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Tangent Sets

For a statistical model {P ∈ P} on a sample space X , a one-dimensional

model {Pt} is a smooth submodel at P if

P0 = P,

{Pt ; t ∈ Nε ≡ (−ε, ε)} ⊂ P for some ε > 0 and

for some measurable ”tangent” function g : X 7→ R,

∫ [
(dPt(x))1/2 − (dP(x))1/2

t
− 1

2
g(x)(dP(x))1/2

]2

→ 0, (1)

as t → 0.

Lemma 11.11 forces the g in (1) to be contained in L0
2(P), the space of all

functions h : X 7→ R with Ph = 0 and Ph2 <∞.
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Tangent Sets

A tangent set Q̇P represents a submodel Q ⊂ P at P if the following

hold:

For every smooth one-dimensional submodel {Pt} for which

P0 = P and {Pt : t ∈ Nε} ⊂ Q for some ε > 0 (2)

and for which (1) holds for some g ∈ L0
2(P), we have g ∈ Q̇P

For every g ∈ Q̇P , there exists a smooth one-dimensional submodel

{Pt} such that (1) and (2) both hold.
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Tangent Sets

Score functions for finite dimensional submodels can be represented by

tangent sets corresponding to one-dimensional submodels.

To see this, let Q = {Pθ; θ ∈ Θ,Θ ⊂ Rk} ⊂ P. Let θ0 ∈ Θ be the true

value of the parameter, i.e. P = Pθ0 . Suppose that the members Pθ of Q
all have densities pθ dominated by a measure µ, and that

˙̀
θ0 ≡

∂

∂θ
log pθ

∣∣∣∣
θ=θ0

,

where ˙̀
θ0 ∈ L0

2(P), P‖ ˙̀
θ − ˙̀

θ0‖2 → 0 as θ → θ0.

The tangent set Q̇P ≡ {h′ ˙̀θ0 : h ∈ Rk} contains all the information in the

score ˙̀
θ0 , and Q̇P represents Q.
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Tangent Sets

Thus one-dimensional submodels are sufficient to represent all

finite-dimensional submodels. Since semiparametric efficiency is assessed

by examining the information for the worst finite-dimensional submodel,

one-dimensional submodels are sufficient for semiparametric models in

general, including models with infinite-dimensional parameters.
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Tangent Sets

Now if {Pt : t ∈ Nε} and g ∈ ṖP satisfy (1), then for any a ≥ 0,

everything will also hold when ε is replaced by ε/a and g is replaced by ag .

Thus we can usually assume, without a significant loss in generality, that a

tangent set ṖP is a cone, i.e., a set that is closed under multiplication by

nonnegative scalars.
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Differentiability

For an arbitrary model parameter ψ : P 7→ D, consider the general setting

where D is a Banach space B. In this case, we say ψ is differentiable at P

relative to the tangent set ṖP if, for every smooth one-dimensional

submodel {Pt} with tangent g ∈ ṖP , dψ(Pt)/(dt)|t=0 = ψ̇P(g) for some

bounded linear operator ψ̇P : ṖP 7→ B.
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Efficient Influence Function

Suppose ṖP is a linear space. The Riesz representation theorem yields that

for every b∗ ∈ B∗, b∗ψ̇P(g) = P[ψ̃P(b∗)g ] for some operator

ψ̃P : B∗ 7→ linṖP .

Note that for any g ∈ ṖP and b∗ ∈ B∗, we have b∗ψ̇P(g) = 〈g , ψ̇∗P(b∗)〉,
where 〈·, ·〉 is the inner product on L0

2(P) and ψ̇∗P is the adjoint of ψ̇P .

Thus the operator ψ̃P is precisely ψ̇∗P . In this case, ψ̃P is the efficient

influence function.
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Efficient Influence Function

We now present a way of verifying an efficient influence function:

Proposition (18.2)

Assume ψ : P 7→ `∞(H) is differentiable at P relative to the linear tangent

set ṖP , with bounded linear derivative ψ̇P : ṖP 7→ `∞(H). Then

ψ̃P : H 7→ L0
2(P) is an efficient influence function if and only if the

following both hold:

ψ̃P(h) is in the closed linear span of ṖP for all h ∈ H.

ψ̇P(g)(h) = P[ψ̃P(h)g ] for all h ∈ H and g ∈ ṖP .
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Regularity

An estimator sequence {Tn} for a parameter ψ(P) is asymptotically linear

if there exists an influence function ψ̌P : X 7→ B such that
√
n(Tn − ψ(P))−

√
nPnψ̌P

P−→ 0.

The estimator Tn is regular at P relative to ṖP if for every smooth

one-dimensional submodel {Pt} ⊂ P and every sequence tn with

tn = O(n−1/2),
√
n(Tn − ψ(Ptn))

Pn Z , for some tight Borel random

element Z , where Pn ≡ Ptn .
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Regularity

The following theorem provides a way to establish regularity.

Theorem (18.1)

Assume

(1) Tn and ψ(P) are in `∞(H).

(2) ψ is differentiable at P relative to the tangent space ṖP with efficient

influence function ψ̃P : H 7→ L0
2(P).

(3) Tn is asymptotically linear for ψ(P), with influence function ψ̌P .

(4) For each h ∈ H, let ψ̌•P be the projection of ψ̌P(h) onto ṖP .

Then the following are equivalent:

(a) The class F ≡ {ψ̌P(h) : h ∈ H} is P-Donsker and ψ̌•P(h) = ψ̃P(h)

almost surely for all h ∈ H.

(b) Tn is regular at P.
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Notation

Model parameter: ψ : P 7→ `∞(H).

Bounded linear operator: ψ̇P : ṖP 7→ `∞(H).

Efficient influence function: ψ̃P : H 7→ L0
2(P).

Influence function: ψ̌P : X 7→ `∞(H).

Projection of influence function onto tangent space Ṗp: ψ̌•P .
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Proof of Theorem 18.1

Assume F is P-Donsker. Let Pt be any smooth one-dimensional submodel

with tangent g ∈ ṖP , and let tn be any sequence with
√
ntn → k , for

some finite constant k . Then Pn = Ptn satisfies

∫ [
(dPtn(x))1/2 − (dP(x))1/2

tn
− 1

2
g(x)(dP(x))1/2

]2

→ 0

i.e. ∫ [√
n{(dPn(x))1/2 − (dP(x))1/2} − 1

2
g(x)(dP(x))1/2

]2

→ 0
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Proof of Theorem 18.1

By Theorem 11.12,

√
nPnψ̌P(·) Pn Gψ̌P(·) + P[ψ̌P(·)g ] = Gψ̌P(·) + P[ψ̌•P(·)g ],

where G is a tight Brownian bridge. The last equality follows from the fact

that g ∈ ṖP .

Let Yn = ‖
√
n(Tn − ψ(P))−

√
nPnψ̌P‖H, and note that Yn

P−→ 0 by the

asymptotic linearity assumption. Without loss of generality, assume that

the measurable sets for Pn and Pn (applied to the data X1, . . . ,Xn) are

both the same for all n ≥ 1.
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Proof of Theorem 18.1

By Theorem 11.14, Yn
Pn−→ 0. Combining this with the differentiability of

ψ, we obtain that

√
n(Tn − ψ(Pn))(·) =

√
n(Tn − ψ(P))(·)−

√
n(ψ(Pn)− ψ(P))(·)

Pn Gψ̌P(·) + P[(ψ̌•P(·)− ψ̃P(·))g ], (3)

in `∞(H).
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Proof of Theorem 18.1

Suppose now that Tn is regular ((b) holds) and we don’t know wheter F is

P-Donsker. The regularity of Tn implies that
√
n(Tn − ψ(P)) Z for

some tight process Z . The asymptotic linearity of Tn now forces
√
nPnψ̌P(·) Z , which yields that F is P-Donsker.

Suppose that for some h ∈ H we have g̃(h) ≡ ψ̌•P(h)− ψ̃P(h) 6= 0. Since

the choice of g in the arguments leading up to (3) was arbitrary, we can

choose g = ag̃ for any a > 0 to yield

√
n(Tn(h)− ψ(Pn)(h))

Pn Gψ̌P(h) + aPg̃2. (4)

Thus we can easily have different limiting distributions by choosing

different values of a, which is contradictory with regularity of Tn. Thus (a)

holds.
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Proof of Theorem 18.1

Assume (a) holds. For arbitrary choices of g ∈ ṖP and constant k such

that
√
ntn → k ,

√
n(Tn − ψ(Pn))

Pn Gψ̌P

in `∞(H). Now relax the assumption that
√
ntn → k to

√
ntn = O(1) and

allow g to arbitrary as before. Under weaker assumption, we have that for

every subsequence n′, there exists a further subsequence n′′ such that√
n′′tn′′ → k for some finite k , as n′′ →∞. Arguing along this

subsequence, our previous arguments can all be recycled to verify that

√
n′′(Tn′′ − ψ(Pn′′))

Pn′′ Gψ̌P

in `∞(H), as n′′ →∞.
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Proof of Theorem 18.1

Define Zn ≡
√
n(Tn − ψ(Pn)) and Z ≡ Gψ̌P . Fix f ∈ Cb(`∞(H)), recall

portmanteau theorem. Every subsequence n′ has a further subsequence n′′

such that E ∗f (Zn′′)→ Ef (Z ), as n′′ →∞, which implies that

E ∗f (Zn)→ Ef (Z ), as n→∞. Then portmanteau theorem yields

Zn
Pn Z . Thus Tn is regular.
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Efficiency

We now turn our attention to the question of efficiency in estimating

general Banach-values parameters.

We first present general optimality results and then characterize efficient

estimators in the special Banach space `∞(H).

We then

consider efficiency of Hadamard-differentiable functionals of efficient

parameters,

show how to establish efficiency of estimators in `∞(H) from

efficiency of all one-dimensional components, and

examine the related issue of efficiency in product spaces.
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Efficiency

For a Borel random element Y , let L(Y ) denote the law of Y , and let ∗
denote the convolution operation.

Define a function u : B 7→ [0,∞) to be subconvex if,

for every b ∈ B, u(b) ≥ 0 = u(0) and u(b) = u(−b),

for every c ∈ R, the set {b ∈ B : u(b) ≤ c} is convex and closed.

A simple example of a subconvex function is the norm ‖·‖ for B.

The following two theorems characterize optimality in Banach spaces.
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Efficiency

Theorem (Convolution theorem)

Assume the ψ : P 7→ B is differentiable at P relative to the tangent space

ṖP , with efficient influence function ψ̃P . Assume that Tn is regular at P

relative to ṖP , with Z being the tight weak limit of
√
n(Tn − ψ(P)) under

P. Then L(Z ) = L(Z0) ∗ L(M), where M is some Borel random element in

B, and Z0 is a tight Gaussian process in B with covariance

P[(b∗1Z0)(b∗2Z0)] = P[ψ̃P(b∗1)ψ̃P(b∗2)] for all b∗1, b
∗
2 ∈ B∗.
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Efficiency

Theorem (18.4)

Assume that conditions of convolution theorem holds and that

u : B 7→ [0,∞) is subconvex. Then

lim sup
n→∞

E∗u(
√
n(Tn − ψ(P))) ≥ Eu(Z0),

where Z0 is as defined in convolution theorem.
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Efficiency

The previous two theorems characterize optimality of regular estimators in

terms of the limiting process Z0, which is a tight, mean zero Gaussian

process with covariance obtained from the efficient influence function.

This can be viewed as an asymptotic generalization of the Cramer-Rao

lower bound.

We say that an estimator Tn is efficient if it it regular and the limiting

distribution of
√
n(Tn − ψ(P)) is Z0, i.e., Tn achieves the optimal lower

bound.
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Efficiency

The next proposition assures us that Z0 is fully characterized by the

distributions of b∗Z0 for b∗ ranging over all of B∗:

Proposition (18.5)

Let Xn be an asymptotically tight sequence in a Banach space B and

assume b∗Xn  b∗X for every b∗ ∈ B∗ and some tight Gaussian process X

in B. Then Xn  X.
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Proof of Proposition 18.5

Let B∗1 ≡ {b∗ ∈ B∗ : ‖b∗‖ ≤ 1} and B̃ ≡ `∞(B∗1). Note that

(B, ‖·‖) ⊂ (B̃, ‖·‖B∗1 ) by letting x(b∗) ≡ b∗x for every b∗ ∈ B∗ and all

x ∈ B. By Hahn-Banach theorem,

‖x‖ = sup
b∗∈B∗

|b∗x | = ‖x‖B∗1 .

Thus, by Lemma 7.8, weak convergence of Xn in B̃ will imply weak

convergence in B.

Since we already know that Xn is asymptotically tight in B̃, we only need

to show that all finite-dimensional distributions of Xn converge.

Jianqiao Wang Semiparametric Models and Efficiency October 14, 2021 26 / 31



Proof of Proposition 18.5

Let b∗1, . . . , b
∗
m ∈ B∗1 be arbitrary and note that for any (α1, . . . , αm) ∈ Rm,

m∑
j=1

αjXn(b∗j ) = b̃∗Xn, for b̃∗ ≡
m∑
j=1

αjb
∗
j ∈ B∗.

Since we know that b̃∗Xn  b̃∗X , we know that

m∑
j=1

αjb
∗
j Xn  

m∑
j=1

αjb
∗
j X .

Thus (Xn(b∗1), . . . ,Xn(b∗m))T  (X (b∗1), . . . ,X (b∗m))T since

(α1, . . . , αm) ∈ Rm was arbitrary and X is Gaussian. Since b∗1, . . . , b
∗
m and

m were also arbitrary, all finite-dimensional distributions of Xn converge.
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Efficiency

The next theorem assures us that Hadamard differentiable functions of

efficient estimators are also asymptotically efficient.

Theorem (18.6)

Assume that

ψ : P 7→ B is differentiable at P relative to the tangent space ṖP ,

with derivative ψ̇Pg, for every g ∈ ṖP , and efficient influence

function ψ̃P , and takes its values in a subset Bφ.

φ : Bφ ⊂ B 7→ E is Hadamard differentiable at ψ(P) tangentially to

B0 ≡ linψ̇P(ṖP).

Then φ ◦ ψ : P 7→ E is also differentiable at P related to ṖP . If Tn is a

sequence of estimators with values in Bφ that is efficient at P for

estimating ψ(P), the φ(Tn) is efficient at P for estimating φ ◦ ψ(P).
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Proof of Theorem 18.6

Let φ′ψ(P) : B 7→ E be the derivative of φ. Note that for any g ∈ ṖP and

any submodel {Pt} with tangent g , by the differentiablity of φ and ψ,

φ ◦ ψ(Pt)− φ ◦ ψ(P)

t
=
φ(ψ(P) + t ψ(Pt)−ψ(P)

t )− φ(ψ(P))

t

→φ′ψ(P)ψ̇Pg

as t → 0. Thus φ ◦ ψ : P 7→ E is differentiable at P relative to ṖP .
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Proof of Theorem 18.6

For any chosen submodel {Pt} with tangent g ∈ ṖP , define Pn ≡ P1/
√
n.

By the efficiency of Tn, we have that

√
n(Tn − ψ(Pn))

Pn Z0,

where Z0 has the optimal, mean zero, tight Gaussian limiting distribution.

By the delta method,

√
n(φ(Tn)− φ ◦ ψ(Pn))

Pn φ′ψ(P)Z0.

Since the choice of {Pt} was arbitrary, we now know that ψ(Tn) is regular

and also that
√
n(φ(Tn)− φ ◦ ψ(P)) φ′ψ(P)Z0.
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Proof of Theorem 18.6

By convolution theorem, for all e∗1 , e
∗
2 ∈ E∗,

P[(e∗1φ
′
ψ(P)Z0)(e∗2φ

′
ψ(P)Z0)] = P[ψ̃P(e∗1φ

′
ψ(P))ψ̃P(e∗2φ

′
ψ(P))]

Thus the desired result follows from differentiability of φ ◦ ψ and the

definition of efficient influence function ψ̃P since for every e∗ ∈ E∗ and

g ∈ linṖP ,

P[ψ̃P(e∗φ′ψ(P))g ] = e∗φ′ψ(P)ψ̇P(g).
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