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Maximum Likelihood Estimation Profile Likelihood Inference

The main purpose of this chapter is to establish efficient semi-parametric inference
for finite-dimensional parameters.

From previous talk, we have introduced efficient score functions and estimating
equations and their connection to the efficient estimation.

Next we move on to introduce the main tool for constructing efficient estimators,
which is based on modifications of maximum likelihood estimation.
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Semi-parametric Model and Likelihood Modification

We focus on semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}, where Θ is an open
subset of Rk and H is an arbituary, possibly infinite-dimensional set.

The parameter of interest is ψ (Pθ,η) = θ

The most common approach to efficient estimation is based on modifications of
maximum likelihood estimation which lead to efficient estimation.

Such modified likelihood for semi-parametric model are generally not really
likelihoods (products of densities) due to the presence of an infinite dimensional
nuisance parameter η

Wenyi Xie (UNC) On Profile Likelihood November 11, 2021 4 / 32



Maximum Likelihood Estimation Profile Likelihood Inference

Recall the setting of estimation of an unknown real density f(x) from an i.i.d
samples X1, . . . , Xn

The likelihood is
∏n
i=1 f(Xi) and the maximizer over all densities has arbituarily

high peaks at the observations, and zeros at other values, and therefore is not a
density.

This can be fixed by using an empirical likelihood
∏n
i=1 pi, where p1, . . . , pn are the

masses assigned to the observations, and
∑n

i=1 pi = 1 ⇒ empirical distribution
function estimator, which is known to be fully efficient.
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Consider again the Cox model for the right-censored data.

We observe a sample of n realizations of X = (V, d, Z), where
V = T ∧ C, d = 1{V = T}, Z ∈ Rk is covariate vector.

T is the failure time, and C is a censoring time.

We assume that T and C are independent given Z, and T given Z has integrated
hazard function exp (ZTβ)Λ(t) for β in an open subset B ⊂ Rk and Λ is
continuous and monotone increasing with Λ(0) = 0.

Censoring is not informative.

The density for single observation is proportional to[
eβ

′Zλ(V )
]d

exp
[
−eβ′ZΛ(V )

]
.

Maximizing such likelihood based on this density will results in the same issue as
previous slide.
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A likelihood works assigns mass only at observed failure time

Ln(β,Λ) =

n∏
i=1

[
eβ

′Zi∆Λ (Vi)
]di

exp
[
−eβ′ZiΛ (Vi)

]
where ∆Λ(t) is the jump size of Λ at t

For each value of β, one can maximize or profile Ln(β,Λ) over the nuisance
parameter Λ to obtain profile likelihood pLn(β), which is proportional to partial
likelihood.

Let β̂ be the maximizer of pLn(β), then the maximizer Λ̂ of Ln(β̂,Λ) is the
Breslow estimator

Λ̂(t) =

∫ t

0

PndN(s)

Pn
[
Y (s)eβ̂′Z

]
It can be shown that both β̂ and Λ̂ are efficient
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Other Modifications to Maximum Likelihood Estimation

Another useful class of likelihood variants are penalized likelihoods. Penalty term
(or terms) adds to likelihoods in order to maintain an appropriate level of
smoothness for one or more of the nuisance parameters.

Other methods of generating likelihood variants are possible.

The basic idea is that using the likelihood principle to guide estimation of
semiparametric models often lead to efficient estimators for the model components
that are

√
n consistent.

Because of the richness of this approach to estimation, one needs to verify for each
new situation that a likelihood-inspired estimator is consistent, efficient and
well-behaved for moderate sample sizes.

Verifying efficiency usually entails demonstrating that the estimator satisfies the
efficient score equation from presentation last week.
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Profile Likelihood

The Cox profile likelihood can be found in closed form by analytic methods.

However, it is not clear that a general profile likelihood is differentiable, because
the supremum of differentiable functions is not necessarily differentiable itself.

Therefore, we want to find some submodels such that the efficient score is a
derivative of the log likelihood along those parametric submodels.
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Least Favorable Submodel

Among all parametric submodels, one can find the minimum of the information
over all efficient estimators.

For semiparametric models, this minimum information is the best possible because
a nonparametric problem is at least as difficult as any finite-dimensional
subproblem.

In other words, the Fisher information for estimating parameters of interest in
semiparametric problem should be no greater than the Fisher information for
estimating those parameters in any finite-dimensional problem.

The least favorable submodel is a parametric model that achieves this minimum.

By looking at the least favorable submodel, we may obtain a best possible
asymptotic variance of the estimator in the original semiparametric problem.
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Least favorable submodels

The basic idea of using least favorable submodels is to connect semiparametric
model to a fully parametric problem and reduce the infinite-dimensional problem to
a problem involving the finite-dimensional fully-parametric ”least favorable
submodel”.

Those submodels are of the same dimension as θ. Once such reduction is made,
classical Cramer conditions on the low-dimensional model can be used.

Wenyi Xie (UNC) On Profile Likelihood November 11, 2021 11 / 32



Maximum Likelihood Estimation Profile Likelihood Inference

Approximately Least Favorable submodels

Recall that given the set of scored for the nuisance parameters, the efficient score
function for θ at the truth (θ0, η0) is defined as

l̃θ0,η0 = lθ0,η0 −
∏
θ0,η0

lθ0,η0

where lθ0,η0 is the score functions for θ, and
∏
θ0,η0

lθ0,η0 is the projection of the
score function for θ onto the closed linear span of the nuisance scores.

While the solution of an efficient score equation need not be a maximum likelihood
estimator, it is also possible that the maximum likelihood estimator in a
semiparametric model may not be expressible as the zero of an efficient score
equation

Wenyi Xie (UNC) On Profile Likelihood November 11, 2021 12 / 32



Maximum Likelihood Estimation Profile Likelihood Inference

Approximately Least Favorable submodels

This possibility occurs because the efficient score is a projection, thus there is no
assurance that this projection is the derivative of the log-likelihood along a
submodel.

Furthermore, since such projection is not necessarily a nuisance score itself, the
existence of the efficient score does not imply existence of a least favorable
submodel.

We assume the existence of an approximately least favorable submodel which
approximates the true least favorable submodel to a useful level of accuracy that
facilitates analysis of semiparametric estimators.
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Appriximately Least Favorable Submodels

We will now describe the process in generality, while the specifics will depend on
the situation.

Assume that for each parameter (θ, η), there exists a map t 7→ ηt(θ, η) that maps
from a fixed neighborhood of θ into the parameter set for η.

We require that

ηt(θ, η) ∈ Ĥ, for all ‖t− θ‖ small enough, and

ηθ(θ, η) = η for any (θ, η) ∈ Θ× Ĥ

where Ĥ is a suitable enlargement of H that includes all estimators that satisfy the
constraints of the estimation process.

Define the map t 7→ `(t, θ, η)(x) which is defined by
`(t, θ, η)(x) = log l(t, ηt(θ, η))(x), which is twice continuously differentiable for all
x.
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Approximately Least Favorable Submodels

We will make additional requirement of `(·, ·, ·) at various points, leading to further
restriction on ηt(θ, η)

Denote ˙̀(t, θ, η)(x) ≡ ∂
∂t`(t, θ, η)

Another important structural requirement for such submodel is that it is least
favorable at (θ0, η0) for estimating θ:

˙̀(θ0, θ0, η0) = l̃θ0,η0

Meaning that for the model with likelihood l(t, ηt(θ0, η0)), the score function for
the parameter t at t = θ0 is the efficient score function for θ.

Note that we assume this only at the (θ0, η0) in particular, but not at every
realization of the profile estimators.
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Check MLE efficiency

(
θ̂n, η̂n

)
are the maximum likelihood estimate, i.e maximizer of Pn log l(θ, η).

Clearly, we have Pn ˙̀(θ̂n, θ̂n, η̂n) = 0

Therefore, provided that ˙̀ (θ, θ, η̂n) satisfies the conditions of Theorem 3.1 from
last week, θ̂n is efficient.

It is necessary to check the conditions even for maximum likelihood estimators
because η̂n is often on the boundary (or even a little bit outside) of the parameter
space.
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Check MLE efficiency

To see this, recall again the Cox model setting for right-censored data. Nuisance
parameter η is the baseline integrated hazard function which is usually assumed to
be continuous.

However, η̂n is the Breslow estimator, which is right-continuous step function that
jumps at observed failure time. Thus not in the parameter space.

Therefore, direct differentiation of the log-likelihood at maximum likelihood
estimator will not yield an efficient score equation.

The approximately least-favorable submodel structure is very useful for developing
methods of inference for θ. Next we illustrate this concept by an example on right
censored Cox model.
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Example1: Right Censored Cox Model

H consists of all monotone increasing functions Λ ∈ C[0, τ ] with Λ(0) = 0.
Ĥ is the set of all monotone, increasing functions Λ ∈ D[0, τ ]
From previous week, we showed that the efficient score for β is

˜̀
β,Λ =

∫ τ

0
(Z − h0(s)) dM(s)

where

M(t) ≡ N(t)−
∫ t

0
Y (s)eβ

′ZdΛ(s)

N and Y are the usual counting and at-risk processes respectively, and

h0(t) ≡
P
[
Z1{W ≥ t}eβ′

0Z
]

P
[
1{W ≥ t}eβ′

0Z
]

where P is the true probabilty measure (at the parameter values (β0,Λ0))
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Example1: Right Censored Cox Model Cont’

The Cox model log-likelihood for a single observation is

log l(β,Λ) =
(
β′Z + log ∆Λ(W )

)
δ − eβ′ZΛ(W )

where ∆Λ(w) is the jump size in Λ at w
A convenient approximately least favorable submodel is defined by

dΛt(β,Λ) =
(
1 + (β − t)′h0(s)

)
dΛ(s)

We can verify that
(1) dΛβ(β,Λ) = dΛ

(2) ˙̀ (β0, β0,Λ0) = l̃β0,Λ0
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Inference

A few methods exists for efficient estimation and inference for θ using the profile
likelihood. We will introduce one method and leave the rest til later.

The first method is based on the very important results that under reasonable
regularity conditions, a profile likelihood for θ behaves asymptotically like a
parametric likelihood of a normal random variable with variance being the inverse
of the efficient Fisher information Ĩθ,η in a shinking neighborhood of the maximum

likelihood estimator θ̂.

This leads to a valid likelihood ratio based inference for θ.

The idea is based on quadratic expansion of the profile likelihood.
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uadratic expansion of the profile likelihood

Still the context is we have maximum likelihood estimators (θ̂n, η̂n) from i.i.d
samples. θ is finite-dimensional parameter of primary interest, and η is an
infinite-dimensional nuisance parameter η.

The main results give the following asymptotic expansion of the profile likelihood.

Under certain regularity conditions, we have that for any random sequence θ̃n
P→ θ0,

log pLn

(
θ̃n

)
= log pLn (θ0) +

(
θ̃n − θ0

)′ n∑
i=1

˜̀
θ0,η0 (Xi)

− 1

2
n
(
θ̃n − θ0

)′
Ĩθ0,η0

(
θ̃n − θ0

)
+ oP0

(
1 +
√
n
∥∥∥θ̃n − θ0

∥∥∥)2

where ˜̀
θ0,η0 is the efficient score function for θ, Ĩθ0,η0 is the efficient Fisher

information matrix, and P0 is the probability measure of X at the true parameter
values.
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Corollary 1

If the aymptotic expansion of the profile likelihood holds, Ĩθ0,η0 is positive definite,

and θ̂n is consistent, i.e θ̂n = θ0 + oP0(1)
Then MLE is aymptotically normal and has asymptotic expansion

√
n
(
θ̂n − θ0

)
=
√
nPnĨ−1

θ0,η0
˜̀
θ0,η0(X) + oP0(1)

Log profile likelihood function can be expanded around θ̂n in the form

log pLn

(
θ̃n

)
= log pLn

(
θ̂n

)
− 1

2
n
(
θ̃n − θ̂n

)′
Ĩθ0,η0

(
θ̃n − θ̂n

)
+ oP0

(
1 +
√
n
∥∥∥θ̃n − θ0

∥∥∥)2
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Corollary 1 justifies using a semiparametric profile likelihood as an ordinary
likelihood, at least asmptotically.

Proof

Set ∆n = n−1/2
∑n

i=1 l̃0 (Xi) and ĥ =
√
n
(
θ̂ − θ0

)
Then apply the main results with the choice θ̃ = θ̂ and θ̃ = θ0 + n−1/2Ĩ−1

0 ∆r

We have

log pln(θ̂) = log pln (θ0) + ĥT∆n −
1

2
ĥT Ĩ0ĥ+ oP (‖ĥ‖+ 1)2

and

log pln

(
θ0 + n−1/2Ĩ−1

0 ∆n

)
= log pln (θ0) + ∆T

n Ĩ
−1
0 ∆n −

1

2
∆T
n Ĩ
−1
0 ∆n + oP (1)
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Proof for Corollary 1

By the definition of θ̂n, log pln(θ̂) ≥ log pln

(
θ0 + n−1/2Ĩ−1

0 ∆n

)
ĥT∆n −

1

2
ĥT Ĩ0ĥ−

1

2
∆T
n Ĩ
−1
0 ∆n ≥ −oP (‖ĥ‖+ 1)2

The left side of this inequality is equal to

−1

2

(
ĥ− Ĩ−1

0 ∆n

)T
Ĩ0

(
ĥ− Ĩ−1

0 ∆n

)
≤ −c

∥∥∥ĥ− Ĩ−1
0 ∆n

∥∥∥2

for a positive constant c (nonsingularity of Ĩ0)
We can conclude that ∥∥∥ĥ− Ĩ−1

0 ∆n

∥∥∥ = oP (‖ĥ‖+ 1)

This implies that ‖ĥ‖ = OP (1), and
∥∥∥ĥ− Ĩ−1

0 ∆n

∥∥∥ = oP (1)

Wenyi Xie (UNC) On Profile Likelihood November 11, 2021 24 / 32



Maximum Likelihood Estimation Profile Likelihood Inference

The following two additional corollaries provide methods of using this quadratic
expansion to conduct inference for θ0

Corollary 2

If the asymptotic expansion of log profile likelihood holds, and Ĩ0 is
positive-definite, and θ̂n is consistent
Then under the null hypothesis H0 : θ = θ0,

2
(

log pLn

(
θ̂n

)
− log pLn (θ0)

)
 χ2(k)
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This second corollary concerns the profile likelihood ratio statistics and shows that
this behaves it should.
It justifies using the set θ : 2 log

pln

(
θ̂n

)
pln(θ)

≤ χ2
d,1−α


as a confidence set of approximate coverage probability 1− α
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The third corollary concerns a discretized second derivative of the profile likelihood.

Corollary 3

If the asymptotic expansion of log profile likelihood holds, and θ̂n is consistent,

then for all sequences vn
P→ v ∈ Rk and hn

P→ 0 such that (
√
nhn)

−1
= OP (1),

−2
log pln

(
θ̂n + hnvn

)
− log pln

(
θ̂n

)
nh2

n

P→ vT Ĩ0v

This estimator is the square of numerical derivative of the signed log-likelihood
ratio statistics as discussed by Chen and Jennrich (1996). In their theorem 3.1,
they showed that in the parametric setting, such derivative is the square root of the
observed information about θ.
Indeed, the first derivative of the profile likelihood at θ̂n is 0, the above expression
can be taken as the observed information about θ (evaluated in the direction of vn).
This corollary can thus be used to construct consistent numerical estimates of Ĩ0
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Theorem 19.5 asymptotic expansion of log profile likelihood

In addition to three conditions for the approximately least-favorable submodel
t 7→ ηt(θ, η), which is

ηt(θ, η) ∈ Ĥ, for all ‖t− θ‖ small enough, and

ηθ(θ, η) = η for any (θ, η) ∈ Θ× Ĥ
˙̀ (θ0, θ0, η0) = ˜̀

θ0,η0

Several other conditions need to be satisfied in order to expand the profile
likelihood.
First define ῭(t, θ, η) = (∂/(∂t)) ˙̀(t, θ, η), and η̂θ ≡ argmaxη Ln(θ, η).

Assume that for any possibly random sequence θ̃n
P→ θ0, we have

η̂θ̃n
P→ η and

P0
˙̀
(
θ0, θ̃n, η̂θ̃n

)
= oP0

(∥∥∥θ̃n − θ0

∥∥∥+ n−1/2
)
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asymptotic expansion of log profile likelihood

Theorem 19.5

Assume conditions on previous page are satisfied, and assume that

(t, θ, η) 7→ ˙̀(t, θ, η)(X)

and
(t, θ, η) 7→ ῭(t, θ, η)(X)

are continuous at (θ0, θ0, η0) for P0-almost every X (or in measure).

Furthermore assume that for some neighborhood V of (θ0, θ0, η0),

the class of functions F1 ≡ { ˙̀(t, θ, η) : (t, θ, η) ∈ V } is P0-Donsker with
square-integrable envelope function,

the class of functions F2 ≡ {῭(t, θ, η) : (t, θ, η) ∈ V } is P0-Glivenko-Cantelli and
bounded in L1(P0)
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log pLn

(
θ̃n

)
= log pLn (θ0) +

(
θ̃n − θ0

)′ n∑
i=1

˜̀
θ0,η0 (Xi)

− 1

2
n
(
θ̃n − θ0

)′
Ĩθ0,η0

(
θ̃n − θ0

)
+ oP0

(
1 +
√
n
∥∥∥θ̃n − θ0

∥∥∥)2
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We can readily verify the conditions of Theorem 19.5 for several models

• Cox model for right-censored data

• Cox model for current status data

• proportional odds model under right-censoring

• partly-linear logistic regression model

• :

• :
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Several other methods for θ estimation and inference are developed by extending
the idea of such quadratic expansion of the profile likelihood.

The next section will show that slightly stronger assumption can yield even more
powerful methods of inference.
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