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Asymptotic linearity

An estimator sequence Tn for a parameter ψ(P) is asymptotically
linear if there exists an influence function ψ̌P : X 7→ Rk such that

√
n (Tn − ψ(P))−

√
nPnψ̌P

P→ 0.
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Regularity

An estimator sequence Tn is regular at P relative to ṖP if for every
smooth one-dimensional submodel {Pt} ⊂ P and every sequence tn
with tn = O(n−1/2),

√
n (Tn − ψ (Ptn ))

Ptn Z ,

for some tight Borel random element Z .
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Asymptotic Efficiency

An estimator sequence Tn is asymptotically efficient at P if it is
regular at P with limiting distribution

√
n (Tn − ψ(P)) N(0,Pψ̃P ψ̃

T
P ),

where ψ̃P : X 7→ Rk is the efficient influence function.
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Differentiability

ψ : P 7→ Rk is differentiable at P relative to the tangent set ṖP if, for
every smooth one-dimensional submodel {Pt} with tangent g ∈ ṖP ,

dψ(Pt )

dt

∣∣∣∣
t=0

= ψ̇P(g)

for some bounded linear operator ψ̇P : ṖP 7→ Rk .
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Equivalent definition of efficiency

Theorem 1
Let the parameter ψ : P 7→ Rk be differentiable at P relative to the
tangent space ṖP with efficient influence function ψ̃P . A sequence of
estimators Tn is efficient at P relative to ṖP if and only if it is
asymptotically linear with influence function ψ̃P .

∗See Lemma 25.23 (pp. 367-368) of van der Vaart (1998) for the proof.
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Remarks

So far we have obtained useful results on efficient estimators of
Euclidean parameters.

A natural question is how to extend these results to more general
parameter spaces in semiparametric models.
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Composite parameter

For example, in survival analysis, the full composite parameter is
usually ψ = (β,Λ) ∈ Ω.

Define H =
{

(h1,h2) : h1 ∈ Rk ,h2 ∈ D[0, τ ] ∩ BV [0, τ ]
}

,
equipped with norm ‖h‖H = ‖h1‖+ ‖h2‖BV . For any 1 ≤ r <∞,
define Hr = {h ∈ H : ‖h‖H ≤ r}.

ψ can be viewed as an element of `∞(Hr ) if we define

ψ(h) = hT
1 β +

∫ τ

0
h2(s)dΛ(s), h ∈ Hr , ψ ∈ Ω.

Hr is sufficiently rich to extract out all components of ψ. Thus, Ω
becomes a subset of `∞(Hr ) with norm ‖ψ‖(r) = suph∈Hr

|ψ(h)|.
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Note

For the rest of the section, we consider more general parameter
spaces of the form `∞(H). In this case, any (efficient) influence
function is assumed to be a stochastic process indexed by H.

Under this setting, ψ is differentiable⇒ ψ̇P(g)(h) = P[ψ̃P(h)g] for all
h ∈ H.

Yu Gu Efficiency and Testing October 28, 2021 10 / 30



General results

Theorem 2
Let Tn be an estimator sequence for a parameter ψ : P 7→ `∞(H),
where ψ is differentiable at P relative to the tangent space ṖP with
efficient influence function ψ̃P : H 7→ L0

2(P). Let F = {ψ̃P(h) : h ∈ H}.
Then the following are equivalent:
(a) Tn is efficient at P relative to ṖP and at least one of the following

holds:
(i) Tn is asymptotically linear.
(ii) F is P-Donsker for some version∗ of ψ̃P .

(b) For some version of ψ̃P , Tn is asymptotically linear with influence
function ψ̃P and F is P-Donsker.

(c) Tn is regular and asymptotically linear with influence function ψ̌P
such that {ψ̌P(h) : h ∈ H} is P-Donsker and ψ̌P(h) ∈ ṖP for all
h ∈ H.

∗Two stochastic processes X and X̃ are versions of each other if X(h) = X̃(h) almost surely for every h ∈ H.
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Interpretation

(a)⇔ (b) indicates that if Tn is efficient, only one of (i) or (ii) in
(a) is required and the other will follow.

(c)⇒ (a) gives a simple method for establishing efficiency of Tn,
which requires only that

I Tn be asymptotically linear

I with an influence function that is contained in a Donsker class

I for which the individual components ψ̌P(h) are contained in the
tangent space for all h ∈ H.
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Interpretation (cont.)

The requirement that F is P-Donsker collapses to requiring that
‖ψ̃P‖P,2 <∞ when H is finite.

However, such a requirement is not needed in the statement of
Theorem 1 since it automatically follows from the required
differentiability of ψ when ψ(P) ∈ Rk .

This follows since the Riesz representation theorem assures us
that ψ̃P is in the closed linear span of ṖP , which is a subset of
L2(P).
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Deep results

The following theorem tells us that pointwise efficiency implies
uniform efficiency under weak convergence.

Theorem 3
Let Tn be an estimator sequence for a parameter ψ : P 7→ `∞(H),
where ψ is differentiable at P relative to the tangent space ṖP with
efficient influence function ψ̃P : H 7→ L0

2(P). The following are
equivalent:
(a) Tn is efficient for ψ(P).
(b) Tn(h) is efficient for ψ(P)(h), for every h ∈ H, and√

n (Tn − ψ(P)) is asymptotically tight under P.
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Deep lemma

The proof of this theorem makes use of the following deep lemma:

Lemma 4
Suppose that ψ : P 7→ D is differentiable at P relative to the tangent
space ṖP and that d ′Tn is asymptotically efficient at P for estimating
d ′ψ(P) for every d ′ in a subset D′ ⊂ D∗ which satisfies

‖d‖ ≤ c sup
d ′∈D′,‖d ′‖≤1

|d ′(d)| , (1)

for some constant c <∞. Then Tn is asymptotically efficient at P
provided

√
n (Tn − ψ(P)) is asymptotically tight under P.
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Proof of Theorem 2

(a)⇒ (b) is obvious.

Assume (b), let D = `∞(H) and D′ be the set of all coordinate
projections d 7→ d(h) for every h ∈ H.

Since the uniform norm on `∞(H) is trivially equal to
supd ′∈D′ |d ′(d)| and ‖d ′‖ = 1 for every d ′ ∈ D′, Condition (1) is
easily satisfied.

All of the conditions in the lemma are satisfied by the
assumptions in (b). Hence, Tn is efficient.
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Corollary of Lemma 4

The following corollary of Lemma 4 provides a simple connection
between marginal and joint efficiency on product spaces:

Corollary 5
Suppose that ψj : P 7→ Dj is differentiable at P relative to the tangent
space ṖP , and suppose that Tn,j is asymptotically efficient at P for
estimating ψj (P), for j = 1,2. Then (Tn,1,Tn,2) is asymptotically
efficient at P for estimating (ψ1(P), ψ2(P)).
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Hahn-Banach theorem

The proof of this corollary makes use of the following theorem:

Theorem 6 (Hahn-Banach theorem)
If X is a normed space and x ∈ X, then

‖x‖ = sup {|f (x)| : f ∈ X∗ and ‖f‖ ≤ 1} .

Moreover, this supremum is attained.
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Proof of Corollary 5

Let D′ be the set of all maps (d1,d2) 7→ d∗j dj for d∗j ∈ D∗j and j
equal to either 1 or 2.

By the Hahn-Banach theorem,
‖dj‖ = sup

{
|d∗j (dj )| : ‖d∗j ‖ = 1,d∗j ∈ D∗j

}
.

Thus the product norm ‖(d1,d2)‖ = ‖d1‖ ∨ ‖d2‖ satisfies
Condition 1 of Lemma 4 with c = 1.

Hence the desired conclusion follows.
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Remarks

Marginal efficiency implies joint efficiency even though marginal
weak convergence does not imply joint weak convergence.

Consider the setting where ψj (P) ∈ R for j = 1,2. If Tn,j is
efficient for ψj (P), then the limiting distribution of√

n (Tn,j − ψj (P)) is N(0,Pψ̃j,P ψ̃
T
j,P), for j = 1,2.

Thus the limiting joint distribution will be the optimal bivariate
Gaussian distribution.

The preceding theorem can be viewed as an infinite-dimensional
generalization of this finite-dimensional phenomenon.
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Optimality of tests

We will test the hypothesis

H0 : ψ(P) ≤ 0 vs. H1 : ψ(P) > 0 (2)

for a one-dimensional parameter ψ(P).

Null hypotheses of the form H0 : ψ(P) ≤ ψ0 can trivially be
rewritten in the form given in (2) by replacing P 7→ ψ(P) with
P 7→ ψ(P)− ψ0.

We want to show the basic conclusion that a test based on an
asymptotically efficient estimator for ψ(P) will, in a meaningful
way, be asymptotically optimal.
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Local asymptotic power

For a given model P and measure P on the boundary of the null
hypothesis where ψ(P) = 0, we are interested in studying the
“local asymptotic power” in a neighborhood of P.

These neighborhoods are of size 1/
√

n and are the appropriate
magnitude when considering sample size computation for

√
n

consistent parameter estimates.
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Example

Consider the univariate normal setting where the data are i.i.d.
N(µ, σ2). A natural choice for testing H0 : µ ≤ 0 vs. H1 : µ > 0 is the
indicator of whether

Tn =
√

n
x̄
sn

> z1−α,

where
x̄ and sn are the sample mean and standard deviation from an
i.i.d. sample X1, . . . ,Xn,
zq is the qth quantile of a standard normal,
α is the size of the test.
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Example (cont.)

For any µ > 0, Tn diverges to infinity with probability 1.

However, if µ = k/
√

n for some finite k , then Tn  N(k/σ, 1).

Thus we can derive non-trivial power functions only for shrinking
“contiguous alternatives” in a 1/

√
n neighborhood of zero.
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General contiguous alternatives

In general, we study the performance of tests under contiguous
alternatives defined by one-dimensional submodels.

For a given element g of a tangent set ṖP , let t 7→ Pt,g be a
one-dimensional submodel which is differentiable in quadratic
mean at P with tangent g along which ψ is differentiable, i.e.,

ψ
(
Pt,g

)
− ψ(P)

t
→ P

[
ψ̃Pg

]
as t ↓ 0.

When ψ(P) = 0, for each g with P[ψ̃Pg] > 0, the submodel
{Pt,g} satisfies ψ(Pt,g) > 0 for all sufficiently small t > 0.

Thus, we will consider power over contiguous alternatives of the
form {Ph/

√
n,g} for h > 0.
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Power function

Definition 7 (Power function)
For a subset Q ⊂ P containing P, a power function π : Q 7→ [0,1] at
level α is a function on probability measures that satisfies π(Q) ≤ α
for all Q ∈ Q satisfying ψ(Q) ≤ 0.

π(Q) is the probability of rejecting H0 : ψ(P) ≤ 0 under Q.

We say that a sequence of power functions {πn} has asymptotic level
α if lim supn→∞ πn(Q) ≤ α for every Q ∈ Q : ψ(Q) ≤ 0.
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Main results

The following theorem provides an upper bound for the power at the
alternatives Ph/

√
n,g :

Theorem 8
Let ψ : P 7→ R be differentiable at P relative to the tangent space ṖP
with efficient influence function ψ̃P , and suppose ψ(P) = 0. Then, for
every sequence of power functions P 7→ πn(P) of asymptotic level α
tests for H0 : ψ(P) ≤ 0, and for every g ∈ ṖP with P

[
ψ̃Pg

]
> 0 and

every h > 0,

lim sup
n→∞

πn

(
Ph/
√

n,g

)
≤ 1− Φ

z1−α − h
P[ψ̃Pg]√

P[ψ̃2
P ]

 .
∗See Lemma 25.44 (pp. 384-385) of van der Vaart (1998) for the proof.
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Tests based on efficient estimators

As a consequence of the preceding theorem, a test based on an
efficient estimator for ψ(P) is automatically “locally uniformly most
powerful”: its power function attains the upper bound.

Lemma 9
Let ψ : P 7→ R be differentiable at P relative to the tangent space ṖP
with efficient influence function ψ̃P , and suppose ψ(P) = 0. Suppose
the estimator Tn is asymptotically efficient at P, and, moreover, that
S2

n
P→ Pψ̃2

P . Then,for every h > 0 and g ∈ ṖP ,

lim
n→∞

Ph/
√

n,g

(√
nTn

Sn
≥ z1−α

)
= 1− Φ

z1−α − h
P[ψ̃Pg]√

Pψ̃2
P

 .
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Proof of Lemma 9

Let Pn ≡ Ph/
√

n,g . By the efficiency of Tn,

√
n(Tn − ψ(Ph/

√
n,g))

Pn N(0,Pψ̃2
P). (3)

By the differentiability of ψ,

ψ(Ph/
√

n,g)− ψ(P)

h/
√

n
→ P[ψ̃Pg], as n→∞. (4)

Combining (3) and (4) yields

√
nTn

Pn N
(

hP[ψ̃Pg], Pψ̃2
P

)
.

The desired conclusion follows since S2
n

P→ Pψ̃2
P .
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