Efficient inference for finite-dimensional parameters

Yangjianchen Xu

Department of Biostatistics University of North Carolina at Chapel Hill

11/04/2021

Overview

- Score Functions and Estimating Equations
- Example: Semiparametric regression model
- Example: The Cox Model for Right-Censored Data

Efficient score function

- Semiparametric model $\{P_{\theta,\eta}: \theta \in \Theta, \eta \in H\}$, where Θ is an open subset of \mathbb{R}^k and H is an arbitrary set that may be infinite dimensional.
- Parameter of interest: $\psi\left(P_{\theta,\eta}\right) = \theta$.
- Tangent sets can be used to develop an efficient estimator for $\psi\left(P_{\theta,\eta}\right) = \theta$ through the formation of an efficient score function.
- Consider submodels of the form $\{P_{\theta+ta,\eta_t}, t \in N_{\epsilon}\}$ that are differentiable in quadratic mean with score function

$$\partial \log dP_{\theta+ta,\eta_t}/\left(\partial t\right)|_{t=0} = a'\dot{\ell}_{\theta,\eta} + g$$

- $a \in \mathbb{R}^k$
- $\dot{\ell}_{\theta,\eta}: \mathcal{X} \mapsto \mathbb{R}^k$ is the ordinary score for θ when η is fixed
- $g: \mathcal{X} \mapsto \mathbb{R}$ is an element of a tangent set $\dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)}$ for the submodel $\mathcal{P}_{\theta} = \{P_{\theta,\eta}: \eta \in H\}$ (holding θ fixed).

Efficient score function

• The tangent set for the full model is

$$\dot{\mathcal{P}}_{P_{\theta,\eta}} = \left\{ a' \dot{\ell}_{\theta,\eta} + g : a \in \mathbb{R}^k, g \in \dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)} \right\}$$

• $\psi(P_{\theta+ta,\eta_t}) = \theta + ta$ is clearly differentiable with respect to t:

$$\left. \frac{\partial \psi \left(P_{\theta + ta, \eta_t} \right)}{\partial t} \right|_{t=0} = a$$

• The efficient influence function $\tilde{\psi}_{\theta,\eta}: \mathcal{X} \mapsto \mathbb{R}^k$ satisfies:

$$a = P\left[\tilde{\psi}_{\theta,\eta}\left(\dot{\ell}'_{\theta,\eta}a + g\right)\right] \tag{1}$$

• Setting a=0, we see $0=P\left[\tilde{\psi}_{\theta,\eta}g\right]$, $\tilde{\psi}_{\theta,\eta}$ must be uncorrelated with all of the elements of $\dot{\mathcal{P}}_{P_{a_n}}^{(\eta)}$.

Efficient score function

- Define $\Pi_{\theta,\eta}$ to be the orthogonal projection onto the closed linear span of $\dot{\mathcal{P}}_{P_a}^{(\eta)}$ in $L_2^0(P_{\theta,\eta})$.
- For any $h \in L_2^0(P_{\theta,\eta})$, $h = h \Pi_{\theta,\eta}h + \Pi_{\theta,\eta}h$, where $\Pi_{\theta,\eta}h \in \dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)}$ but $P[(h \Pi_{\theta,\eta}h)g] = 0$ for all $g \in \dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)}$.
- The efficient score function for θ is $\tilde{\ell}_{\theta,\eta} = \dot{\ell}_{\theta,\eta} \Pi_{\theta,\eta}\dot{\ell}_{\theta,\eta}$, while the efficient information matrix for θ is $\tilde{l}_{\theta,\eta} = P \left[\tilde{\ell}_{\theta,\eta} \tilde{\ell}'_{\theta,\eta} \right]$.

Efficient influence function

- Provided that $\tilde{I}_{\theta,\eta}$ is nonsingular, the function $\tilde{\psi}_{\theta,\eta} = \tilde{I}_{\theta,\eta}^{-1} \tilde{\ell}_{\theta,\eta}$ satisfies (1) for all $a \in \mathbb{R}^k$ and all $g \in \dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)}$.
- Thus the functional (parameter) $\psi(P_{\theta,\eta}) = \theta$ is differentiable at $P_{\theta,\eta}$ relative to the tangent set $\dot{\mathcal{P}}_{P_{\theta,\eta}}$, with efficient influence function $\tilde{\psi}_{\theta,\eta}$.
- Hence the search for an efficient estimator of θ is over if one can find an estimator T_n satisfying

$$\sqrt{n}(T_n-\theta)=\sqrt{n}\mathbb{P}_n\tilde{\psi}_{\theta,\eta}+o_P(1).$$

• Note that $\tilde{\it I}_{\theta,\eta} = \it I_{\theta,\eta} - P\left[\Pi_{\theta,\eta}\dot{\ell}_{\theta,\eta}\left(\Pi_{\theta,\eta}\dot{\ell}_{\theta,\eta}\right)'\right]$, where $\it I_{\theta,\eta} = P\left[\dot{\ell}_{\theta,\eta}\dot{\ell}'_{\theta,\eta}\right]$.

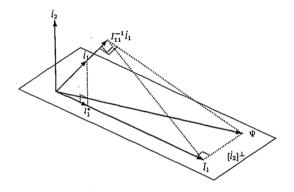


Figure: Score and influence function projections (Bickel et al., 1993)

An intuitive justification for the form of the efficient score is that some information for estimating θ is lost due to a lack of knowledge about η . The amount subtracted off of the efficient score, $\Pi_{\theta,\eta}\dot{\ell}_{\theta,\eta}$, is the minimum possible amount for regular estimators when η is unknown.

Name	Notation	Model	
		P	$P_1(\eta_0)$
Efficient score	$l_1^*(\cdot, P!\nu, \cdot)$	$ \mathbf{l}_{1}^{*} = \dot{\mathbf{l}}_{1} - I_{12}I_{22}^{-1}\dot{\mathbf{l}}_{2} \\ EI_{1}^{*}I_{1}^{*T} = I_{11} - I_{12}I_{22}^{-1}I_{21} $	i ₁
Information	$I(P \mid v, \cdot)$	$E\mathbf{I}_{1}^{*}\mathbf{I}_{1}^{*T} = I_{11} - I_{12}I_{22}^{-1}I_{21}$	I_{11}
Efficient influence	$\widetilde{\mathbf{l}}_{\mathbf{i}}(\cdot,\!P \mathbf{v},\cdot)$	$ \begin{aligned} &= I_{11\cdot 2} \\ \tilde{\mathbf{l}}_1 &= I^{11} \hat{\mathbf{l}}_1 + I^{12} \hat{\mathbf{l}}_2 \\ &= I_{11\cdot 2}^{-1} \mathbf{l}_1^* \end{aligned} $	$I_{11}^{-1}\dot{\mathbf{l}}_{1}$
function Information bound	$I^{-1}(P \mid v, \cdot)$		I_{11}^{-1}

Figure: Efficient score functions, efficient influence functions, information, and inverse information for the two models \mathbf{P} and \mathbf{P}_1 (η_0). (Bickel et al., 1993)

Example: Semiparametric regression model

- Semiparametric regression model: $Y = \beta' Z + e$
- $E[e \mid Z] = 0$ and $E[e^2 \mid Z] \le K < \infty$ almost surely
- We observe (Y,Z), with the joint density η of (e,Z) satisfying $\int_{\mathbb{R}} e\eta(e,Z)de=0$ almost surely.
- Assume η has partial derivative with respect to the first argument, $\dot{\eta}_1$, satisfying $\dot{\eta}_1/\eta \in L_2\left(P_{\beta,\eta}\right)$, and hence $\dot{\eta}_1/\eta \in L_2^0\left(P_{\beta,\eta}\right)$, where $P_{\beta,\eta}$ is the joint distribution of (Y,Z).
- The Euclidean parameter of interest is $\theta = \beta$.
- The score for β , assuming η is known, is

$$\dot{\ell}_{eta,\eta} = -Z\left(\dot{\eta}_1/\eta\right)\left(Y - eta'Z,Z\right),$$

where we use the shorthand (f/g)(u,v) = f(u,v)/g(u,v) for ratios of functions.

Example: Semiparametric regression model

• The tangent set $\dot{\mathcal{P}}_{P_{\beta,\eta}}^{(\eta)}$ for η is the subset of $L_2^0(P_{\beta,\eta})$ which consists of all functions $g(e,Z)\in L_2^0(P_{\beta,\eta})$ which satisfy

$$E[eg(e,Z) \mid Z] = \frac{\int_{\mathbb{R}} eg(e,Z)\eta(e,Z)de}{\int_{\mathbb{R}} \eta(e,Z)de} = 0$$

almost surely.

- One can also show that this set is the orthocomplement in $L_2^0(P_{\beta,\eta})$ of all functions of the form ef(Z), where f satisfies $P_{\beta,\eta}f^2(Z) < \infty$.
- Thus $\tilde{\ell}_{\beta,\eta} = (I \Pi_{\beta,\eta}) \, \dot{\ell}_{\beta,\eta}$ is the projection in $L_2^0(P_{\beta,\eta})$ of $-Z(\dot{\eta}_1/\eta)(e,Z)$ onto $\{ef(Z): P_{\beta,\eta}f^2(Z) < \infty\}$.

Example: Semiparametric regression model

Thus

$$\tilde{\ell}_{\beta,\eta}(Y,Z) = \frac{-Ze\int_{\mathbb{R}}\dot{\eta}_{1}(e,Z)ede}{P_{\beta,\eta}\left[e^{2}\mid Z\right]} = -\frac{Ze(-1)}{P_{\beta,\eta}\left[e^{2}\mid Z\right]} = \frac{Z\left(Y-\beta'Z\right)}{P_{\beta,\eta}\left[e^{2}\mid Z\right]}$$

- The second-to-last step follows from the identity $\int_{\mathbb{R}} \dot{\eta}_1(e,Z)$ ede = $\partial \int_{\mathbb{R}} \eta(te,Z) de/\left(\partial t\right)|_{t=1}$
- When the function $z \mapsto P_{\beta,\eta} \left[e^2 \mid Z = z \right]$ is non-constant in $z, \tilde{\ell}_{\beta,\eta}(Y,Z)$ is not proportional to $Z(Y \beta'Z)$.
- Computation of the efficient estimator requires estimation of the function $z \mapsto \mathrm{E}\left[e^2 \mid Z=z\right]$.

Score and information operators

- Two very useful tools for computing efficient scores are score and information operators.
- Sometimes it is easier to represent an element g in $\dot{\mathcal{P}}_{P_{\theta,n}}^{(\eta)}$, as $B_{\theta,\eta}b$, where b is an element of another set \mathbb{H}_{η} and $B_{\theta,\eta}$ is an operator satisfying $\dot{\mathcal{P}}_{P_{\theta,\eta}}^{(\eta)} = \{B_{\theta,\eta}b : b \in \mathbb{H}_{\eta}\}.$
- The adjoint of the score operator $B_{\theta,n}: \mathbb{H}_n \mapsto L_2^0(P_{\theta,n})$ is another operator $B_{\theta,n}^*: L_2^0(P_{\theta,\eta}) \mapsto \overline{\lim} \mathbb{H}_{\eta}$ which is similar in spirit to a transpose for matrices and satisfies

$$\langle B_{\theta,\eta}b,h\rangle_{L_2^0(P_{\theta,\eta})}=\langle b,B_{\theta,\eta}^*h\rangle_{\overline{\lim}\mathbb{H}_\eta}$$

for all $b \in \mathbb{H}_n$ and $h \in L_2^0(P_{\theta,n})$.

• If $B_{\theta n}^* B_{\theta, \eta}$ has an inverse, then it can be shown that the efficient score for θ has the form $\tilde{\ell}_{\theta,\eta} = \left(I - B_{\theta,\eta} \left[B_{\theta,\eta}^* B_{\theta,\eta}\right]^{-1} B_{\theta,\eta}^*\right) \dot{\ell}_{\theta,\eta}.$

- We observe a sample of n realizations of X=(V,d,Z), where $V=T \land C, d=1\{V=T\}, Z \in \mathbb{R}^k$ is a covariate vector, T is a failure time, and C is a censoring time.
- \bullet T and C are independent given Z.
- T given Z has integrated hazard function $e^{\beta' Z} \Lambda(t)$ for β in an open subset $B \subset \mathbb{R}^k$ and Λ is continuous and monotone increasing with $\Lambda(0) = 0$
- The censoring distribution does not depend on β or Λ (i.e., censoring is uninformative).
- The counting and at-risk processes: $N(t) = 1\{V \le t\}d$ and $Y(t) = 1\{V \ge t\}$
- Martingale: $M(t) = N(t) \int_0^t Y(s)e^{\beta'Z}d\Lambda(s)$.
- For some $0 < \tau < \infty$ with $P\{C \ge \tau\} > 0$, let H be the set of all Λ 's satisfying our criteria with $\Lambda(\tau) < \infty$.

- Now the set of models \mathcal{P} is indexed by $\beta \in B$ and $\Lambda \in H$. Let $P_{\beta,\Lambda}$ be the distribution of (V, d, Z) corresponding to the given parameters.
- The likelihood for a single observation is thus proportional to

$$p_{eta,\Lambda}(X) = \left[e^{eta'Z}\lambda(V)
ight]^d \exp\left[-e^{eta'Z}\Lambda(V)
ight].$$

- Let $L_2(\Lambda)$ be the set of measurable functions $b:[0,\tau]\mapsto \mathbb{R}$ with $\int_0^\tau b^2(s)d\Lambda(s)<\infty$.
- If $b \in L_2(\Lambda)$ is bounded, then $\Lambda_t(s) = \int_0^s e^{tb(u)} d\Lambda(u) \in H$ for all t.

We calculate

$$\log p_{\beta+ta,\Lambda_t}(X) = d \left[\log \{ e^{(\beta+ta)'Z} \lambda_t(V) \} \right] - e^{(\beta+ta)'Z} \Lambda_t(V)$$

$$= d \left[(\beta+ta)'Z + tb(V) + \log \{ \lambda(V) \} \right]$$

$$- e^{(\beta+ta)'Z} \int_0^V e^{tb(u)} d\Lambda(u)$$

and

$$\begin{split} \frac{\partial}{\partial t} \log p_{\beta+ta,\Lambda_t}(X) &= d \left[a'Z + b(V) \right] \\ &- a'Z e^{(\beta+ta)'Z} \int_0^V e^{tb(u)} d\Lambda(u) \\ &- e^{(\beta+ta)'Z} \int_0^V b(u) e^{tb(u)} d\Lambda(u) \end{split}$$

Thus,

$$\frac{\partial}{\partial t} \log p_{\beta+ta,\Lambda_t}(X) \mid_{t=0} = d \left[a'Z + b(V) \right]$$

$$- a'Ze^{\beta'Z}\Lambda(V) - e^{\beta'Z} \int_0^V b(u)d\Lambda(u)$$

$$= \int_0^\tau \left[a'Z + b(s) \right] dM(s)$$

- The score function for β is therefore $\dot{\ell}_{\beta,\Lambda}(X) = ZM(\tau)$.
- The score function for Λ is $\int_0^{\tau} b(s)dM(s)$.
- In fact, one can show that there exists one-dimensional submodels Λ_t such that $\log p_{\beta+ta,\Lambda_t}$ is differentiable with score $a'\dot{\ell}_{\beta,\Lambda}(X)+\int_0^{\tau}b(s)dM(s)$, for any $b\in L_2(\Lambda)$ and $a\in\mathbb{R}^k$.

• The score operator $B_{\beta,\Lambda}: L_2(\Lambda) \mapsto L_2^0(P_{\beta,\Lambda})$ is given by

$$B_{\beta,\Lambda}(b) = \int_0^{\tau} b(s) dM(s),$$

which generates the tangent set for $\Lambda, \dot{\mathcal{P}}_{P_{\beta,\Lambda}}^{(\Lambda)} \equiv \{B_{\beta,\Lambda}b : b \in L_2(\Lambda)\}.$

- It can be shown that this tangent space spans all square-integrable score functions for Λ generated by parametric submodels.
- The adjoint operator $B_{\beta,\Lambda}^*: L_2\left(P_{\beta,\Lambda}\right) \mapsto L_2(\Lambda)$ satisfies

$$\langle B_{\beta,\Lambda}b,h\rangle_{L_2(P_{\beta,\Lambda})}=\langle b,B^*_{\beta,\Lambda}h\rangle_{L_2(\Lambda)}.$$

- LHS = $P_{\beta,\Lambda}$ $\left[h(X)\int_0^{\tau}b(s)dM(s)\right]=\int_0^{\tau}b(s)P_{\beta,\Lambda}\left[h(X)dM(s)\right]$
- We have $B^*_{\beta,\Lambda}(h)(t) = P_{\beta,\Lambda}[h(X)dM(t)]/d\Lambda(t)$.

The information operator $B_{\beta,\Lambda}^*B_{\beta,\Lambda}:L_2(\Lambda)\mapsto L_2(\Lambda)$ is thus

$$B_{eta,\Lambda}^*B_{eta,\Lambda}(b)(t)=rac{P_{eta,\Lambda}\left[\int_0^ au b(s)dM(s)dM(u)
ight]}{d\Lambda(u)}=P_{eta,\Lambda}\left[Y(t)e^{eta'Z}
ight]b(t)$$

using martingale methods. Similarly, $B_{\beta,\Lambda}^*\left(\dot{\ell}_{\beta,\Lambda}\right)(t) = P_{\beta,\Lambda}\left[ZY(t)e^{\beta'Z}\right]$. Then, the efficient score for β is

$$\begin{split} \tilde{\ell}_{\beta,\Lambda} &= \left(I - B_{\beta,\Lambda} \left[B_{\beta,\Lambda}^* B_{\beta,\Lambda}\right]^{-1} B_{\beta,\Lambda}^*\right) \dot{\ell}_{\beta,\Lambda} \\ &= \int_0^\tau \left\{ Z - \frac{P_{\beta,\Lambda} \left[ZY(t)e^{\beta'Z}\right]}{P_{\beta,\Lambda} \left[Y(t)e^{\beta'Z}\right]} \right\} dM(t). \end{split}$$

- When $\tilde{I}_{\beta,\Lambda} \equiv P_{\beta,\Lambda} \left[\tilde{\ell}_{\beta,\Lambda} \tilde{\ell}'_{\beta,\Lambda} \right]$ is positive definite, the resulting efficient influence function is $\tilde{\psi}_{\beta,\Lambda} \equiv \tilde{I}_{\beta,\Lambda}^{-1} \tilde{\ell}_{\beta,\Lambda}$.
- ullet Since the estimator \hat{eta}_n obtained from maximizing the partial likelihood

$$\tilde{L}_n(\beta) = \prod_{i=1}^n \left(\frac{e^{\beta' Z_i}}{\sum_{j=1}^n 1 \{V_j \ge V_i\} e^{\beta' Z_j}} \right)^{d_i}$$

can be shown to satisfy $\sqrt{n}\left(\hat{\beta}_n - \beta\right) = \sqrt{n}\mathbb{P}_n\tilde{\psi}_{\beta,\Lambda} + o_P(1)$, this estimator is efficient.

Score and information operators

- With semiparametric models having score functions of the form $a'\dot{\ell}_{\theta,\eta}+B_{\theta,\eta}b$, for $a\in\mathbb{R}^k$ and $b\in\mathbb{H}_\eta$, we can define a new operator $A_{\beta,\eta}(a,b)=a'\dot{\ell}_{\theta,\eta}+B_{\theta,\eta}b$.
- More generally, we can define the score operator $A_{\eta}: \lim \mathbb{H}_{\eta} \mapsto L_2\left(P_{\eta}\right)$ for the model $\{P_{\eta}: \eta \in H\}$, where H indexes the entire model and may include both parametric and nonparametric components, and where $\lim \mathbb{H}_{\eta}$ indexes directions in H.
- Let the parameter of interest be $\psi\left(P_{\eta}\right)=\chi(\eta)\in\mathbb{R}^{k}$. We assume there exists a linear operator $\dot{\chi}: \lim\mathbb{H}_{\eta}\mapsto\mathbb{R}^{k}$ such that, for every $b\in \lim\mathbb{H}_{\eta}$, there exists a one-dimensional submodel $\{P_{\eta_{t}}: \eta_{t}\in H, t\in N_{\epsilon}\}$ satisfying

$$\int \left[\frac{(dP_{\eta_t})^{1/2} - (dP_{\eta})^{1/2}}{t} - \frac{1}{2} A_{\eta} b (dP_{\eta})^{1/2} \right]^2 \to 0$$

as $t \downarrow 0$, and $\partial \chi (\eta_t) / (\partial t)|_{t=0} = \dot{\chi}(b)$.

Score and information operators

• If we can find $\tilde{\chi}_{\eta} \in \mathbb{H}_{\eta}$ satisfies $\langle \tilde{\chi}_{\eta}, b \rangle_{\eta} = \dot{\chi}_{\eta}(b)$ for all $b \in \mathbb{H}_{\eta}$, then the efficient influence function is the solution $\tilde{\psi}_{P_{\eta}} \in \bar{R}(A_{\eta}) \subset L_{2}^{0}(P_{\eta})$ of

$$A_{\eta}^{*}\tilde{\psi}_{P_{n}} = \tilde{\chi}_{\eta}. \tag{2}$$

- $\partial \chi (\eta_t) / (\partial t)|_{t=0} = \dot{\chi}_{\eta}(b) = \left\langle A_{\eta}^* \tilde{\psi}_{P_n}, b \right\rangle_{\eta} = \left\langle \tilde{\psi}_{P_n}, A_{\eta} b \right\rangle_{L_2(P_{\eta})}.$
- When $A_{\eta}^*A_{\eta}$ is invertible, then the solution to (2) can be written as $\tilde{\psi}_{P_{\eta}} = A_{\eta} \left(A_{\eta}^*A_{\eta} \right)^{-1} \tilde{\chi}_{\eta}.$

- Consider the estimator for Λ is $\hat{\Lambda}(t) = \int_0^t \left[\mathbb{P}_n Y(s) e^{\hat{\beta}' Z} \right]^{-1} \mathbb{P}_n dN(s)$.
- We can show that

$$\sqrt{n} \left[\hat{\Lambda}(t) - \Lambda_0(t) \right] = \sqrt{n} \left(\mathbb{P}_n - P \right) \int_0^t \frac{dM_{\beta_0}(s)}{P \left[Y(s) e^{\beta'_0 Z} \right]} \\
- \sqrt{n} \left(\hat{\beta} - \beta_0 \right)' \int_0^t E(s, \beta_0) d\Lambda_0(s) + o_P(1)$$

where the remainder term is uniform in t and $E(t,\beta) = \frac{P[ZY(t)e^{\beta'Z}]}{P[Y(t)e^{\beta'Z}]}$.

By previous arguments,

$$\sqrt{n}(\hat{\beta} - \beta_0) = V^{-1}(\beta_0) \mathbb{P}_n \int_0^{\tau} \left[Z - E(s, \beta_0) \right] dM_{\beta_0}(s) + o_P(1)$$

where

$$V(\beta) = \tilde{I}_{\beta,\Lambda} = P_{\beta,\Lambda} \left[\tilde{\ell}_{\beta,\Lambda} \tilde{\ell}'_{\beta,\Lambda} \right].$$

Thus $\hat{\Lambda}$ is asymptotically linear with influence function

$$\begin{split} \tilde{\psi}(t) &= \int_0^t \frac{dM_{\beta_0}(s)}{P\left[Y(s)e^{\beta_0'Z}\right]} \\ &- \left\{ \int_0^\tau \left[Z - E\left(s,\beta_0\right)\right]' dM_{\beta_0}(s) \right\} V^{-1}\left(\beta_0\right) \int_0^t E\left(s,\beta_0\right) d\Lambda_0(s) \end{split}$$

- We will now use the previous methods to verify that $\tilde{\psi}(u)$ is the efficient influence function for the parameter $\Lambda(u)$, for each $u \in [0, \tau]$.
- The tangent space for the Cox model (for both parameters together) is $\{A(a,b) = \int_0^{\tau} [Z'a + b(s)] dM_{\beta}(s) : (a,b) \in H\}$, where $H = \mathbb{R}^k \times L_2(\Lambda)$.
- The natural inner product for pairs of elements in H is $\langle (a,b),(c,d)\rangle_H=a'b+\int_0^\tau c(s)d(s)d\Lambda(s),$ for $(a,b),(c,d)\in H.$
- Hence the adjoint of A, A^* , satisfies $\langle A(a,b), g \rangle_{P_{\beta,\Lambda}} = \langle (a,b), A^*g \rangle_H$ for all $(a,b) \in H$ and all $g \in L_2^0(P_{\beta,\Lambda})$.
- It can be shown that $A^*g = \left(P_{\beta,\Lambda}\left[\int_0^{\tau} ZdM_{\beta}(s)g\right], P_{\beta,\Lambda}\left[dM_{\beta}(t)g\right]/d\Lambda_0(t)\right)$ satisfies these equations and is thus the adjoint of A.

- We showed that $\Lambda_t(u) = \int_0^u e^{tb(s)} d\Lambda(s) = \int_0^u (1+tb(s)) d\Lambda(s) + o(t)$.
- Thus, for the parameter $\chi\left(P_{\beta,\Lambda}\right)=\Lambda(u)$,

$$\left.\partial\chi\left(P_{t}\right)/\left(\partial t\right)\right|_{t=0}=\int_{0}^{u}b(s)d\Lambda(s).$$

- Thus $\langle \tilde{\chi}, (a, b) \rangle_H = \int_0^u b(s) d\Lambda(s)$ and therefore $\tilde{\chi} = (0, 1\{s \leq v\}) \in H$ (s is the function argument here).
- Our proof will be complete if we can show that $A^*\tilde{\psi}=\tilde{\chi}$, since this would imply that $\tilde{\psi}(u)$ is the efficient influence function for $\Lambda(u)$.

First,

$$P\left[\int_{0}^{\tau} Z dM_{\beta}(s) \tilde{\psi}(u)\right] = P_{\beta,\Lambda} \left\{ \int_{0}^{\tau} Z dM_{\beta}(s) \int_{0}^{u} \frac{dM_{\beta}(s)}{P_{\beta,\Lambda} \left[Y(s) e^{\beta' Z}\right]} \right\}$$

$$- P_{\beta,\Lambda} \left\{ \int_{0}^{\tau} Z dM_{\beta}(s) \int_{0}^{\tau} \left[Z - E(s,\beta)\right]' dM_{\beta}(s) \right\}$$

$$\times V^{-1}(\beta) \int_{0}^{u} E(s,\beta) d\Lambda(s)$$

$$= \int_{0}^{u} E(s,\beta) d\Lambda(s) - V(\beta) V^{-1}(\beta) \int_{0}^{u} E(s,\beta) d\Lambda(s)$$

$$= 0$$

• Second, it is not difficult to verify that $P_{\beta,\Lambda}\left[dM_{\beta}(s)\tilde{\psi}(u)\right]=1\{s\leq u\}d\Lambda(s)$, and thus we obtain the desired result.

- Returning to the semiparametric model setting, where $\mathcal{P} = \{P_{\theta,\eta} : \theta \in \Theta, \eta \in H\}$, the efficient score can be used to derive estimating equations for computing efficient estimators of θ .
- An estimating equation is a data dependent function $\Psi_n : \Theta \mapsto \mathbb{R}^k$ for which an approximate zero yields a Z-estimator for θ .
- When $\Psi_n(\tilde{\theta})$ has the form $\mathbb{P}_n\hat{\ell}_{\tilde{\theta},n}$, where $\hat{\ell}_{\tilde{\theta},n}(X\mid X_1,\ldots,X_n)$ is a function for the generic observation X which depends on the value of $\tilde{\theta}$ and the sample data X_1,\ldots,X_n , we have the following estimating equation result.

Theorem (3.1)

Suppose that the model $\{P_{\theta,\eta}:\theta\in\Theta\}$, where $\Theta\subset\mathbb{R}^k$, is differentiable in quadratic mean with respect to θ at (θ,η) and let the efficient information matrix $\tilde{I}_{\theta,\eta}$ be nonsingular. Let $\hat{\theta}_n$ satisfy $\sqrt{n}\mathbb{P}_n\hat{\ell}_{\hat{\theta}_n,n}=o_P(1)$ and be consistent for θ . Also assume that $\hat{\ell}_{\hat{\theta}_n,n}$ is contained in a $P_{\theta,\eta}$ -Donsker class with probability tending to 1 and that the following conditions hold:

$$P_{\hat{\theta}_n,\eta}\hat{\ell}_{\hat{\theta}_n,n} = o_P\left(n^{-1/2} + \|\hat{\theta}_n - \theta\|\right)$$
 (3)

$$P_{\theta,\eta} \left\| \hat{\ell}_{\hat{\theta}_{n},n} - \tilde{\ell}_{\theta,\eta} \right\|^{2} \stackrel{P}{\to} 0, \quad P_{\hat{\theta}_{n},\eta} \left\| \hat{\ell}_{\hat{\theta}_{n},n} \right\|^{2} = O_{P}(1)$$
 (4)

Then $\hat{\theta}_n$ is asymptotically efficient at (θ, η) .

Proof. Define $\mathcal F$ to be the $P_{\theta,\eta}$ -Donsker class of functions that contains both $\hat\ell_{\hat\theta_n,n}$ and $\tilde\ell_{\theta,\eta}$ with probability tending towards 1. By Condition (4), we now have

$$\mathbb{G}_{\textit{n}}\hat{\ell}_{\hat{\theta}_{\textit{n}},\textit{n}} = \mathbb{G}_{\textit{n}}\tilde{\ell}_{\theta,\eta} + o_{\textit{P}}(1) = \sqrt{\textit{n}}\mathbb{P}_{\textit{n}}\tilde{\ell}_{\theta,\eta} + o_{\textit{P}}(1)$$

Combining this with the "no-bias" Condition (3), we obtain

$$egin{aligned} \sqrt{n} \left(P_{\hat{ heta}_n, \eta} - P_{ heta, \eta}
ight) \hat{\ell}_{\hat{ heta}_n, n} &= o_P \left(1 + \sqrt{n} \left\| \hat{ heta}_n - heta
ight\|
ight) + \mathbb{G}_n \hat{\ell}_{\hat{ heta}_n, n} \ &= \sqrt{n} \mathbb{P}_n \tilde{\ell}_{ heta, \eta} + o_P \left(1 + \sqrt{n} \left\| \hat{ heta}_n - heta
ight\|
ight) \end{aligned}$$

If we can show

$$\sqrt{n}\left(P_{\hat{\theta}_{n},\eta}-P_{\theta,\eta}\right)\hat{\ell}_{\hat{\theta}_{n},n}=\left(\tilde{I}_{\theta,\eta}+o_{P}(1)\right)\sqrt{n}\left(\hat{\theta}_{n}-\theta\right),\tag{5}$$

then the proof will be complete.

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - かへの

Since
$$\tilde{l}_{\theta,\eta} = P_{\theta,\eta} \tilde{\ell}_{\theta,\eta} \dot{\ell}'_{\theta,\eta}$$
,

$$\begin{split} \sqrt{n} \left(P_{\hat{\theta}_{n},\eta} - P_{\theta,\eta} \right) \hat{\ell}_{\hat{\theta}_{n},n} - \tilde{l}_{\theta,\eta} \sqrt{n} \left(\hat{\theta}_{n} - \theta \right) \\ = & \sqrt{n} \left(P_{\hat{\theta}_{n},\eta} - P_{\theta,\eta} \right) \hat{\ell}_{\hat{\theta}_{n},n} - P_{\theta,\eta} \left[\tilde{\ell}_{\theta,\eta} \dot{\ell}'_{\theta,\eta} \right] \sqrt{n} \left(\hat{\theta}_{n} - \theta \right) \\ = & \sqrt{n} \int \hat{\ell}_{\hat{\theta}_{n},n} \left(dP_{\hat{\theta}_{n},\eta}^{1/2} + dP_{\theta,\eta}^{1/2} \right) \\ & \times \left[\left(dP_{\hat{\theta}_{n},n}^{1/2} - dP_{\theta,\eta}^{1/2} \right) - \frac{1}{2} \left(\hat{\theta}_{n} - \theta \right)' \dot{\ell}_{\theta,\eta} dP_{\theta,\eta}^{1/2} \right] \\ & + \int \left\{ \hat{\ell}_{\hat{\theta}_{n},n} \left(dP_{\hat{\theta}_{n},\eta}^{1/2} - dP_{\theta,\eta}^{1/2} \right) \frac{1}{2} \dot{\ell}'_{\theta,\eta} dP_{\theta,\eta}^{1/2} \right\} \sqrt{n} \left(\hat{\theta}_{n} - \theta \right) \\ & + \int \left(\hat{\ell}_{\hat{\theta}_{n},n} - \tilde{\ell}_{\theta,\eta} \right) \dot{\ell}'_{\theta,\eta} dP_{\theta,\eta} \sqrt{n} \left(\hat{\theta}_{n} - \theta \right) \\ & \equiv & A_{n} + B_{n} + C_{n} \end{split}$$

Combining the assumed differentiability in quadratic mean with Condition (4), we obtain $A_n = o_P(\sqrt{n}||\hat{\theta}_n - \theta||)$. Condition (4) also implies $C_n = o_P(\sqrt{n}||\hat{\theta}_n - \theta||)$. Now we consider B_n . Note that for any sequence $m_n \to \infty$,

$$\begin{split} & \left\| \int \hat{\ell}_{\hat{\theta}_{n},n} \left(dP_{\hat{\theta}_{n},\eta}^{1/2} - dP_{\theta,\eta}^{1/2} \right) \frac{1}{2} \dot{\ell}'_{\theta,\eta} dP_{\theta,\eta}^{1/2} \right\| \\ & \leq & m_{n} \int \left\| \hat{\ell}_{\hat{\theta}_{n},n} \right\| dP_{\theta,\eta}^{1/2} \left| dP_{\hat{\theta}_{n},\eta}^{1/2} - dP_{\theta,\eta}^{1/2} \right| \\ & + \sqrt{\int \left\| \hat{\ell}_{\hat{\theta}_{n},n} \right\|^{2} \left(dP_{\hat{\theta}_{n},\eta} + dP_{\theta,\eta} \right) \int_{\left\| \hat{\ell}_{\theta,\eta} \right\| > m_{n}} \left\| \dot{\ell}_{\theta,\eta} \right\|^{2} dP_{\theta,\eta}} \\ & \equiv m_{n} D_{n} + E_{n} \end{split}$$

where $E_n = o_P(1)$ by Condition (4) and the square-integrability of $\dot{\ell}_{\theta,n}$.

Now

$$\begin{split} D_n^2 &\leq \int \left\| \hat{\ell}_{\hat{\theta}_n,n} \right\|^2 dP_{\theta,\eta} \times \int \left(dP_{\hat{\theta}_n,\eta}^{1/2} - dP_{\theta,\eta}^{1/2} \right)^2 \\ &\equiv F_n \times G_n \end{split}$$

where $F_n=O_P(1)$ by reapplication of Condition (4) and $G_n=o_P(1)$ by differentiability in quadratic mean combined with the consistency of $\hat{\theta}_n$. Thus there exists some sequence $m_n\to\infty$ slowly enough so that $m_n^2G_n=o_P(1)$. Hence, for this choice of $m_n,m_nD_n=o_P(1)$. Thus $B_n=o_P\left(\sqrt{n}\left\|\hat{\theta}_n-\theta\right\|\right)$, and we obtain (5). The desired result now follows.