Efficiency and Testing

Yu Gu

October 28, 2021

◆ロ ▶ ◆ 母

∋⇒ ×.

 299

Outline

2 [Optimality of Tests](#page-20-0)

Kロト K包ト

医毛菌 医牙科 Þ $2Q$

Asymptotic linearity

An estimator sequence *Tⁿ* for a parameter ψ(*P*) is *asymptotically* $\vec l$ *linear* if there exists an *influence function* $\check{\psi}_P : \mathcal{X} \mapsto \mathbb{R}^k$ such that

$$
\sqrt{n}(T_n-\psi(P))-\sqrt{n}\mathbb{P}_n\check{\psi}_P\overset{\mathbf{P}}{\to}\mathbf{0}.
$$

4 D F

 QQ

Regularity

An estimator sequence T_n is *regular* at P relative to $\dot{\mathcal{P}}_P$ if for every smooth one-dimensional submodel $\{P_t\} \subset \mathcal{P}$ and every sequence t_n $with t_n = O(n^{-1/2}),$

$$
\sqrt{n}\left(T_n-\psi\left(P_{t_n}\right)\right)\stackrel{P_{t_n}}{\leadsto}Z,
$$

for some tight Borel random element *Z*.

Asymptotic Efficiency

An estimator sequence T_n is *asymptotically efficient* at P if it is regular at *P* with limiting distribution

$$
\sqrt{n}(\mathcal{T}_n-\psi(P))\rightsquigarrow \mathcal{N}(0,P\tilde{\psi}_P\tilde{\psi}_P^T),
$$

where $\tilde{\psi}_P: \mathcal{X} \mapsto \mathbb{R}^k$ is the *efficient influence function*.

 $\psi: \mathcal{P} \mapsto \mathbb{R}^k$ is differentiable at P relative to the tangent set $\dot{\mathcal{P}}_{P}$ if, for every smooth one-dimensional submodel $\{P_t\}$ with tangent $g\in \dot{\mathcal P}_P,$

$$
\left. \frac{d\psi(P_t)}{dt} \right|_{t=0} = \dot{\psi}_P(g)
$$

for some bounded linear operator $\dot{\psi}_P: \dot{\mathcal{P}}_P \mapsto \mathbb{R}^k.$

Equivalent definition of efficiency

Theorem 1

Let the parameter $\psi: \mathcal{P} \mapsto \mathbb{R}^k$ be differentiable at P relative to the *tangent space* P˙ *^P with efficient influence function* ψ˜ *^P. A sequence of estimators T_n is efficient at P relative to* \dot{P}_P *if and only if it is* a symptotically linear with influence function $\tilde{\psi}_P$.

∗*See Lemma 25.23 (pp. 367-368) of van der Vaart (1998) for the proof.*

Remarks

- So far we have obtained useful results on efficient estimators of Euclidean parameters.
- A natural question is how to extend these results to more general parameter spaces in semiparametric models.

Composite parameter

- For example, in survival analysis, the full composite parameter is usually $\psi = (\beta, \Lambda) \in \Omega$.
- $\mathsf{Define} \ \mathcal{H} = \big\{ (h_1, h_2) : h_1 \in \mathbb{R}^k, h_2 \in D[0, \tau] \cap BV[0, \tau] \big\},$ equipped with norm $||h||_{\mathcal{H}} = ||h_1|| + ||h_2||_{BV}$. For any $1 \le r < \infty$, define $\mathcal{H}_r = \{h \in \mathcal{H} : ||h||_{\mathcal{H}} \le r\}.$
- ψ can be viewed as an element of $\ell^{\infty}(\mathcal{H}_r)$ if we define

$$
\psi(h)=h_1^T\beta+\int_0^{\tau}h_2(s)d\Lambda(s),\quad h\in\mathcal{H}_r,\quad\psi\in\Omega.
$$

 \mathcal{H}_r is sufficiently rich to extract out all components of $\psi.$ Thus, Ω becomes a subset of $\ell^{\infty}(\mathcal{H}_r)$ with norm $\|\psi\|_{(r)} = \sup_{h \in \mathcal{H}_r} |\psi(h)|.$

つひひ

イロト イ母 トイラト イラト

For the rest of the section, we consider more general parameter spaces of the form $\ell^{\infty}(\mathcal{H})$. In this case, any (efficient) influence function is assumed to be a stochastic process indexed by H .

Under this setting, ψ is differentiable $\Rightarrow \dot{\psi}_P(g)(h) = P[\tilde{\psi}_P(h)g]$ for all $h \in \mathcal{H}$.

General results

Theorem 2

Let T_n *be an estimator sequence for a parameter* $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H})$ *, where* ψ is differentiable at P relative to the tangent space $\dot{\mathcal{P}}_P$ with *efficient influence function* $\tilde{\psi}_P : \mathcal{H} \mapsto L_2^0(P)$ *. Let* $\mathcal{F} = {\tilde{\psi}_P(h) : h \in \mathcal{H}}$ *. Then the following are equivalent:*

- (a) T_n is efficient at P relative to $\dot{\mathcal{P}}_P$ and at least one of the following *holds:*
	- (i) *Tⁿ is asymptotically linear.*
	- (i) *F* is P-Donsker for some version^{*} of $\tilde{\psi}_P$.
- (b) *For some version of* ψ˜ *^P, Tⁿ is asymptotically linear with influence function* $\tilde{\psi}_P$ and $\mathcal F$ *is P-Donsker.*
- (c) T_n *is regular and asymptotically linear with influence function* $\check{\psi}_P$ $\mathsf{such}\ \mathsf{that}\ \{\check{\psi}_P(h):h\in\mathcal{H}\}\ \mathsf{is}\ \mathsf{P}\text{-}\mathsf{Donsker}\ \mathsf{and}\ \check{\psi}_P(h)\in\mathcal{P}_\mathsf{P}\ \mathsf{for}\ \mathsf{all}\$ $h \in \mathcal{H}$.

 $*$ Two stochastic processes X and \widetilde{X} are versions of each other if $X(h) = \widetilde{X}(h)$ almost surely for every $h \in \mathcal{H}$.

つひひ

Interpretation

- \bullet (*a*) \Leftrightarrow (*b*) indicates that if T_n is efficient, only one of (i) or (ii) in (a) is required and the other will follow.
- \bullet (*c*) \Rightarrow (*a*) gives a simple method for establishing efficiency of T_n , which requires only that
	- \blacktriangleright τ_n be asymptotically linear
	- \triangleright with an influence function that is contained in a Donsker class
	- **F** for which the individual components $\psi_P(h)$ are contained in the tangent space for all $h \in \mathcal{H}$.

 QQ

Interpretation (cont.)

- \bullet The requirement that $\mathcal F$ is P-Donsker collapses to requiring that $\|\tilde{\psi}_P\|_{P,2}<\infty$ when H is finite.
- However, such a requirement is not needed in the statement of Theorem [1](#page-6-0) since it automatically follows from the required differentiability of ψ when $\psi(P) \in \mathbb{R}^k$.
- This follows since the Riesz representation theorem assures us that $\tilde{\psi}_{\bm{\mathsf{P}}}$ is in the closed linear span of $\dot{\mathcal{P}}_{\bm{\mathsf{P}}}$, which is a subset of $L_2(P)$.

Deep results

The following theorem tells us that pointwise efficiency implies uniform efficiency under weak convergence.

Theorem 3

Let T_n *be an estimator sequence for a parameter* $\psi : \mathcal{P} \mapsto \ell^{\infty}(\mathcal{H})$ *, where* ψ *is differentiable at* P relative to the tangent space $\dot{\mathcal{P}}_P$ with e *fficient influence function* $\tilde{\psi}_P : \mathcal{H} \mapsto L^0_2(P)$ *. The following are equivalent:*

- (a) T_n *is efficient for* $\psi(P)$ *.*
- (b) $T_n(h)$ *is efficient for* $\psi(P)(h)$ *, for every h* ∈ H, and \sqrt{n} ($T_n - \psi(P)$) *is asymptotically tight under P.*

ik Bikik B

Deep lemma

The proof of this theorem makes use of the following deep lemma:

Lemma 4

Suppose that ψ : $\mathcal{P} \mapsto \mathbb{D}$ *is differentiable at P relative to the tangent* $space \ \dot{P}_P$ and that d' T_n is asymptotically efficient at P for estimating $d'ψ(P)$ *for every d' in a subset* $\mathbb{D}' \subset \mathbb{D}^*$ *which satisfies*

$$
||d|| \leq c \sup_{d' \in \mathbb{D}', ||d'|| \leq 1} |d'(d)|, \qquad (1)
$$

for some constant c < ∞*. Then Tⁿ is asymptotically efficient at P provided* $\sqrt{n}(\mathcal{T}_n - \psi(P))$ *is asymptotically tight under P.*

Proof of Theorem [2](#page-10-0)

 \bullet (*a*) \Rightarrow (*b*) is obvious.

- Assume (b), let $\mathbb{D} = \ell^{\infty}(\mathcal{H})$ and \mathbb{D}' be the set of all coordinate projections $d \mapsto d(h)$ for every $h \in \mathcal{H}$.
- Since the uniform norm on $\ell^{\infty}(\mathcal{H})$ is trivially equal to $\sup_{d' \in \mathbb{D}'} |d'(d)|$ and $||d'|| = 1$ for every $d' \in \mathbb{D}'$, Condition [\(1\)](#page-14-0) is easily satisfied.
- All of the conditions in the lemma are satisfied by the assumptions in (b). Hence, *Tⁿ* is efficient.

The following corollary of Lemma [4](#page-14-1) provides a simple connection between marginal and joint efficiency on product spaces:

Corollary 5

Suppose that $\psi_j : \mathcal{P} \mapsto \mathbb{D}_j$ is differentiable at P relative to the tangent s pace $\dot{\mathcal{P}}_P$, and suppose that $T_{n,j}$ is asymptotically efficient at P for *estimating* $\psi_i(P)$ *, for* $j = 1, 2$ *. Then* $(T_{n,1}, T_{n,2})$ *is asymptotically efficient at P for estimating* $(\psi_1(P), \psi_2(P))$.

The proof of this corollary makes use of the following theorem:

Theorem 6 (Hahn-Banach theorem)

If X *is a normed space and x* ∈ X *, then*

$$
||x|| = \sup \{|f(x)| : f \in \mathbb{X}^* \text{ and } ||f|| \leq 1\}.
$$

Moreover, this supremum is attained.

Proof of Corollary [5](#page-16-0)

- Let \mathbb{D}' be the set of all maps $(d_1, d_2) \mapsto d_j^* d_j$ for $d_j^* \in \mathbb{D}_j^*$ and *j* equal to either 1 or 2.
- By the Hahn-Banach theorem, $\|d_j\|=\sup\left\{|d_j^\ast(d_j)|:\|d_j^\ast\|=1, d_j^\ast\in\mathbb{D}_j^\ast\right\}.$
- **•** Thus the product norm $\|(d_1, d_2)\| = \|d_1\| \vee \|d_2\|$ satisfies Condition [1](#page-14-0) of Lemma [4](#page-14-1) with $c = 1$.
- Hence the desired conclusion follows.

Remarks

- Marginal efficiency implies joint efficiency even though marginal weak convergence does not imply joint weak convergence.
- Consider the setting where $\psi_j(P) \in \mathbb{R}$ for $j = 1, 2$. If $T_{n,j}$ is efficient for $\psi_i(P)$, then the limiting distribution of \sqrt{n} ($T_{n,j} - \psi_j(P)$) is $N(0, P\tilde{\psi}_j, P\tilde{\psi}_j^T P)$, for $j = 1, 2$.
- Thus the limiting joint distribution will be the optimal bivariate Gaussian distribution.
- The preceding theorem can be viewed as an infinite-dimensional generalization of this finite-dimensional phenomenon.

 QQ

イロト イ母 トイラト イラト

Outline

Kロト K包ト

医毛菌 医牙科 E $2Q$

Optimality of tests

• We will test the hypothesis

$$
H_0: \psi(P) \le 0
$$
 vs. $H_1: \psi(P) > 0$ (2)

for a one-dimensional parameter $\psi(P)$.

- Null hypotheses of the form $H_0 : \psi(P) \leq \psi_0$ can trivially be rewritten in the form given in [\(2\)](#page-21-0) by replacing $P \mapsto \psi(P)$ with $P \mapsto \psi(P) - \psi_0$.
- We want to show the basic conclusion that a test based on an asymptotically efficient estimator for $\psi(P)$ will, in a meaningful way, be asymptotically optimal.

Local asymptotic power

- For a given model P and measure P on the boundary of the null hypothesis where $\psi(P) = 0$, we are interested in studying the "local asymptotic power" in a neighborhood of *P*.
- These neighborhoods are of size 1/ \sqrt{n} and are the appropriate magnitude when considering sample size computation for [√] *n* consistent parameter estimates.

Example

Consider the univariate normal setting where the data are i.i.d. $\mathcal{N}(\mu, \sigma^2).$ A natural choice for testing $H_0: \mu \leq 0$ vs. $H_1: \mu > 0$ is the indicator of whether

$$
T_n=\sqrt{n}\frac{\bar{x}}{s_n}>z_{1-\alpha},
$$

where

- \bullet \bar{x} and s_n are the sample mean and standard deviation from an i.i.d. sample X_1, \ldots, X_n .
- *z^q* is the *q*th quantile of a standard normal,
- \bullet α is the size of the test.

- For any $\mu > 0$, T_n diverges to infinity with probability 1.
- However, if $\mu = k/\sqrt{n}$ for some finite *k*, then $T_n \rightsquigarrow N(k/\sigma, 1)$.
- Thus we can derive non-trivial power functions only for shrinking
" "contiguous alternatives" in a 1 $/\surd n$ neighborhood of zero.

 QQ

General contiguous alternatives

- In general, we study the performance of tests under contiguous alternatives defined by one-dimensional submodels.
- For a given element g of a tangent set $\dot{\mathcal{P}}_{P}$, let $t \mapsto P_{t,g}$ be a one-dimensional submodel which is differentiable in quadratic mean at P with tangent q along which ψ is differentiable, i.e.,

$$
\frac{\psi\left(P_{t,g}\right)-\psi(P)}{t}\rightarrow P\left[\tilde{\psi}_P g\right]
$$

as *t* ↓ 0.

- When $\psi(P)=0,$ for each g with $P[\tilde{\psi}_P g]>0,$ the submodel ${P_t}_a$ satisfies $\psi(P_t)_a > 0$ for all sufficiently small $t > 0$.
- Thus, we will consider power over contiguous alternatives of the form $\{P_{h/\sqrt{n},g}\}$ for $h>0.$

Power function

Definition 7 (Power function)

For a subset $\mathcal{Q} \subset \mathcal{P}$ containing P, a power function $\pi : \mathcal{Q} \mapsto [0, 1]$ at level α is a function on probability measures that satisfies $\pi(Q) \leq \alpha$ for all $Q \in \mathcal{Q}$ satisfying $\psi(Q) \leq 0$.

 $\pi(Q)$ is the probability of rejecting $H_0: \psi(P) \leq 0$ under Q.

We say that a sequence of power functions {π*n*} has asymptotic level α if lim sup_p_{$\alpha \to \infty$} $\pi_n(Q) \leq \alpha$ for every $Q \in \mathcal{Q} : \psi(Q) \leq 0$.

Main results

The following theorem provides an upper bound for the power at the alternatives *Ph*/ √ *n*,*g* :

Theorem 8

Let $\psi: \mathcal{P} \mapsto \mathbb{R}$ be differentiable at P relative to the tangent space $\dot{\mathcal{P}}_\mathsf{P}$ ψ with efficient influence function $\tilde{\psi}_P$, and suppose $\psi(P)=0.$ Then, for *every sequence of power functions* $P \mapsto \pi_n(P)$ *of asymptotic level* α t ests for $H_0: \psi(P) \leq 0$, and for every $g \in \dot{\mathcal{P}}_P$ with $P\left[\tilde{\psi}_P g\right] > 0$ and *every* $h > 0$,

$$
\limsup_{n\to\infty}\pi_n\left(P_{h/\sqrt{n},g}\right)\leq 1-\Phi\left[Z_{1-\alpha}-h\frac{P[\tilde{\psi}_P g]}{\sqrt{P[\tilde{\psi}_P^2]}}\right].
$$

∗*See Lemma 25.44 (pp. 384-385) of van der Vaart (1998) for the proof.*

Tests based on efficient estimators

As a consequence of the preceding theorem, a test based on an efficient estimator for $\psi(P)$ is automatically "locally uniformly most powerful": its power function attains the upper bound.

Lemma 9

Let $\psi: \mathcal{P} \mapsto \mathbb{R}$ be differentiable at P relative to the tangent space $\dot{\mathcal{P}}_{\mathsf{F}}$ ψ with efficient influence function $\tilde{\psi}_P$, and suppose $\psi(P)=0$. Suppose *the estimator Tⁿ is asymptotically efficient at P, and, moreover, that S* 2 *n* $\stackrel{\text{P}}{\rightarrow}$ *P* $\tilde{\psi}^2_P$ *. Then,for every h* > 0 *and g* \in $\dot{\mathcal{P}}_P$ *,*

$$
\lim_{n\to\infty} P_{h/\sqrt{n},g}\left(\frac{\sqrt{n}\mathcal{T}_n}{S_n}\geq z_{1-\alpha}\right)=1-\Phi\left(z_{1-\alpha}-h\frac{P[\tilde{\psi}_P g]}{\sqrt{P\tilde{\psi}_P^2}}\right).
$$

Proof of Lemma [9](#page-28-0)

Let $P_n \equiv P_{h/\sqrt{n},g}$. By the efficiency of \mathcal{T}_n ,

$$
\sqrt{n}(T_n - \psi(P_{h/\sqrt{n},g})) \stackrel{P_n}{\rightsquigarrow} N(0, P\tilde{\psi}_P^2).
$$
 (3)

• By the differentiability of ψ ,

$$
\frac{\psi(P_{h/\sqrt{n},g})-\psi(P)}{h/\sqrt{n}}\to P[\tilde{\psi}_P g], \quad \text{as } n\to\infty.
$$
 (4)

• Combining [\(3\)](#page-29-1) and [\(4\)](#page-29-2) yields

$$
\sqrt{n}T_n\stackrel{P_n}{\leadsto} N\left(hP[\tilde{\psi}_P g],\,P\tilde{\psi}_P^2\right).
$$

The desired conclusion follows since \mathcal{S}^2_n $\stackrel{\text{P}}{\rightarrow}$ $P\tilde{\psi}^2_P$.

イロト イ母 トイヨ トイヨ

П

 QQ