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Recall

Empirical log-likelihood:

Ln(θ, η) = nPn`(θ, η) =
n∑

i=1

`i (θ, η)

Profile log-likelihood:

pLn(θ) = sup
η
Ln(θ, η)

Quadratic expansion of profile log-likelihood: Under certain regularity conditions, for any

sequence θ̃n →P θ0, we have

pLn(θ̃n) = pLn(θ0) + (θ̃n − θ0)T
n∑

i=1

˜̀
θ0,η0

(Xi )

−
1

2
n(θ̃n − θ0)T Ĩθ0,η0

(θ̃n − θ0) + oP0

(
1 +
√
n||θ̃n − θ0||

)2
(1)

where ˜̀
θ,η is the efficient score function; Ĩθ,η is the efficient Fisher information matrix; P0 is

the probability measure of X at the true parameter value θ0.
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The Profile Sampler

The material for this section comes largely from Lee, Kosorok and Fine (2005)1, which

proposed inference based on sampling from a posterior distribution based on the profile

likelihood.

The quadratic expansion of the profile likelihood permits the construction of confidence sets

for θ by inverting the log-likelihood ratio. But translating this theory into practice can be

computationally challenging.

1[LKF] Lee, B. L., Kosorok, M. R., and Fine, J. P. (2005). The profile sampler. Journal of the American

Statistical Association, 100:960–969.
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The Profile Sampler
Motivation

Even if the log profile likelihood ratio can be inverted for a multivariate parameter, this

inversion does not enable the construction of confidence intervals for each one-dimensional

subcomponent separately, as is standard practice in data analysis. For such confidence

intervals, it would be necessary to further profile over all remaining components in θ.

A related problem for which inverting the log likelihood is not adequate is the construction of

rectangular confidence regions for θ, such as minimum volume confidence rectangles.
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The Profile Sampler
Motivation

In principle, having an estimator of θ and its variance simplifies these inferences considerably.

However, the computation of these quantities using the semi-parametric likelihood is more

challenging compared to that in parametric models.

Finding the maximizer of the profile likelihood is done implicitly and typically involves

numerical approximations. When the nuisance parameter is not
√
n estimable, nonparametric

functional estimation of η for fixed θ may be required, which depends heavily on the proper

choice of smoothing parameters.
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The Profile Sampler
Motivation

Even when η is estimable at the parametric rate, and without smoothing, Ĩ0 does not

ordinarily have a closed form.

When it does have a closed form, it may include linear operators which are difficult to

estimate well, and inverting the estimated linear operators may not be straightforward.

And the validity of these variance estimators must be established on a case-by-case basis.
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The Profile Sampler
Motivation

The bootstrap is a possible solution to some of these problems. Theoretical justification for

the bootstrap is possible but challenging for semi-parametric models where the nuisance

parameter is not
√
n consistent.

Even when the bootstrap is valid, the computational burden is substantial, since

maximization over both θ and η is needed for each bootstrap sample.

A different approach to variance estimation is possible via Corollary 19.4 which verifies that

the curvature of the profile likelihood near θ̂n is asymptotically equal to Ĩ0.
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The Profile Sampler
Motivation

In practice, we can perform second order numerical differentiation by the following steps:

1 Evaluating the profile likelihood on a hyperrectangular grid of 3p equidistant points centered at θ̂n;

2 Taking the appropriate differences;

3 Dividing by 4h2.

where p is the dimension of θ; h is the spacing between grid points.

Limitation: There are no clear cut rules on choosing the grid spacing in a given data set.

Thus, it is difficult to automate this technique for practical usage.
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The Profile Sampler

Lee, Kosorok and Fine proposed an application of MCMC in their paper [LKF] to the

semi-parametric profile likelihood.

The method involves generating a Markov chain {θ(1),θ(2), ...} with stationary density

proportional to pθ,n (θ) = exp [pLn (θ)] q (θ), where q = dQ/dθ for some prior measure Q.

This can be accomplished by using the Metropolis-Hastings algorithm.
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The Profile Sampler

Main steps of the algorithm:

1 Begin with an initial value θ(1) for the chain.

2 For each k = 2, 3, ..., obtain a proposal θ̃(k+1) by random walk from θ(k).

3 Compute p
θ̃(k+1),n

(θ̃(k+1)), and decide whether to accept θ̃(k+1) by evaluating the ratio

p
θ̃(k+1),n

(θ̃(k+1))

p
θ(k),n

(θ(k))
(2)

and applying an acceptance rule.

After generating a sufficiently long chain, we can compute the mean of the chain to estimate

the maximizer of pLn(θ) and the variance of the chain to estimate Ĩ−1
0 . And the output

from the Markov chain can also be directly used to construct the confidence sets.
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The Profile Sampler

Some remarks:

1 Whether or not a Markov chain is used to sample from the “posterior” proportional to

exp[pLn(θ)]q(θ), the procedure based on sampling from this posterior is referred to as the

profile sampler.

2 Part of the computational simplicity of this procedure is that pLn(θ) does not need to be

maximized, and only needs to be evaluated.
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The Profile Sampler

3 The profile likelihood is generally easy to compute as a consequence of algorithms such as

the stationary point algorithm for maximizing over the nuisance parameter.

But sometimes it is hard to compute. In this case, numerical differentiation via Corollary

19.4 may be advantageous since it requires fewer evaluations of the profile likelihood.

However, numerical evidence in the paper [LKF] and some other theoretical work on the

profile sampler indicate that, at least for moderately small samples, numerical differentiation

does not perform as well as the profile sampler in general. And the profile sampler may still

be beneficial even when the profile likelihood is hard to compute.
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The Profile Sampler

4 The validity of the algorithm is established in Theorem 1 below, which enables the quadratic

expansion of the profile log-likelihood around θ̂n to be valid in a fixed, bounded set, rather

than only in a shrinking neighborhood.

5 The conclusion of these arguments is that the “posterior” distribution of the profile

likelihood with respect to a prior on θ is asymptotically equivalent to the distribution of θ̂n.

And in order to do this, the new theorem will require an additional assumption on the profile

likelihood.
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The Profile Sampler

Define ∆n(θ) = 1
n

[
pLn(θ)− pLn(θ̂n)

]
.

Theorem 1

Suppose Θ is compact, Ĩ0 is positive definite, Q(Θ) <∞, and q is positive and continuous at θ0. Also, assume that θ̂n is

efficient and for any random sequence θ̃n →P θ0, we have

pLn(θ̃n) = pLn(θ̂n)−
1

2
n(θ̃n − θ̂n)T Ĩθ0,η0

(θ̃n − θ̂n) + oP0

(
1 +
√

n||θ̃n − θ0||
)2
. (3)

Moreover, assume that for every random sequence {θ̃n} ⊆ Θ,

∆n(θ̃n) =
1

n

[
pLn(θ̃n)− pLn(θ̂n)

]
= oP0

(1)⇒ θ̃n = θ0 + oP0
(1). (4)

Then for any measurable function g : Rk → R satisfying

lim sup
k→∞

1

k2
log

 sup
u∈Rk :||u||≤k

∣∣g(u)
∣∣ ≤ 0, (5)

we have ∫
Θ g(
√

n(θ − θ̂n))pθ,n(θ)dθ∫
Θ pθ,n(θ)dθ

=

∫
Rk

g(u)
1

(
√

2π)k
|Ĩ0|

1/2 exp

(
−

1

2
uT Ĩ0u

)
du + oP0

(1). (6)

a

aThe proof can be found in Section 19.4 of the textbook by Dr. Kosorok.
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The Profile Sampler

Remarks:

1 When g(u) = O(1 + ||u||)d for any d <∞, Condition (5) is readily satisfied. This means

that the first two moments of
√
n(T − θ̂n), where T has the posterior density proportional

to t 7→ pt,n(t), are consistent for the corresponding probabilities and moments of the limiting

Gaussian distribution. Specifically, E(T ) = θ̂n + oP0
(n−1/2) and nVar(T ) = Ĩ−1

0 + oP0
(1).

Thus we can calculate all the quantities needed for inference on θ without maximizing the

profile likelihood directly or computing derivatives.
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The Profile Sampler

2 The Condition (4) is not implied by the identifiability of the Kulback-Leibler information

from the full likelihood.

Nevertheless, if it can be shown that ∆n(θ) converges uniformly over Θ to the profiled

Kulback-Leibler information ∆0(θ), then identifiability of the Kulback-Leibler information for

the empirical log-likelihood Ln(θ, η) is sufficient. And this approach works for the Cox model

for right-censored data.

3 The Condition (4) is needed because the integration in (6) is over all of Θ, and thus it is

important to guarantee that there are no other distinct modes besides θ̂n in the limiting

posterior.
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The Profile Sampler

4 The profile sampler works well and is in general computationally efficient.

5 The Metropolis algorithm applied to pθ,n(θ) with a Lebesgue prior measure: By the ergodic

theorem, there exists a sequence of finite chain lengths {Mn} → ∞ such that

the chain mean θ̄n = M−1
n

∑Mn
j=1 θ

(j) satisfies θ̄n = θ̂n + oP0
(n−1/2);

the standardized sample variance Vn = M−1
n

∑Mn
j=1 n(θ(j) − θ̄n)(θ(j) − θ̄n)T is consistent for Ĩ−1

0 ;

the empirical measure

Gn(A) = M−1
n

Mn∑
j=1

I
(√

n(θ(j) − θ̄n) ∈ A
)

for a bounded convex A ⊆ Rk , is consistent for the probability that a mean zero Gaussian deviate

with variance Ĩ−1
0 lies in A.

Hence the output of the chain can be used for inference about θ0, provided Mn is large

enough so that the sampling error from using a finite chain is negligible.
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The Profile Sampler
Example 1 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Right-censored Data)

In this example, we use the identifiability of the profile Kulback-Leibler information to verify

the condition (4).

Notation and assumptions:

Let B be the compact parameter space for β;

The true parameter vector β0 is known to be in the interior of B;

The norm of the covariate vector ||Z|| is bounded by a constant.
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The Profile Sampler
Example 1 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Right-censored Data)

By discussion in previous section,

Λ̂β(s) =

∫ s

0

PndN(u)

PnY (u) exp(βT Z)
(7)

is the maximizer of the log-likelihood function over Λ given any fixed β.

Combined the conclusion above with the log-likelihood function, we have

1

n
pLn(β) = Hn(β) + C0 (8)

Hn(β) = Pn

[∫ τ

0

(
βT Z− log

{
Pn

[
Y (s) exp(βT Z)

]})
dN(s)

]
(9)

where C0 is a constant independent of β.
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The Profile Sampler
Example 1 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Right-censored Data)

It can also be proved that ||Hn − H0||B →P 0, where

H0(β) = P0

[∫ τ

0

(
βT Z− log

{
P0

[
Y (s) exp(βT Z)

]})
dN(s)

]
(10)

So the first derivative of H0 w.r.t. β, denoted by U0(β), is:

U0(β) = P0

{∫ τ

0
[Z− E(s,β)] dN(s)

}
(11)

E(s,β) =
P0

[
ZY (s) exp(βT Z)

]
P0

[
Y (s) exp(βT Z)

] (12)

And the second derivative of H0 is:

−V(β) = −
∫ τ

0

P0

[
ZZTY (s) exp(βT Z)

]
P0
[
Y (s) exp(βT Z)

] −

P0

[
ZY (s) exp(βT Z)

]
P0
[
Y (s) exp(βT Z)

]

⊗

2
 P0

[
Y (s) exp(βT Z)

]
dΛ(s) (13)
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The Profile Sampler
Example 1 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Right-censored Data)

By the boundedness of ||Z || and B, it can be verified that ∃c1 > 0 independent of β such

that the matrix [V(β)− c1Var(Z)] is positive semi-definite.

Thus, H0 is strictly concave and has a unique maximum in B.

Since we have U0(β0) = 0 by equation (11), the unique maximizer of H0 is exactly β0.

We define ∆0(β) = H0(β)− H0(β0), which is continuous and non-positive, and is strictly

negative whenever β 6= β0. Thus,

||∆n(β)−∆0(β)||B = ||Hn(β)− Hn(β̂n)− H0(β) + H0(β0)||B

= ||Hn(β)− Hn(β̂n)− H0(β) + H0(β̂n)− H0(β̂n) + H0(β0)||B

≤ 2||Hn − H0||B + ||H0(β̂n)− H0(β0)|| →P 0 (14)

Since ∆0(β0) = 0 and (14) holds, if ∆n(β̃n) = oP0
(1), we can conclude that

β̃n = β0 + oP0
(1) by the identifiability of the profile Kulback-Leibler information ∆0(β).
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The Profile Sampler
Example 2 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Current Status Data)

Recall:

Current status data arises when each subject is observed at a single examination time Y to

determine whether an event has occurred, and the event time T cannot be observed exactly.

Along with the covariate vector Z, the observed data consists of n i.i.d. realizations of

X = (Y , δ,Z), where δ = I (T ≤ Y ).

The log-likelihood function for a single observation has the form of:

`(β, Λ) = δ log
{

1− exp
[
−Λ(Y ) exp(βT Z)

]}
− (1− δ) exp(βT Z)Λ(Y ). (15)

In this example, we verify condition (4) directly.
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The Profile Sampler
Example 2 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Current Status Data)

Let {β̃n} be a random sequence satisfying ∆n(β̃n) = oP0
(1).

Fix any α ∈ (0, 1). Since

∆n(β̃n) =
1

n

[
pLn(β̃n)− pLn(β̂n)

]
= oP0

(1), ∆n(β0) =
1

n

[
pLn(β0)− pLn(β̂n)

]
≤ 0,

we have

1

n

[
pLn(β̃n)− pLn(β0)

]
≥ oP0

(1),

or equivalently,

1

n

n∑
i=1

log

 f (β̃n, F̂β̃n
; Xi )

f (β0, F0; Xi )

 ≥ oP0
(1), (16)

where the likelihood function

f (β,F ; X) = δ
{

1− exp
[
−Λ(Y ) exp(βT Z)

]}
+ (1− δ) exp

[
−Λ(Y ) exp(βT Z)

]
;

Λ = − log(1− F ); F̂β = 1− exp(−Λ̂β) is the maximizer of the likelihood function over the

nuisance parameter for fixed β.
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The Profile Sampler
Example 2 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Current Status Data)

Since α log(x) ≤ log [1 + α(x − 1)] for any x > 0, we have

1

n

n∑
i=1

log

1 + α

 f (β̃n, F̂β̃n
; Xi )

f (β0, F0; Xi )
− 1

 ≥ oP0
(1), (17)

(Lemma 2) The class F = {f (β,F ; X) : β ∈ B,F ∈M} is P0-Donsker, where M is the

class of distribution functions on [0, τ ]. 1

So we have

P0

log

1 + α

 f (β̃n, F̂β̃n
; X)

f (β0, F0; X)
− 1


 ≥ oP0

(1), (18)

On the other hand, by Jensen’s Inequality and the strict concavity of the function

x 7→ log(x), it can be proved that

P0

log

1 + α

 f (β̃n, F̂β̃n
; X)

f (β0, F0; X)
− 1


 ≤ log

P0

1 + α

 f (β̃n, F̂β̃n
; X)

f (β0, F0; X)
− 1


 ≤ 0, (19)

1Proof of the lemma is given in Section 19.4 of the textbook by Dr. Kosorok.
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The Profile Sampler
Example 2 of Verification of Condition (4): ∆n(θ̃n) = oP0

(1)⇒ θ̃n = θ0 + oP0
(1) (Cox Model for Current Status Data)

Thus by (18) and (19), we have

P0

log

1 + α

 f (β̃n, F̂β̃n
; X)

f (β0, F0; X)
− 1


 = oP0

(1), (20)

log

P0

1 + α

 f (β̃n, F̂β̃n
; X)

f (β0, F0; X)
− 1


 = oP0

(1). (21)

Then it can be proved that

P0

∣∣∣∣∣ (1− F̂
β̃n

)exp(β̃T
n Z)
− (1− F0)exp(βT

0 Z)

∣∣∣∣∣ = oP0
(1), (22)

which can further imply that

P0

({(
β̃n − β0

)T
[Z − E (Z |Y )]− cn(Y )

}2
∣∣∣∣∣Y
)

= oP0
(1) (23)

for almost surely all Y , where cn(Y ) is uncorrelated with [Z − E(Z |Y )], and the desired

result β̃n = β0 + oP0
(1) can be derived based on (23).
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The Penalized Profile Sampler

In many semi-parametric models involving a smooth nuisance parameter, it is convenient and

beneficial to perform estimation using penalization.

One motivation for this is that, in the absence of any restrictions on the form of the function

η, maximum likelihood estimation for some semi-parametric models leads to over-fitting.

And under certain regularity conditions, penalized semi-parametric log-likelihood estimation

can yield fully efficient estimates for θ.
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The Penalized Profile Sampler

We will consider a modification of the profile sampler that works with profiled penalized

likelihoods.

Assume the nuisance parameter η is a function in Sobolev class of functions supported on

some compact set U on the real line, whose dth derivative exists and is absolutely continuous

with J(η) <∞, where

J2(η) =

∫
U

[
η(d)(u)

]2
du. (24)

Here d is a fixed, positive integer, and η(j) is the jth derivative of η with respect to u. And

we denote H to be the Sobolev function class with degree d on U .
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The Penalized Profile Sampler

Then the penalized log-likelihood is:

L̃n(θ, η) =
1

n
Ln(θ, η)− λ2

nJ
2(η), (25)

where Ln(θ, η) is the empirical log-likelihood function; λn is a smoothing parameter.

Assumptions about the smoothing parameter λn: λn = oP0
(n−1/4)

λ−1
n = OP0

(nd/(2d+1))
(26)

e.g., λn = n−d/(2d+1), or λn = n−1/3 which is independent of d .

The penalized profile log-likelihood is defined as

pL̃n(θ) = L̃n(θ, η̃θ), (27)

where η̃θ = arg maxη∈H L̃n(θ, η) for fixed θ and λn.

The penalized profile sampler is the procedure of sampling from the posterior distribution of

pL̃n(θ) by assigning a prior on θ.
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Other Methods

The exchangeable bootstrap (Cheng and Huang, Annals of Statistics);

m within n subsampling (Bickel, Götze and van Zwet, 1997).

Subsampling (Politis and Ramono, 1994).

Block jackknife (Ma and Kosorok, 2005a).

Bayesian methods (Shen, 2002).

......
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