Efficiency and Testing

Yu Gu

October 28, 2021

Outline

-

(日)

Asymptotic linearity

An estimator sequence T_n for a parameter $\psi(P)$ is *asymptotically linear* if there exists an *influence function* $\check{\psi}_P : \mathcal{X} \mapsto \mathbb{R}^k$ such that

$$\sqrt{n}(T_n - \psi(P)) - \sqrt{n}\mathbb{P}_n\check{\psi}_P \stackrel{\mathrm{P}}{\rightarrow} 0.$$

Regularity

An estimator sequence T_n is *regular* at P relative to $\dot{\mathcal{P}}_P$ if for every smooth one-dimensional submodel $\{P_t\} \subset \mathcal{P}$ and every sequence t_n with $t_n = O(n^{-1/2})$,

$$\sqrt{n}(T_n-\psi(P_{t_n})) \stackrel{P_{t_n}}{\leadsto} Z,$$

for some tight Borel random element Z.

Asymptotic Efficiency

An estimator sequence T_n is *asymptotically efficient* at *P* if it is regular at *P* with limiting distribution

$$\sqrt{n}(T_n - \psi(P)) \rightsquigarrow N(0, P \tilde{\psi}_P \tilde{\psi}_P^T),$$

where $\tilde{\psi}_{P} : \mathcal{X} \mapsto \mathbb{R}^{k}$ is the *efficient influence function*.

 $\psi : \mathcal{P} \mapsto \mathbb{R}^k$ is differentiable at P relative to the tangent set $\dot{\mathcal{P}}_P$ if, for every smooth one-dimensional submodel $\{P_t\}$ with tangent $g \in \dot{\mathcal{P}}_P$,

$$\left.\frac{d\psi(P_t)}{dt}\right|_{t=0} = \dot{\psi}_P(g)$$

for some bounded linear operator $\dot{\psi}_{P} : \dot{\mathcal{P}}_{P} \mapsto \mathbb{R}^{k}$.

Equivalent definition of efficiency

Theorem 1

Let the parameter $\psi : \mathcal{P} \mapsto \mathbb{R}^k$ be differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with efficient influence function $\tilde{\psi}_P$. A sequence of estimators T_n is efficient at P relative to $\dot{\mathcal{P}}_P$ if and only if it is asymptotically linear with influence function $\tilde{\psi}_P$.

* See Lemma 25.23 (pp. 367-368) of van der Vaart (1998) for the proof.

Remarks

- So far we have obtained useful results on efficient estimators of Euclidean parameters.
- A natural question is how to extend these results to more general parameter spaces in semiparametric models.

Composite parameter

- For example, in survival analysis, the full composite parameter is usually ψ = (β, Λ) ∈ Ω.
- Define $\mathcal{H} = \{(h_1, h_2) : h_1 \in \mathbb{R}^k, h_2 \in D[0, \tau] \cap BV[0, \tau]\},\$ equipped with norm $\|h\|_{\mathcal{H}} = \|h_1\| + \|h_2\|_{BV}$. For any $1 \le r < \infty$, define $\mathcal{H}_r = \{h \in \mathcal{H} : \|h\|_{\mathcal{H}} \le r\}.$
- ψ can be viewed as an element of $\ell^{\infty}(\mathcal{H}_r)$ if we define

$$\psi(h) = h_1^T \beta + \int_0^\tau h_2(s) d\Lambda(s), \quad h \in \mathcal{H}_r, \quad \psi \in \Omega.$$

H_r is sufficiently rich to extract out all components of *ψ*. Thus, Ω becomes a subset of *ℓ*[∞](*H_r*) with norm ||*ψ*||_(r) = sup<sub>h∈*H_r* |*ψ*(*h*)|.
</sub>

For the rest of the section, we consider more general parameter spaces of the form $\ell^{\infty}(\mathcal{H})$. In this case, any (efficient) influence function is assumed to be a stochastic process indexed by \mathcal{H} .

Under this setting, ψ is differentiable $\Rightarrow \dot{\psi}_P(g)(h) = P[\tilde{\psi}_P(h)g]$ for all $h \in \mathcal{H}$.

General results

Theorem 2

Let T_n be an estimator sequence for a parameter $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H})$, where ψ is differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with efficient influence function $\tilde{\psi}_P : \mathcal{H} \mapsto L_2^0(P)$. Let $\mathcal{F} = \{\tilde{\psi}_P(h) : h \in \mathcal{H}\}$. Then the following are equivalent:

- (a) T_n is efficient at P relative to $\dot{\mathcal{P}}_P$ and at least one of the following holds:
 - (i) *T_n* is asymptotically linear.
 - (ii) \mathcal{F} is *P*-Donsker for some version^{*} of $\tilde{\psi}_{P}$.
- (b) For some version of $\tilde{\psi}_P$, T_n is asymptotically linear with influence function $\tilde{\psi}_P$ and \mathcal{F} is P-Donsker.
- (c) T_n is regular and asymptotically linear with influence function ψ_P such that {ψ_P(h) : h ∈ H} is P-Donsker and ψ_P(h) ∈ P_P for all h ∈ H.

* Two stochastic processes X and \widetilde{X} are versions of each other if $X(h) = \widetilde{X}(h)$ almost surely for every $h \in \mathcal{H}$.

イロト イポト イヨト イヨト

Interpretation

- (a) \Leftrightarrow (b) indicates that if T_n is efficient, only one of (i) or (ii) in (a) is required and the other will follow.
- (c) \Rightarrow (a) gives a simple method for establishing efficiency of T_n , which requires only that
 - T_n be asymptotically linear
 - with an influence function that is contained in a Donsker class
 - For which the individual components *ψ*_P(*h*) are contained in the tangent space for all *h* ∈ *H*.

Interpretation (cont.)

- The requirement that \mathcal{F} is *P*-Donsker collapses to requiring that $\|\tilde{\psi}_P\|_{P,2} < \infty$ when \mathcal{H} is finite.
- However, such a requirement is not needed in the statement of Theorem 1 since it automatically follows from the required differentiability of ψ when ψ(P) ∈ ℝ^k.
- This follows since the Riesz representation theorem assures us that $\tilde{\psi}_P$ is in the closed linear span of $\dot{\mathcal{P}}_P$, which is a subset of $L_2(P)$.

Deep results

The following theorem tells us that pointwise efficiency implies uniform efficiency under weak convergence.

Theorem 3

Let T_n be an estimator sequence for a parameter $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H})$, where ψ is differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with efficient influence function $\tilde{\psi}_P : \mathcal{H} \mapsto L_2^0(P)$. The following are equivalent:

- (a) T_n is efficient for $\psi(P)$.
- (b) $T_n(h)$ is efficient for $\psi(P)(h)$, for every $h \in \mathcal{H}$, and $\sqrt{n}(T_n \psi(P))$ is asymptotically tight under *P*.

Deep lemma

The proof of this theorem makes use of the following deep lemma:

Lemma 4

Suppose that $\psi : \mathcal{P} \mapsto \mathbb{D}$ is differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ and that $d' T_n$ is asymptotically efficient at P for estimating $d'\psi(P)$ for every d' in a subset $\mathbb{D}' \subset \mathbb{D}^*$ which satisfies

$$\|d\| \le c \sup_{d' \in \mathbb{D}', \|d'\| \le 1} |d'(d)|,$$
 (1)

for some constant $c < \infty$. Then T_n is asymptotically efficient at P provided $\sqrt{n}(T_n - \psi(P))$ is asymptotically tight under P.

Proof of Theorem 2

• $(a) \Rightarrow (b)$ is obvious.

- Assume (b), let D = ℓ[∞](H) and D' be the set of all coordinate projections d → d(h) for every h ∈ H.
- Since the uniform norm on ℓ[∞](H) is trivially equal to sup_{d'∈D'} |d'(d)| and ||d'|| = 1 for every d' ∈ D', Condition (1) is easily satisfied.
- All of the conditions in the lemma are satisfied by the assumptions in (b). Hence, T_n is efficient.

The following corollary of Lemma 4 provides a simple connection between marginal and joint efficiency on product spaces:

Corollary 5

Suppose that $\psi_j : \mathcal{P} \mapsto \mathbb{D}_j$ is differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$, and suppose that $T_{n,j}$ is asymptotically efficient at P for estimating $\psi_j(P)$, for j = 1, 2. Then $(T_{n,1}, T_{n,2})$ is asymptotically efficient at P for estimating $(\psi_1(P), \psi_2(P))$.

The proof of this corollary makes use of the following theorem:

Theorem 6 (Hahn-Banach theorem)

If X is a normed space and $x \in X$, then

 $||x|| = \sup \{ |f(x)| : f \in \mathbb{X}^* \text{ and } ||f|| \le 1 \}.$

Moreover, this supremum is attained.

Proof of Corollary 5

- Let D' be the set of all maps (d₁, d₂) → d^{*}_j d_j for d^{*}_j ∈ D^{*}_j and j equal to either 1 or 2.
- By the Hahn-Banach theorem, $\|d_j\| = \sup \left\{ |d_j^*(d_j)| : \|d_j^*\| = 1, d_j^* \in \mathbb{D}_j^* \right\}.$
- Thus the product norm ||(d₁, d₂)|| = ||d₁|| ∨ ||d₂|| satisfies Condition 1 of Lemma 4 with c = 1.
- Hence the desired conclusion follows.

Remarks

- Marginal efficiency implies joint efficiency even though marginal weak convergence does not imply joint weak convergence.
- Consider the setting where $\psi_j(P) \in \mathbb{R}$ for j = 1, 2. If $T_{n,j}$ is efficient for $\psi_j(P)$, then the limiting distribution of $\sqrt{n}(T_{n,j} \psi_j(P))$ is $N(0, P\tilde{\psi}_{j,P}\tilde{\psi}_{j,P}^T)$, for j = 1, 2.
- Thus the limiting joint distribution will be the optimal bivariate Gaussian distribution.
- The preceding theorem can be viewed as an infinite-dimensional generalization of this finite-dimensional phenomenon.

Outline

・ロト ・日下・ ・ ヨト・

Optimality of tests

We will test the hypothesis

$$H_0: \psi(P) \le 0$$
 vs. $H_1: \psi(P) > 0$ (2)

for a one-dimensional parameter $\psi(P)$.

- Null hypotheses of the form H₀ : ψ(P) ≤ ψ₀ can trivially be rewritten in the form given in (2) by replacing P → ψ(P) with P → ψ(P) − ψ₀.
- We want to show the basic conclusion that a test based on an asymptotically efficient estimator for ψ(P) will, in a meaningful way, be asymptotically optimal.

Local asymptotic power

- For a given model *P* and measure *P* on the boundary of the null hypothesis where ψ(*P*) = 0, we are interested in studying the "local asymptotic power" in a neighborhood of *P*.
- These neighborhoods are of size $1/\sqrt{n}$ and are the appropriate magnitude when considering sample size computation for \sqrt{n} consistent parameter estimates.

Example

Consider the univariate normal setting where the data are i.i.d. $N(\mu, \sigma^2)$. A natural choice for testing $H_0: \mu \leq 0$ vs. $H_1: \mu > 0$ is the indicator of whether

$$T_n=\sqrt{n}\frac{\bar{x}}{s_n}>z_{1-\alpha},$$

where

- \bar{x} and s_n are the sample mean and standard deviation from an i.i.d. sample X_1, \ldots, X_n ,
- *z_q* is the *q*th quantile of a standard normal,
- α is the size of the test.

- For any $\mu > 0$, T_n diverges to infinity with probability 1.
- However, if $\mu = k/\sqrt{n}$ for some finite k, then $T_n \rightsquigarrow N(k/\sigma, 1)$.
- Thus we can derive non-trivial power functions only for shrinking "contiguous alternatives" in a $1/\sqrt{n}$ neighborhood of zero.

General contiguous alternatives

- In general, we study the performance of tests under contiguous alternatives defined by one-dimensional submodels.
- For a given element g of a tangent set P
 P, let t → P{t,g} be a one-dimensional submodel which is differentiable in quadratic mean at P with tangent g along which ψ is differentiable, i.e.,

$$\frac{\psi\left(\boldsymbol{P}_{t,\boldsymbol{g}}\right)-\psi(\boldsymbol{P})}{t}\rightarrow\boldsymbol{P}\left[\tilde{\psi}_{\boldsymbol{P}}\boldsymbol{g}\right]$$

as $t \downarrow 0$.

- When $\psi(P) = 0$, for each g with $P[\tilde{\psi}_P g] > 0$, the submodel $\{P_{t,g}\}$ satisfies $\psi(P_{t,g}) > 0$ for all sufficiently small t > 0.
- Thus, we will consider power over contiguous alternatives of the form {P_{h/√n,g}} for h > 0.

Power function

Definition 7 (Power function)

For a subset $Q \subset P$ containing P, a power function $\pi : Q \mapsto [0, 1]$ at level α is a function on probability measures that satisfies $\pi(Q) \leq \alpha$ for all $Q \in Q$ satisfying $\psi(Q) \leq 0$.

 $\pi(Q)$ is the probability of rejecting $H_0: \psi(P) \leq 0$ under Q.

We say that a sequence of power functions $\{\pi_n\}$ has asymptotic level α if $\limsup_{n\to\infty} \pi_n(Q) \leq \alpha$ for every $Q \in Q : \psi(Q) \leq 0$.

Main results

The following theorem provides an upper bound for the power at the alternatives $P_{h/\sqrt{n},g}$:

Theorem 8

Let $\psi : \mathcal{P} \mapsto \mathbb{R}$ be differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with efficient influence function $\tilde{\psi}_P$, and suppose $\psi(P) = 0$. Then, for every sequence of power functions $P \mapsto \pi_n(P)$ of asymptotic level α tests for $H_0 : \psi(P) \leq 0$, and for every $g \in \dot{\mathcal{P}}_P$ with $P\left[\tilde{\psi}_P g\right] > 0$ and every h > 0,

$$\limsup_{n\to\infty} \pi_n\left(\boldsymbol{P}_{h/\sqrt{n},g}\right) \leq 1 - \Phi\left[z_{1-\alpha} - h\frac{\boldsymbol{P}[\tilde{\psi}_{\boldsymbol{P}}\boldsymbol{g}]}{\sqrt{\boldsymbol{P}[\tilde{\psi}_{\boldsymbol{P}}^2]}}\right]$$

* See Lemma 25.44 (pp. 384-385) of van der Vaart (1998) for the proof.

Tests based on efficient estimators

As a consequence of the preceding theorem, a test based on an efficient estimator for $\psi(P)$ is automatically "locally uniformly most powerful": its power function attains the upper bound.

Lemma 9

Let $\psi : \mathcal{P} \mapsto \mathbb{R}$ be differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with efficient influence function $\tilde{\psi}_P$, and suppose $\psi(P) = 0$. Suppose the estimator T_n is asymptotically efficient at P, and, moreover, that $S_n^2 \xrightarrow{P} P \tilde{\psi}_P^2$. Then, for every h > 0 and $g \in \dot{\mathcal{P}}_P$,

$$\lim_{n\to\infty} \mathbf{P}_{h/\sqrt{n},g}\left(\frac{\sqrt{n}T_n}{S_n} \ge z_{1-\alpha}\right) = 1 - \Phi\left(z_{1-\alpha} - h\frac{P[\tilde{\psi}_P g]}{\sqrt{P\tilde{\psi}_P^2}}\right).$$

Proof of Lemma 9

• Let $P_n \equiv P_{h/\sqrt{n},g}$. By the efficiency of T_n ,

$$\sqrt{n}(T_n - \psi(P_{h/\sqrt{n},g})) \stackrel{P_n}{\rightsquigarrow} N(0, P\tilde{\psi}_P^2).$$
(3)

By the differentiability of ψ,

$$\frac{\psi(P_{h/\sqrt{n},g}) - \psi(P)}{h/\sqrt{n}} \to P[\tilde{\psi}_P g], \quad \text{as } n \to \infty.$$
(4)

• Combining (3) and (4) yields

$$\sqrt{n}T_n \stackrel{P_n}{\rightsquigarrow} N\left(hP[\tilde{\psi}_P g], P\tilde{\psi}_P^2\right).$$

• The desired conclusion follows since $S_n^2 \xrightarrow{P} P \tilde{\psi}_P^2$.