# Semiparametric Models and Efficiency

Jianqiao Wang

October 14, 2021

Jianqiao Wang

Semiparametric Models and Efficiency

October 14, 2021 1 / 31





э

## Tangent Sets

For a statistical model  $\{P \in \mathcal{P}\}$  on a sample space  $\mathcal{X}$ , a one-dimensional model  $\{P_t\}$  is a *smooth submodel* at P if

- $P_0 = P$ ,
- $\{P_t; t \in N_{\epsilon} \equiv (-\epsilon, \epsilon)\} \subset \mathcal{P}$  for some  $\epsilon > 0$  and
- for some measurable "tangent" function  $g: \mathcal{X} \mapsto \mathbb{R}$ ,

$$\int \left[\frac{(dP_t(x))^{1/2} - (dP(x))^{1/2}}{t} - \frac{1}{2}g(x)(dP(x))^{1/2}\right]^2 \to 0, \quad (1)$$

as  $t \rightarrow 0$ .

Lemma 11.11 forces the g in (1) to be contained in  $L_2^0(P)$ , the space of all functions  $h : \mathcal{X} \mapsto \mathbb{R}$  with Ph = 0 and  $Ph^2 < \infty$ .

A tangent set  $\dot{Q}_P$  represents a submodel  $Q \subset P$  at P if the following hold:

• For every smooth one-dimensional submodel  $\{P_t\}$  for which

$$P_0 = P \text{ and } \{P_t : t \in N_\epsilon\} \subset \mathcal{Q} \text{ for some } \epsilon > 0$$
(2)

and for which (1) holds for some  $g \in L^0_2(P)$ , we have  $g \in \dot{\mathcal{Q}}_P$ 

For every g ∈ Q
<sub>P</sub>, there exists a smooth one-dimensional submodel {P<sub>t</sub>} such that (1) and (2) both hold.

Score functions for finite dimensional submodels can be represented by tangent sets corresponding to one-dimensional submodels.

To see this, let  $Q = \{P_{\theta}; \theta \in \Theta, \Theta \subset \mathbb{R}^k\} \subset \mathcal{P}$ . Let  $\theta_0 \in \Theta$  be the true value of the parameter, i.e.  $P = P_{\theta_0}$ . Suppose that the members  $P_{\theta}$  of Q all have densities  $p_{\theta}$  dominated by a measure  $\mu$ , and that

$$\dot{\ell}_{ heta_0} \equiv \left. rac{\partial}{\partial heta} \log p_{ heta} 
ight|_{ heta = heta_0},$$

where  $\dot{\ell}_{\theta_0} \in L_2^0(P)$ ,  $P \|\dot{\ell}_{\theta} - \dot{\ell}_{\theta_0}\|^2 \to 0$  as  $\theta \to \theta_0$ . The tangent set  $\dot{\mathcal{Q}}_P \equiv \{h'\dot{\ell}_{\theta_0} : h \in \mathbb{R}^k\}$  contains all the information in the score  $\dot{\ell}_{\theta_0}$ , and  $\dot{\mathcal{Q}}_P$  represents  $\mathcal{Q}$ . Thus one-dimensional submodels are sufficient to represent all finite-dimensional submodels. Since semiparametric efficiency is assessed by examining the information for the worst finite-dimensional submodel, one-dimensional submodels are sufficient for semiparametric models in general, including models with infinite-dimensional parameters. Now if  $\{P_t : t \in N_{\epsilon}\}$  and  $g \in \dot{\mathcal{P}}_P$  satisfy (1), then for any  $a \ge 0$ , everything will also hold when  $\epsilon$  is replaced by  $\epsilon/a$  and g is replaced by ag. Thus we can usually assume, without a significant loss in generality, that a tangent set  $\dot{\mathcal{P}}_P$  is a *cone*, i.e., a set that is closed under multiplication by nonnegative scalars. For an arbitrary model parameter  $\psi : \mathcal{P} \mapsto \mathbb{D}$ , consider the general setting where  $\mathbb{D}$  is a Banach space  $\mathbb{B}$ . In this case, we say  $\psi$  is *differentiable at* P*relative to the tangent set*  $\dot{\mathcal{P}}_P$  if, for every smooth one-dimensional submodel  $\{P_t\}$  with tangent  $g \in \dot{\mathcal{P}}_P$ ,  $d\psi(P_t)/(dt)|_{t=0} = \dot{\psi}_P(g)$  for some bounded linear operator  $\dot{\psi}_P : \dot{\mathcal{P}}_P \mapsto \mathbb{B}$ . Suppose  $\dot{\mathcal{P}}_P$  is a linear space. The Riesz representation theorem yields that for every  $b^* \in \mathbb{B}^*$ ,  $b^* \dot{\psi}_P(g) = P[\tilde{\psi}_P(b^*)g]$  for some operator  $\tilde{\psi}_P : \mathbb{B}^* \mapsto \overline{\lim} \dot{\mathcal{P}}_P$ .

Note that for any  $g \in \dot{\mathcal{P}}_P$  and  $b^* \in \mathbb{B}^*$ , we have  $b^* \dot{\psi}_P(g) = \langle g, \dot{\psi}_P^*(b^*) \rangle$ , where  $\langle \cdot, \cdot \rangle$  is the inner product on  $L_2^0(P)$  and  $\dot{\psi}_P^*$  is the adjoint of  $\dot{\psi}_P$ .

Thus the operator  $\tilde{\psi}_P$  is precisely  $\dot{\psi}_P^*$ . In this case,  $\tilde{\psi}_P$  is the *efficient* influence function.

We now present a way of verifying an efficient influence function:

## Proposition (18.2)

Assume  $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H})$  is differentiable at P relative to the linear tangent set  $\dot{\mathcal{P}}_P$ , with bounded linear derivative  $\dot{\psi}_P : \dot{\mathcal{P}}_P \mapsto \ell^{\infty}(\mathcal{H})$ . Then  $\tilde{\psi}_P : \mathcal{H} \mapsto L_2^0(P)$  is an efficient influence function if and only if the following both hold:

- $\tilde{\psi}_P(h)$  is in the closed linear span of  $\dot{\mathcal{P}}_P$  for all  $h \in \mathcal{H}$ .
- $\dot{\psi}_{P}(g)(h) = P[\tilde{\psi}_{P}(h)g]$  for all  $h \in \mathcal{H}$  and  $g \in \dot{\mathcal{P}}_{P}$ .

An estimator sequence  $\{T_n\}$  for a parameter  $\psi(P)$  is asymptotically linear if there exists an influence function  $\check{\psi}_P : \mathcal{X} \mapsto \mathbb{B}$  such that  $\sqrt{n}(T_n - \psi(P)) - \sqrt{n}\mathbb{P}_n\check{\psi}_P \xrightarrow{P} 0.$ 

The estimator  $T_n$  is *regular* at P relative to  $\dot{\mathcal{P}}_P$  if for every smooth one-dimensional submodel  $\{P_t\} \subset \mathcal{P}$  and every sequence  $t_n$  with  $t_n = O(n^{-1/2}), \sqrt{n}(T_n - \psi(P_{t_n})) \stackrel{P_n}{\leadsto} Z$ , for some tight Borel random element Z, where  $P_n \equiv P_{t_n}$ .

# Regularity

The following theorem provides a way to establish regularity.

Theorem (18.1)

Assume

- (1)  $T_n$  and  $\psi(P)$  are in  $\ell^{\infty}(\mathcal{H})$ .
- (2)  $\psi$  is differentiable at P relative to the tangent space  $\dot{\mathcal{P}}_P$  with efficient influence function  $\tilde{\psi}_P : \mathcal{H} \mapsto L^0_2(P)$ .

(3)  $T_n$  is asymptotically linear for  $\psi(P)$ , with influence function  $\check{\psi}_P$ .

(4) For each  $h \in \mathcal{H}$ , let  $\check{\psi}_{P}^{\bullet}$  be the projection of  $\check{\psi}_{P}(h)$  onto  $\dot{\mathcal{P}}_{P}$ .

Then the following are equivalent:

- (a) The class  $\mathcal{F} \equiv \{\check{\psi}_P(h) : h \in \mathcal{H}\}$  is P-Donsker and  $\check{\psi}_P^{\bullet}(h) = \tilde{\psi}_P(h)$ almost surely for all  $h \in \mathcal{H}$ .
- (b)  $T_n$  is regular at P.

- Model parameter:  $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H}).$
- Bounded linear operator:  $\dot{\psi}_P : \dot{\mathcal{P}}_P \mapsto \ell^{\infty}(\mathcal{H}).$
- Efficient influence function:  $\tilde{\psi}_P : \mathcal{H} \mapsto L_2^0(P)$ .
- Influence function:  $\check{\psi}_P : \mathcal{X} \mapsto \ell^{\infty}(\mathcal{H}).$
- Projection of influence function onto tangent space  $\dot{\mathcal{P}}_{p}$ :  $\check{\psi}_{P}^{\bullet}$ .

Assume  $\mathcal{F}$  is P-Donsker. Let  $P_t$  be any smooth one-dimensional submodel with tangent  $g \in \dot{\mathcal{P}}_P$ , and let  $t_n$  be any sequence with  $\sqrt{n}t_n \to k$ , for some finite constant k. Then  $P_n = P_{t_n}$  satisfies

$$\int \left[\frac{(dP_{t_n}(x))^{1/2} - (dP(x))^{1/2}}{t_n} - \frac{1}{2}g(x)(dP(x))^{1/2}\right]^2 \to 0$$

$$\int \left[\sqrt{n}\{(dP_n(x))^{1/2} - (dP(x))^{1/2}\} - \frac{1}{2}g(x)(dP(x))^{1/2}\right]^2 \to 0$$

By Theorem 11.12,

$$\sqrt{n}\mathbb{P}_{n}\check{\psi}_{P}(\cdot) \stackrel{P_{n}}{\leadsto} \mathbb{G}\check{\psi}_{P}(\cdot) + P[\check{\psi}_{P}(\cdot)g] = \mathbb{G}\check{\psi}_{P}(\cdot) + P[\check{\psi}_{P}^{\bullet}(\cdot)g],$$

where  $\mathbb{G}$  is a tight Brownian bridge. The last equality follows from the fact that  $g \in \dot{\mathcal{P}}_{P}$ .

Let  $Y_n = \|\sqrt{n}(T_n - \psi(P)) - \sqrt{n}\mathbb{P}_n\check{\psi}_P\|_{\mathcal{H}}$ , and note that  $Y_n \xrightarrow{P} 0$  by the asymptotic linearity assumption. Without loss of generality, assume that the measurable sets for  $P_n$  and  $P^n$  (applied to the data  $X_1, \ldots, X_n$ ) are both the same for all  $n \ge 1$ .

By Theorem 11.14,  $Y_n \xrightarrow{P_n} 0$ . Combining this with the differentiability of  $\psi$ , we obtain that

$$\sqrt{n}(T_n - \psi(P_n))(\cdot) = \sqrt{n}(T_n - \psi(P))(\cdot) - \sqrt{n}(\psi(P_n) - \psi(P))(\cdot)$$
$$\stackrel{P_n}{\leadsto} \mathbb{G}\check{\psi}_P(\cdot) + P[(\check{\psi}_P^{\bullet}(\cdot) - \tilde{\psi}_P(\cdot))g], \tag{3}$$

in  $\ell^{\infty}(\mathcal{H})$ .

Suppose now that  $T_n$  is regular ((b) holds) and we don't know wheter  $\mathcal{F}$  is P-Donsker. The regularity of  $T_n$  implies that  $\sqrt{n}(T_n - \psi(P)) \rightsquigarrow Z$  for some tight process Z. The asymptotic linearity of  $T_n$  now forces  $\sqrt{n}\mathbb{P}_n\check{\psi}_P(\cdot) \rightsquigarrow Z$ , which yields that  $\mathcal{F}$  is P-Donsker.

Suppose that for some  $h \in \mathcal{H}$  we have  $\tilde{g}(h) \equiv \check{\psi}_P^{\bullet}(h) - \tilde{\psi}_P(h) \neq 0$ . Since the choice of g in the arguments leading up to (3) was arbitrary, we can choose  $g = a\tilde{g}$  for any a > 0 to yield

$$\sqrt{n}(T_n(h) - \psi(P_n)(h)) \stackrel{P_n}{\leadsto} \mathbb{G}\check{\psi}_P(h) + aP\tilde{g}^2.$$
(4)

Thus we can easily have different limiting distributions by choosing different values of a, which is contradictory with regularity of  $T_n$ . Thus (a) holds.

Assume (a) holds. For arbitrary choices of  $g \in \dot{\mathcal{P}}_P$  and constant k such that  $\sqrt{n}t_n \rightarrow k$ ,

$$\sqrt{n}(T_n - \psi(P_n)) \stackrel{P_n}{\leadsto} \mathbb{G}\check{\psi}_P$$

in  $\ell^{\infty}(\mathcal{H})$ . Now relax the assumption that  $\sqrt{n}t_n \to k$  to  $\sqrt{n}t_n = O(1)$  and allow g to arbitrary as before. Under weaker assumption, we have that for every subsequence n', there exists a further subsequence n'' such that  $\sqrt{n''}t_{n''} \to k$  for some finite k, as  $n'' \to \infty$ . Arguing along this subsequence, our previous arguments can all be recycled to verify that

$$\sqrt{n''}(T_{n''}-\psi(P_{n''})) \stackrel{P_{n''}}{\leadsto} \mathbb{G}\check{\psi}_P$$

in  $\ell^\infty(\mathcal{H})$ , as  $n'' \to \infty$ .

Define  $Z_n \equiv \sqrt{n}(T_n - \psi(P_n))$  and  $Z \equiv \mathbb{G}\check{\psi}_P$ . Fix  $f \in C_b(\ell^{\infty}(\mathcal{H}))$ , recall portmanteau theorem. Every subsequence n' has a further subsequence n''such that  $E^*f(Z_{n''}) \to Ef(Z)$ , as  $n'' \to \infty$ , which implies that  $E^*f(Z_n) \to Ef(Z)$ , as  $n \to \infty$ . Then portmanteau theorem yields  $Z_n \stackrel{P_n}{\longrightarrow} Z$ . Thus  $T_n$  is regular. We now turn our attention to the question of efficiency in estimating general Banach-values parameters.

We first present general optimality results and then characterize efficient estimators in the special Banach space  $\ell^{\infty}(\mathcal{H})$ .

We then

- consider efficiency of Hadamard-differentiable functionals of efficient parameters,
- show how to establish efficiency of estimators in  $\ell^{\infty}(\mathcal{H})$  from efficiency of all one-dimensional components, and
- examine the related issue of efficiency in product spaces.

For a Borel random element Y, let L(Y) denote the law of Y, and let \* denote the convolution operation.

Define a function  $u:\mathbb{B}\mapsto [0,\infty)$  to be *subconvex* if,

- for every  $b \in \mathbb{B}$ ,  $u(b) \ge 0 = u(0)$  and u(b) = u(-b),
- for every  $c \in \mathbb{R}$ , the set  $\{b \in \mathbb{B} : u(b) \le c\}$  is convex and closed.

A simple example of a *subconvex* function is the norm  $\|\cdot\|$  for  $\mathbb{B}$ .

The following two theorems characterize optimality in Banach spaces.

#### Theorem (Convolution theorem)

Assume the  $\psi : \mathcal{P} \mapsto \mathbb{B}$  is differentiable at P relative to the tangent space  $\dot{\mathcal{P}}_P$ , with efficient influence function  $\tilde{\psi}_P$ . Assume that  $T_n$  is regular at P relative to  $\dot{\mathcal{P}}_P$ , with Z being the tight weak limit of  $\sqrt{n}(T_n - \psi(P))$  under P. Then  $L(Z) = L(Z_0) * L(M)$ , where M is some Borel random element in  $\mathbb{B}$ , and  $Z_0$  is a tight Gaussian process in  $\mathbb{B}$  with covariance  $P[(b_1^*Z_0)(b_2^*Z_0)] = P[\tilde{\psi}_P(b_1^*)\tilde{\psi}_P(b_2^*)]$  for all  $b_1^*, b_2^* \in \mathbb{B}^*$ .

## Theorem (18.4)

Assume that conditions of convolution theorem holds and that  $u: \mathbb{B} \mapsto [0,\infty)$  is subconvex. Then

$$\limsup_{n\to\infty} E_*u(\sqrt{n}(T_n-\psi(P)))\geq Eu(Z_0),$$

where  $Z_0$  is as defined in convolution theorem.

< ロト < 同ト < ヨト < ヨト

3

The previous two theorems characterize optimality of regular estimators in terms of the limiting process  $Z_0$ , which is a tight, mean zero Gaussian process with covariance obtained from the efficient influence function. This can be viewed as an asymptotic generalization of the Cramer-Rao lower bound.

We say that an estimator  $T_n$  is *efficient* if it regular and the limiting distribution of  $\sqrt{n}(T_n - \psi(P))$  is  $Z_0$ , i.e.,  $T_n$  achieves the optimal lower bound.

The next proposition assures us that  $Z_0$  is fully characterized by the distributions of  $b^*Z_0$  for  $b^*$  ranging over all of  $\mathbb{B}^*$ :

## Proposition (18.5)

Let  $X_n$  be an asymptotically tight sequence in a Banach space  $\mathbb{B}$  and assume  $b^*X_n \rightsquigarrow b^*X$  for every  $b^* \in \mathbb{B}^*$  and some tight Gaussian process Xin  $\mathbb{B}$ . Then  $X_n \rightsquigarrow X$ . Let  $\mathbb{B}_1^* \equiv \{b^* \in \mathbb{B}^* : \|b^*\| \le 1\}$  and  $\tilde{\mathbb{B}} \equiv \ell^{\infty}(\mathbb{B}_1^*)$ . Note that  $(\mathbb{B}, \|\cdot\|) \subset (\tilde{\mathbb{B}}, \|\cdot\|_{\mathbb{B}_1^*})$  by letting  $x(b^*) \equiv b^*x$  for every  $b^* \in \mathbb{B}^*$  and all  $x \in \mathbb{B}$ . By Hahn-Banach theorem,

$$||x|| = \sup_{b^* \in \mathbb{B}^*} |b^*x| = ||x||_{\mathbb{B}_1^*}.$$

Thus, by Lemma 7.8, weak convergence of  $X_n$  in  $\mathbb{B}$  will imply weak convergence in  $\mathbb{B}$ .

Since we already know that  $X_n$  is asymptotically tight in  $\tilde{\mathbb{B}}$ , we only need to show that all finite-dimensional distributions of  $X_n$  converge.

26/31

Let  $b_1^*,\ldots,b_m^*\in\mathbb{B}_1^*$  be arbitrary and note that for any  $(lpha_1,\ldots,lpha_m)\in\mathbb{R}^m$ ,

$$\sum_{j=1}^m \alpha_j X_n(b_j^*) = \tilde{b}^* X_n, \text{ for } \tilde{b}^* \equiv \sum_{j=1}^m \alpha_j b_j^* \in \mathbb{B}^*.$$

Since we know that  $\tilde{b}^*X_n \rightsquigarrow \tilde{b}^*X$ , we know that

$$\sum_{j=1}^m \alpha_j b_j^* X_n \rightsquigarrow \sum_{j=1}^m \alpha_j b_j^* X.$$

Thus  $(X_n(b_1^*), \ldots, X_n(b_m^*))^T \rightsquigarrow (X(b_1^*), \ldots, X(b_m^*))^T$  since  $(\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m$  was arbitrary and X is Gaussian. Since  $b_1^*, \ldots, b_m^*$  and m were also arbitrary, all finite-dimensional distributions of  $X_n$  converge.

The next theorem assures us that Hadamard differentiable functions of efficient estimators are also asymptotically efficient.

## Theorem (18.6)

#### Assume that

- ψ : P → B is differentiable at P relative to the tangent space P

   , with derivative ψ
   , for every g ∈ P
   , and efficient influence function ψ
   , and takes its values in a subset B
   .
- $\phi : \mathbb{B}_{\phi} \subset \mathbb{B} \mapsto \mathbb{E}$  is Hadamard differentiable at  $\psi(P)$  tangentially to  $\mathbb{B}_{0} \equiv \overline{lin}\dot{\psi}_{P}(\dot{P}_{P}).$

Then  $\phi \circ \psi : \mathcal{P} \mapsto \mathbb{E}$  is also differentiable at P related to  $\dot{\mathcal{P}}_P$ . If  $T_n$  is a sequence of estimators with values in  $B_{\phi}$  that is efficient at P for estimating  $\psi(P)$ , the  $\phi(T_n)$  is efficient at P for estimating  $\phi \circ \psi(P)$ .

Let  $\phi'_{\psi(P)} : \mathbb{B} \mapsto \mathbb{E}$  be the derivative of  $\phi$ . Note that for any  $g \in \dot{\mathcal{P}}_P$  and any submodel  $\{P_t\}$  with tangent g, by the differentiablity of  $\phi$  and  $\psi$ ,

$$\frac{\phi \circ \psi(P_t) - \phi \circ \psi(P)}{t} = \frac{\phi(\psi(P) + t\frac{\psi(P_t) - \psi(P)}{t}) - \phi(\psi(P))}{t}$$
$$\rightarrow \phi'_{\psi(P)}\dot{\psi}_{P}g$$

as  $t \to 0$ . Thus  $\phi \circ \psi : \mathcal{P} \mapsto \mathbb{E}$  is differentiable at P relative to  $\dot{\mathcal{P}}_P$ .

For any chosen submodel  $\{P_t\}$  with tangent  $g \in \dot{\mathcal{P}}_P$ , define  $P_n \equiv P_{1/\sqrt{n}}$ . By the efficiency of  $T_n$ , we have that

$$\sqrt{n}(T_n-\psi(P_n))\stackrel{P_n}{\rightsquigarrow}Z_0,$$

where  $Z_0$  has the optimal, mean zero, tight Gaussian limiting distribution. By the delta method,

$$\sqrt{n}(\phi(T_n) - \phi \circ \psi(P_n)) \stackrel{P_n}{\leadsto} \phi'_{\psi(P)} Z_0.$$

Since the choice of  $\{P_t\}$  was arbitrary, we now know that  $\psi(T_n)$  is regular and also that

$$\sqrt{n}(\phi(T_n) - \phi \circ \psi(P)) \rightsquigarrow \phi'_{\psi(P)} Z_0.$$

By convolution theorem, for all  $\mathit{e}_1^*, \mathit{e}_2^* \in \mathbb{E}^*$ ,

$$P[(e_1^*\phi_{\psi(P)}'Z_0)(e_2^*\phi_{\psi(P)}'Z_0)] = P[\tilde{\psi}_P(e_1^*\phi_{\psi(P)}')\tilde{\psi}_P(e_2^*\phi_{\psi(P)}')]$$

Thus the desired result follows from differentiability of  $\phi \circ \psi$  and the definition of efficient influence function  $\tilde{\psi}_P$  since for every  $e^* \in \mathbb{E}^*$  and  $g \in \overline{lin}\dot{\mathcal{P}}_P$ ,

$$P[\tilde{\psi}_P(e^*\phi'_{\psi(P)})g] = e^*\phi'_{\psi(P)}\dot{\psi}_P(g).$$