, considering the parabola α 7→ α2ES2 − 2αE(T − Ŝ)S,
we can note that this parabola is nonnegative for all α and S if
and only if E(T − Ŝ)S = 0 for all S.
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Theorem 17.1 Proof

Finally, uniqueness of the projection Ŝ follows from considering two
candidate projections S1 and S2 and applying equation (17.1):

E(T − S)2 = E(T − Ŝ)2 + 2E(T − Ŝ)(Ŝ − S) + E(Ŝ − S)2

to both S1 and S2, forcing E(S1 − S2)2 = 0, thus any such
projection is unique.

If the constants are in S, then theorem 17.1 gives that
E(T − Ŝ)c = 0 for any c ∈ R. Taking c = 1 gives us the remaining
assertions.
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Theorem 17.1

Note that theorem 17.1 does not provide that a projection always
exist. One can take the example that S is open in the L2(P )
norm, then the infimum of E(T − S)2 over S ∈ S is not achieved.

A sufficient condition for existence follows directly: that S is closed
in the L2(P ) norm. However, we can often establish the existence
of a projection directly.

Such existence questions will be handled more in the upcoming
chapters in this unit.
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Projection Example

A very useful example of a projection comes from conditional
expectation. Let X and Y be real random variables on a
probability space. Then g0(y) ≡ E(X|Y = y) is the conditional
expectation of X given Y = y.

If we let G be the space of all measurable functions g of Y such
that Eg2Y <∞, then by verifying that:

E(X − g0(Y ))g(Y ) = 0

for all g ∈ G, we have (provided Eg20(Y ) <∞), E(X|Y = y) is
the projection of X onto the space G. Theorem 17.1 guarantees
that the conditional expectation is almost surely unique.
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17.2 Hilbert Spaces

We begin our discussion of Hilbert spaces, which are essentially
generalizations of finite-dimensional Euclidean spaces. Additionally,
they serve as a specific case of the Banach space, and like Banach
spaces, are often infinite-dimensional.

Precisely, a Hilbert space is a Banach space which is equipped with
an inner product. An inner product on a Banach space D with
norm ‖ · ‖, is a function 〈·, ·〉 : D× D 7→ R., such that for all
α, β ∈ R and x, y, z ∈ D:

(i) 〈x, x〉 = ‖x‖2
(ii) 〈x, y〉 = 〈y, x〉
(iii) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉

We can also define the semi-inner product when ‖ · ‖ is a
semi-norm.
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17.2 Hilbert Spaces

It is also possible to begin with an inner product, and then
generate a norm rather than vice-versa.

Begin with a linear space D with a semi-inner product 〈·, ·〉 which
satisfies the “linear in first argument” symmetry properties stated
above, and also satisfies 〈·, ·〉 ≥ 0.

With this, taking ‖x‖ = 〈x, x〉1/2 for x ∈ D defines a semi-norm on
D. Theorem 17.2 verifies this.
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Theorem 17.2

Theorem 17.2

Let 〈·, ·〉 be a semi-inner product on D, with ‖x‖ = 〈x, x〉1/2
for all x ∈ D. Then for all α ∈ R and x, y ∈ D:

(a) 〈x, y〉 ≤ ‖x‖‖y‖
(b) ‖x+ y‖ ≤ ‖x‖+ ‖y‖
(c) ‖αx‖ = |α| × ‖x‖

〈·, ·〉 is also an inner product, then ‖x‖ = 0 if and only if
x = 0

A proof is provided on the following slides.
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Proof of Theorem 17.2

Proof
Note that:

0 ≤ 〈x− αy, x− αy〉 = 〈x, x〉 − 2α〈x, y〉+ α2〈y, y〉

allowing a ≡ 〈y, y〉, b ≡ −2|〈x, y〉|, c ≡ 〈x, x〉, and
t ≡ αsign〈x, y〉, we have:

q(t) ≡≤ at2 + bt+ c ≥ 0

which is a quadratic equation in t forced to be greater than 0.
Thus, q(t) has at most one real root, implying the discriminant of
the quadratic formula is not positive:

0 ≥ b2 − 4ac = 4〈x, y〉2 − 4〈x, x〉〈y, y〉

solving yields (a), that 〈x, y〉 ≤ ‖x‖‖y‖.
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Proof of Theorem 17.2

Proof
Now that we’ve shown (a), (b) follows directly since:

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + 2〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

finally, (c) follows from the equalities:

‖αx‖2 = 〈αx, αx〉 = α〈αx, x〉 = α2〈x, y〉 = (α‖x‖)2
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17.2 Hilbert Spaces

Part (a) in Theorem 17.2 is the Cauchy-Schwartz inequality.

We will refer to two elements, x, y, in a Hilbert space H, as
orthogonal if 〈x, y〉 = 0, denoted as x ⊥ y.

For any set C ⊂ H and any x ∈ H, x is orthogonal to C if x ⊥ y
for all y ∈ C, denoted x ⊥ C. Two subsets C1, C2 ⊂ H are
orthogonal, denoted C1 ⊥ C2 if all of their elements are
orthogonal.

For any set C1 ⊂ H, the orthocomplement of C1 denoted C⊥1 is
the set {x ∈ H : x ⊥ C1}
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17.2 Hilbert Spaces

Let the subspace H ⊂ H be linear and closed. Theorem 17.1, our
core projection result, provides that for any x ∈ H, there exists an
element y ∈ H that satisfies ‖x− y‖ ≤ ‖x− z‖, and such that
〈x− y, z〉 = 0 for all z ∈ H.

Let Π be an operator which performs this action, such that Πx ≡ y
for the above example. This “projection” operator, Π : H 7→ H
has several important properties, defined in Theorem 17.3.

First, recall the definitions, for an operator T , of the null space
N(T ) and range R(T ):

N(T ) ≡ {x ∈ H : Tx = 0}

R(T ) ≡ {y ∈ H : Tx = y for some x ∈ H}
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Theorem 17.3

Theorem 17.3

Let H be a closed, linear subspace of H and let Π : H 7→ H
be the projection operator onto H. Then:

(i) Π is continuous and linear,
(ii) ‖Πx‖ ≤ ‖x‖ for all x ∈ H
(iii) Π2 ≡ ΠΠ = Π, and:
(iv) N(Π) = H⊥ and R(Π) = H.

We present the proof for theorem 17.3 on the following slides.
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Proof Theorem 17.3

Proof
Let x, y ∈ H and α, β ∈ R If z ∈ H then:

〈[αx+ βy]− [αΠx+ βΠy] , z〉 = α〈x−Πx, z〉+ β〈y −Πy, z〉 = 0

By the theorem 17.1, we now have that:
Π(αx+ βy) = αΠx+ βΠy. This provides the linearity of Π.
Proving (ii) will provide continuity required for (i).

Since 〈x−Πx,Πx〉 = 0 for any x ∈ H, we have that:

‖x‖2 = ‖x−Πx‖2 + ‖Πx‖2 ≥ ‖Πx‖2

This yields (ii), and additionally (i).
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Proof of Theorem 17.3

Proof
For (iii), consider any y ∈ H. It’s trivial that Πy = y. Thus, for
any x ∈ H,Π(Πx) = Π(y) = y = Πx.

Finally, for x ∈ N(Π), we have x = x−Πx ∈ H⊥. Thus
N(Π) ⊂ H⊥. Additionally for x ∈ H⊥,Πx = 0 by definition, thus
implying H⊥ ⊂ N(Π).

Finally, R(Π) ⊂ H follows from its definition. For any x ∈ H,
Πx = x, and thus H ⊂ R(Π). This completes (iv), and thus the
proof.
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17.2 Hilbert Spaces

For any projection Π onto a closed linear subspace H ∈ H, I−Π,
where I is the identity operator, is a projection onto the closed
linear subspace H⊥.

A noteworthy example of a Hilbert space is H = L2(P ) with the
inner product 〈f, g〉 =

∫
fgdP . A closed subspace of interest is

L0
2(P ) ⊂ L2(P ), consisting of all mean zero functions in L2(P ).

The projection operator Π : L2(P ) 7→ L0
2(P ) is Πx = x− Px. In

order to see this, note that 〈x−Πx, y〉 = 〈Px, y〉 = PxPy = 0 for
any y ∈ L2(P )0.
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17.2 Hilbert Spaces

Consider the situation where we have two closed, linear subspaces
H1, H2 ⊂ H where H1 and H2 are not necessarily orthogonal. Let
Πj be the projection onto Hj , and define Qj = I −Πj for
j = 1, 2.

The sumspace of H1 and H2 is
H1 +H2 ≡ {h1 + h2 : h1 ∈ H1, h2 ∈ H2}.

We consider the idea of alternating projections, in which we
alternate between projection of some h ∈ H onto the
orthocomplements of H1 and H2 repeatedly, so that in the limit
we obtain the projection, h̃, of h onto the orthocomplement of the
closure of the sumspace of H1 and H2.

Our intention is that h− h̃ is the projection of h onto H1 +H2.
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17.2 Hilbert Spaces

Let h
(m)
j = Πj [I− (Q1Q2)

m]h and h̃
(m)
j = Πj [I− (Q2Q1)

m]h.

Let Π project onto H1 +H2 and Q ≡ I−Π.

Theorem 17.4 provides that Π in this setting can be computed as
the limit of iterations between Q2 and Q1, and that Πh can be
expressed as a sum of elements in H1 and H2, given certain
conditions.

We will state theorem 17.4 without proof following the textbook.
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Theorem 17.4

Theorem 17.4

Assume H1, H2 ⊂ H are closed and linear. Then, for any
h ∈ H:

(i) ‖h(m)
1 + h

(m)
2 −Πh‖ ≡ um → 0 as m→∞

(ii) ‖h̃(m)
1 + h̃

(m)
2 −Πh‖ ≡ ũm → 0 as m→∞

(iii) um∨ũm ≤ ρ2(m−1), where ρ is the cosine of the minimum
angle τ between H1 and H2 considering only elements in
(H1 ∩H2)

⊥.
(iv) ρ < 1 if and only if H1 +H2 is closed; and
(v) ‖I − (Q2Q1)

m −Π‖ = ‖I − (Q1Q2)
m −Π‖ = ρ2m−1
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17.2 Hilbert Spaces

We now focus our attention to linear functionals on Hilbert
spaces.

Recall that a linear operator is an operator for which
T (αx+ βy) = αT (x) + βT (y), and that the norm for a linear
operator T : D 7→ E is ‖T‖ ≡ supx∈D:‖x‖≤1‖Tx‖

In the special case when the output space E = R, a linear operator
is called a linear functional. We call a linear functional bounded
when ‖T‖ <∞. In this setting, boundedness of a linear operator is
equivalent to continuity (see proposition 6.15).

Theorem 7.15 gives a very important result for bounded linear
functionals in Hilbert spaces.
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Theorem 17.5

Theorem 17.5 (Riesz representation theorem)

If L : H 7→ R is a bounded linear functional on a Hilbert
space, then there exists a unique element h0 ∈ H such that
L(h) = 〈h, h0〉 for all h ∈ H and moreover, ‖L‖ = ‖h0‖

Proof
Assume that L exists and let H = N(L). Note that H is closed
and linear because L is continuous and the space {0} is trivially
closed and linear. Assume that H 6= H as otherwise the proof
would be trivial with h0 = 0.
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Proof of Theorem 17.5

Proof
Thus, there exists an object f0 ∈ H⊥ such that L(f0) = 1. Hence,
for all h ∈ H, h− L(h)f0 ∈ H since:

L(h− L(h)f0) = L(h)− L(h)L(f0) = 0

Since H and H⊥ are orthogonal, we have for all h ∈ H:

0 = 〈h− L(h)f0, f0〉 = 〈h, f0〉 − L(h)‖f0‖2

Setting h0 ≡ ‖f0‖−2f0, L(h) = 〈h, h0〉 for all h ∈ H.

Suppose h
′
0 ∈ H satisfies 〈h, h′

0〉 = 〈h, h0〉 for all h ∈ H, then
(h0 − h

′
0) ⊥ H, thus h0 = h

′
0. Since by the Cauchy-Schwartz

inequality, |〈h, h0〉| ≤ ‖h‖‖h0‖ and 〈h0, h0〉 = ‖h0‖2, we have that
‖L‖ = ‖h0‖, as required.
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17.3 More on Banach Spaces

Recall the definition of a Banach space as a complete normed
space. Similar to Hilbert spaces, a linear functional on a Banach
space is just a linear operator with real range.

The dual space B∗ of a Banach space B is the set of all continuous
linear functions on B.

Application of proposition 6.15 yields readily that for every
b∗ ∈ B∗, we have: |b∗b| ≤ ‖b∗‖‖b‖ for every b ∈ B, where
‖b∗‖ ≡ supb∈B:‖b‖≤1|b∗b| ≤ ∞.
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17.3 More on Banach Spaces

For a Hilbert space H, H∗ can be identified with H by the Reisz
representation theorem given above.

This implies the existence of an isometry between H and H∗.
Recall that an isometry is a one-to-one correspondence between
spaces which preserves norms.

To see this, select an arbitrary h∗ ∈ H, and let h̃ ∈ H be the
unique element that satisifies 〈h, h̃〉 = h∗h for all h ∈ H. Then:

‖h∗‖ = sup
h∈H:‖h‖≤1

〈h, h̃〉| ≤ ‖h̃‖

which follows from the Cauchy-Schwartz inequality. Since h∗ is
arbitrary, the isometry conclusion follows directly.

29 / 45 Preliminaries for Semiparametric Inference



17.3 More on Banach Spaces

Considering two Banach spaces, for each continuous operator
between them A : B1 7→ B2, there exists an adjoint map, or
adjoint, A∗ : B∗2 7→ B∗1 defined as (A∗b∗2)b1 = b∗2Ab1 for all b1 ∈ B1

and b∗2 ∈ B∗2.

It follows directly that A∗ is linear. Proposition 17.6, presented on
the following slide, presents that A∗ is bounded and thus
continuous.
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Proposition 17.6

Proposition 17.6

Let A : B1 7→ B2 be a bounded linear operator between
Banach spaces. Then ‖A∗‖ = ‖A‖.

Proof Given any b∗2 ∈ B∗2 :

‖A∗b∗2‖ = sup
b1∈B1:‖b1‖≤1

|A∗b∗2b1|

= sup
b1∈B1:‖b1‖≤1

{∣∣∣∣b∗2( Ab1
‖Ab1‖

)∣∣∣∣ ‖Ab1‖}
≤ ‖b∗2‖‖A‖

we have ‖A∗‖ ≤ ‖A‖. Thus ‖A∗‖ is a continuous, linear operator.
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Proof of Proposition 17.6

Now let A∗∗ : B∗∗1 7→ B∗∗2 be the adjoint of A∗ with respect to the
dual of the duals of B1 and B2. Note that for any j = 1, 2, the
map bj : Bj 7→ R defined by b∗j 7→ b∗jbj is a bounded linear
function, yielding Bj ⊂ B∗∗j .

By these definitions, for any b1 ∈ B1 and b∗2 ∈ B∗2:

(A∗∗b1)b
∗
2 = (A∗b∗2)b1 = b∗2Ab1

which yields that ‖A∗∗‖ ≤ ‖A∗‖, and the restriction of A∗∗ to B1

(call this A∗∗1 ), is equal to A. Hence ‖A‖ = ‖A∗∗1 ‖ ≤ ‖A∗‖,
yielding the desired result.
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17.3 More on Banach Spaces

For two Hilbert spaces A : H1 7→ H2 between two Hilbert spaces
with inner products 〈·, ·〉1 and 〈·, ·〉2 the adjoint is a map
A∗ : H2 7→ H1 satisfying 〈Ah1, h2〉2 = 〈h1, A∗h2〉1 for every
h1 ∈ H1 and h2 ∈ H2.

Considering the adjoint of a restriction of a continuous linear
operator A : H1 7→ H2, A0 : H0,1 7→ H2 where H0,1 is a closed
linear subspace of H1. If Π : H1 7→ H0,1 is the projection onto the
subspace, the adjoint of A0 is A∗0 = Π ◦A∗
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17.3 More on Banach Spaces

Denote B(D,E) as the collection of all linear operators between
normed spaces D and E.

Lemma 6.16 yields that for any T ∈ B(B1,B2), R(T ) is not closed
unless T is continuously invertible.

Consider this counter-example: let B1 = B2 = L2(0, 1), and define
T : L2(0, 1) 7→ L2(0, 1) by Tx(u) = ux(u). It follows that
‖T‖ ≤ 1, and thus T ∈ B(L2(0, 1), L2(0, 1)). The range of T is:

R(T ) =

{
y ∈ L2(0, 1) :

∫ 1

0
u−2y2(u)du <∞

}
however, the functions y1(u) = 1 and y2(u) =

√
u are not

contained in R(T ), and thus R(T ) is not closed.
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17.3 More on Banach Spaces

R(T )’s lack of closure is due to the inverse operator
T−1y(u) = u−1y(u) is not bounded over L2(0, 1). However, one
can verify that for any normed spaces D and E and any
T ∈ B(D,E), N(T ) is always closed due to the continuity of T .
Observe that also:

N(T ∗) = {b∗2 ∈ B∗2 : (T ∗b∗2)b1 = 0 for all b1 ∈ B1}
= {b∗2 ∈ B∗2 : b∗2(Tb1) = 0 for all b1 ∈ B1}
= R(T )⊥

where R(T )⊥ is the set of linear functionals in B∗2 that yield zero
on R(T ). Theorem 17.7, proven on the following slides, extends
the relationship above. We begin by stating a necessary lemma,
7.18, without proof.
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Theorem 17.7

Theorem 17.7

For two Banach spaces B1 and B2 and for any T ∈ B(B1,B2),
R(T ) = B2 if and only if N(T ∗) = {0} and R(T ∗) is closed.

Proof
If R(T ) = B2, then 0 = R(T )⊥ = N(T ∗), and thus T ∗ is
one-to-one. Since B2 is closed, it must be that R(T ∗) is closed
(which follows from Lemma 17.8). For the converse, if
N(T ∗) = {0} and R(T ∗) is closed, then R(T )⊥ = {0} and R(T )
is closed, which R(T ) = B2
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Lemma 17.8

Theorem 17.9

For two Banach spaces B1 and B2, and for any T ∈
B(B1,B2), R(T ) is closed if and only if R(T ∗) is closed.

This result is familiar one from real analysis, similar to the
alternative definitions of functional continuity.
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Theorem 17.8

Theorem 17.7

For two Banach spaces B1 and B2 and for any T ∈ B(B1,B2),
R(T ) = B2 if and only if N(T ∗) = {0} and R(T ∗) is closed.

Proof
If R(T ) = B2, then 0 = R(T )⊥ = N(T ∗), and thus T ∗ is
one-to-one. Since B2 is closed, it must be that R(T ∗) is closed
(which follows from Lemma 17.8). For the converse, if
N(T ∗) = {0} and R(T ∗) is closed, then R(T )⊥ = {0} and R(T )
is closed, which R(T ) = B2
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17.3 More on Banach Spaces

Restricting Theorem 17.7 to Hilbert spaces, we obtain trivially that
for any A ∈ B(H1,H2) that R(A)⊥ = N(A∗).

The final result of the Chapter, theorem 17.8, gives a useful result
for Hilbert spaces.
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Theorem 17.9

Theorem 17.9

For two Hilbert spaces H1 and H2, and for any A ∈
B(H1,H2), R(A) is closed if and only if R(A∗) is closed
if and only if R(A∗A) is closed. Moreover, if R(A) is closed
then R(A∗) = R(A∗A) and:

A(A∗A)−1A∗ : H2 7→ H1

is the projection onto R(A)

Proof
The first result holds easily by lemma 17.8, but following the text,
will prove this again for the specialization to Hilbert spaces ot
highlight interesting features that will become useful later.
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Proof of Theorem 17.9

Proof
First assume R(A) is closed, and let A∗0 be the restriction of A∗ to
R(A), and note that R(A∗) = R(A∗0), since R(A)⊥ = N(A∗).

Let A0 be the restriction of A to N(A)⊥, and note that
R(A0) = R(A) by definition of N(A). It follows that R(A0) is
closed, and N(A0) = {0}.

Lemma 6.16 guarantees the existence of a constant c > 0 such
that ‖A0x‖ ≥ c‖x‖ for all x ∈ N(A)⊥
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Proof of Theorem 17.9

Proof
Now, pick a y ∈ R(A0) and note that there exists an x ∈ N(A)⊥

such that y = A0x, yielding:

‖x‖‖A∗0y‖ ≥ 〈x,A∗0y〉 = 〈A∗0x, y〉 = ‖A0x‖‖y‖ ≥ c‖x‖‖y‖,

and therefore, ‖A∗0y‖ ≥ ‖y‖ for all y ∈ R(A0). This yields that
R(A∗) = R(A∗0) is closed.
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Proof of Theorem 17.9

Proof
Now assume R(A∗) is closed. Using the same argument as the
previous slide, R(A∗∗) is coed. However, due to the restriction to
Hilbert spaces, A∗∗ −A, and thus R(A) is closed.

Now assume that either R(A) or R(A∗) is closed, we know from
our previous argument that both must be closed. It follows again
from the argument above that R(A∗A) = R(A∗0A0).

Lemma 6.16 again gives the existence of c1, c2 > 0 such that
‖A0x‖ ≥ c1‖x‖ and ‖A∗0y‖ ≥ c2‖y‖ for all x ∈ N(A)⊥ and
y ∈ R(A)
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Proof of Theorem 17.9

Proof
Thus for all x ∈ N(A0)

⊥ we have:

‖A∗0A0x‖ ≥ c2‖A0x‖ ≥ c1c2‖x‖

yielding that R(A∗A) = R(A∗0A
∗
0) is closed.

Now that R(A∗A) is closed. Thus R(A∗0A
∗
0) is closed, and by

recycling arguments, we have that: N(A∗0A0) = N(A0) = {0}.
Thus there exists a c > 0 such that all x ∈ N(A0)

⊥,

c‖x‖ ≤ ‖A∗0A0x‖ ≤ ‖A∗0‖‖A0x‖

and therefore, R(A) = R(A0) is closed, and thus R(A∗) and
R(A∗A) are also closed.
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Proof of Theorem 17.9

Proof
Note that R(A∗A) is clearly a subset of R(A∗). Since
R(A)⊥ = N(A∗), we also have that R(A∗) ⊂ R(A∗A), and thus
R(A∗) = R(A∗A).

This yields, by lemma 6.16, that A∗A is continuously invertible on
R(A∗), and thus A(A∗A)−1A∗ exists and is well defined.

We then have that for any y ∈ R(A), there exists an x ∈ H1 such
that y = Ax. Thus:

Πy ≡ A(A∗A)−1A∗y = A(A∗A)−1(A∗A)x = Ax = y

for any y ∈ R(A)⊥, we have that y ∈ N(A∗) and thus Πy = 0.
Hence Π is the projection operator onto R(A), by definition, and
the proof is complete.
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