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We now consider the special case that both θ and η are
√
n consistent in

the semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}, where Θ ⊂ Rk. Often in
this setting, η may be of some interest to the data analyst. Hence, in this
chapter, η will not be considered a nuisance parameter.
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Semiparametric Maximum Likelihood Estimation

Corollary 3.2

Suppose that ℓ̇θ,η and Bθ,ηh, with h ranging over H and with (θ, η)
ranging over a neighborhood of (θ0, η0), are contained in a Pθ0,η0-Donsker

class, and that both Pθ0,η0

∥∥∥ℓ̇θ,η − ℓ̇θ0,η0

∥∥∥2 P→ 0 and

suph∈HPθ0,η0 |Bθ,ηh−Bθ0,η0h|2
P→ 0, as (θ, η) → (θ0, η0). Also assume

that Ψ is Frechet-differentiable at (θ0, η0) with derivative
Ψ̇0 : Rk × linH 7→ Rk × ℓ∞(H) that is continuously-invertible and onto its
range, with inverse Ψ̇−1

0 : Rk × ℓ∞(H) 7→ Rk × linH. Then, provided

(θ̂n, η̂n) is consistent for (θ0, η0) and Ψn(θ̂n, η̂n) = oP (n
−1/2) (uniformly

over Rk × ℓ∞(H)), (θ̂n, η̂n) is efficient at (θ0, η0) and√
n(θ̂n − θ0, η̂n − η0)⇝ −Ψ̇−1

0 Z, where Z is the Gaussian limiting
distribution of

√
nΨn(θ0, η0).
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Proof of Corollary 3.2

Proof
By Lemma 13.3, we can get that

√
n(Ψn −Ψ)(θ̂n, η̂n)−

√
n(Ψn −Ψ)(θ0, η0) = oP (1),

where the convergence is uniform. Since the Donsker assumption on the
score equation ensures

√
nΨn(θ0, η0)⇝ Z, for some tight, mean zero

Gaussian process Z, we have satisfied all of the conditions of Theorem
2.11, and thus

√
n(θ̂n − θ0, η̂n − η0)⇝ −Ψ̇−1

0 Z.
The remaining challenge is to establish efficiency. Recall that the
differentiation used to obtain the score and information operators involves
a smooth function t 7→ ηt(θ, η) for which η0(θ, η) = η, t is a scalar, and

Bθ,ηh(x)− Pθ,ηBθ,ηh = ∂ℓθ,ηt(θ,η)(x)/(∂t)
∣∣∣
t=0

,

and where ℓ(θ, η)(x) is the log-likelihood for a single observation.
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Proof of Corollary 3.2

Proof (cont).
Note that this ηt is not necessarily an approximately least-favorable
submodel. The purpose of this ηt is to incorporate the effect of a
perturbation of η in the direction h ∈ H. The resulting one-dimensional
submodel is t 7→ ψt ≡ (θ + ta, ηt(θ, η)), with derivative

∂

∂t
ψt

∣∣∣
t=0

≡ ψ̇(a, h),

where c ≡ (a, h) ∈ Rk ×H and ψ̇ : Rk ×H 7→ Rk × lin H ≡ C is a linear
operator that may depend on the composite (joint) parameter ψ ≡ (θ, η).
To be explicit about which tangent in C is being applied to the
one-dimensional submodel, we will use the notation ψt,c, i.e.,
∂/(∂t)|t=0ψt,c = ψ̇(c).

Xinjie Qian Efficient Inference for Infinite-Dimensional Parameters December 2, 2021 6 / 22



Proof of Corollary 3.2

Proof (cont).
Define the abbreviated notation Uψ(c) ≡ a

′
ℓ̇ψ +Bψh− PψBψh, for

c = (a, h) ∈ C. Our construction now gives us that for any c1, c2 ∈ C,

Ψ̇(ψ̇0(c2))(c1) =
∂

∂t
Pψ0 [Uψt,c2

(c1)]
∣∣∣
t=0,ψ=ψ0

(20.1)

= −Pψ0 [Uψ0(c1)Uψ0(c2)],

where ψ0 ≡ (θ0, η0).
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Proof of Corollary 3.2

Proof (cont).
We know from the previous proof that the influence function for
ψ̂n ≡ (θ̂n, η̂n) is ψ̃ ≡ −Ψ̇−1[Uψ0(·)]. Thus, for any c ∈ C,

Pψ0

[
ψ̃Uψ0(c)

]
= Pψ0

[
(−Ψ̇−1[Uψ0(·)])Uψ0(c)

]
= −Ψ̇−1Pψ0 [Uψ0(·)Uψ0(c)]

= −Ψ̇−1
[
− Ψ̇(ψ̇0(c))(·)

]
= ψ̇0(c).

This means by the definition given in Section 18.1 that ψ̃0 is the efficient
influence function.
Since

√
n(ψ̂n − ψ0) is asymptotically tight and Gaussian with covariance

that equals the covariance of the efficient influence function, we have by
Theorem 18.3 that ψ̂n is efficient.
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For many semiparametric models where the joint parameter is regular, we
have that η = A, where t 7→ A(t) is restricted to a subset H ∈ D[0, τ ] of
functions bounded in total variation, where τ <∞. The composite
parameter is thus ψ = (θ,A). ψ can be viewed as an element of ℓ∞(Cp) if
we define

ψ(c) ≡ a
′
θ +

∫ τ

0
h(s)dA(s), c ∈ Cp, ψ ∈ Ω ≡ Θ×H

As described in Section15.3.4, Ω thus becomes a subset of ℓ∞(Cp).
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We now modify the score notation slightly. For any c ∈ C, let

U [ψ](c) =
∂

∂t
ℓ
(
θ + ta, A(·) + t

∫ (·)

0
h(s)dA(s)

)∣∣∣
t=0

=
∂

∂t
ℓ(θ + ta, A(·))

∣∣∣
t=0

+
∂

∂t
ℓ
(
θ,A(·) + t

∫ (·)

0
h(s)dA(s)

)∣∣∣
t=0

≡ U1[ψ](a) + U2[ψ](h).

It is important to note that the map ψ 7→ U [ψ](·) actually has domain
lin Ω and range contained in ℓ∞(C).
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We then consider properties of the second derivative of the log-likelihood.
Let ā ∈ Rk and h̄ ∈ H. Denote c = (a, h) ≡ (c1, c2). We assume the
following derivative structure exists and is valid for j = 1, 2 and all c ∈ C:

∂

∂s
Uj [θ + sā, A+ sh̄](cj)

∣∣∣
s=0

=
∂

∂s
Uj [θ + sā, A](cj)

∣∣∣
s=0

+
∂

∂s
Uj [θ,A+ sh̄](cj)

∣∣∣
s=0

≡ ā
′
σ̂1j [ψ](cj) +

∫ τ

0
σ̂2j [ψ](cj)(u)dh̄(u),

where σ̂1j [ψ](cj) is a random k-vector and u 7→ σ̂2j [ψ](cj)(u) is a random
function contained in H.
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In this set-up, we will need the following conditions for some p > 0 in
order to apply Corollary 3.2:

{U [ψ](c) : ∥ψ − ψ0∥ ≤ ϵ, c ∈ Cp} is Donsker for some ϵ > 0, (20.2)

sup
c∈Cp

P0|U [ψ](c)− U [ψ0](c)|2 → 0, as ψ → ψ0, (20.3)

sup
c∈Cp

∥σ[ψ](c)− σ[ψ0](c)∥(p) → 0, as ∥ψ − ψ0∥(p) → 0. (20.4)

By Exercise 20.3.1, (20.4) implies Ψ is Frechet-differentiable in ℓ∞(Cp). It
is also not hard to verify that if Conditions (20.2)–(20.4) hold for some
p > 0, then they hold for all 0 < p <∞ (Exercise 20.3.2).
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Corollary 20.1

Assume Conditions (20.2)–(20.4) hold for some p > 0, that σ : C 7→ C is
continuously invertible and onto, and that ψ̂n is uniformly consistent for
ψ0 with

sup
c∈C1

∣∣∣PnΨn(ψ̂n)(c)
∣∣∣ = oP0(n

−1/2).

Then ψ̂n is efficient with

√
n(ψ̂n − ψ0)(·)⇝ Z(σ−1(·))

in ℓ∞(C1), where Z is the tight limiting distribution of
√
nPnU [ψ0](·).

Note that we actually need Z to be a tight element in ℓ∞(σ−1(C1)), but
the linearity of U [ψ](·) ensures that if

√
nPnU [ψ0](·) converges to Z in

ℓ∞(C1), then it will also converge weakly in ℓ∞(Cp) for any p <∞.
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The Cox model for right-censored data

We will let θ be the regression effect and A the baseline hazard, with the
observed data X = (U, δ, Z). We make the usual assumptions for this
model as done in Section 4.2.2, including requiring the baseline hazard to
be continuous, except that we will use (θ,A) to denote the model
parameters (β,Λ). It is not hard to verify that U1[ψ](a) =

∫ τ
0 Z

′
adMψ(s)

and U2[ψ](h) =
∫ τ
0 h(s)dMψ(s), where Mψ(t) ≡ N(t)−

∫ t
0 Y (s)eθ

′
ZdA(s)

and N and Y are the usual counting and at-risk processes.
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The Cox model for right-censored data

It is also easy to show that the components of σ are defined by

σ11a =

∫ τ

0
P0[ZZ

′
Y (s)eθ

′
0Z ]dA0(s)a,

σ12h =

∫ τ

0
P0[ZY (s)eθ

′
0Z ]h(s)dA0(s),

σ21a = P0[Z
′
Y (·)eθ

′
0Z ]a, and

σ22h = P0[Y (·)eθ
′
0Z ]h(·).

The maximum likelihood estimator is ψ̂n = (θ̂n, Ân), where θ̂n is the
maximizer of the well-known partial likelihood and Ân is the Breslow
estimator. The conditions of Corollary 20.1 hold for this example.
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Weighted and Nonparametric Bootstraps

Recall the nonparametric and weighted bootstrap methods for
Z-estimators described in Section 13.2.3. Let P◦

n and G◦
n be the

bootstrapped empirical measure and process based on either kind of

bootstrap, and let
P
⇝
◦

denote either
P
⇝
W

for the nonparametric version or
P
⇝
ξ

for the weighted version. We will use ψ̂◦
n to denote an approximate

maximizer of the bootstrapped empirical log-likelihood ψ 7→ P◦
nℓ(ψ)(X),

and we will denote Ψ◦
n(ψ)(c) ≡ P◦

nU [ψ](c) for all ψ ∈ Ω and c ∈ C. We
now have the following simple corollary, where Xn is the σ-field of the
observations X1, ..., Xn:
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Weighted and Nonparametric Bootstraps

Corollary 20.2

Assume the conditions of Corollary 20.1, and, in addition, that ψ̂◦
n
as∗→ ψ0

unconditionally and

P
(√

n sup
c∈C1

|Ψn(ψ̂
◦
n)(c)|

∣∣∣Xn) = oP (1). (20.7)

Then the conclusions of Corollary 20.1 hold and
√
n(ψ̂n − ψ̂n)

P
⇝
◦
Z(σ−1(·)) in ℓ∞(C1), i.e., the limiting distribution of

√
n(ψ̂n − ψ0) and the conditional limiting distribution of

√
n(ψ̂n − ψ̂n)

given Xn are the same.
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Weighted and Nonparametric Bootstraps

Proof of Corollary 20.2.
By Theorem 2.6, the conditional bootstrapped distribution of a Donsker
class is automatically consistent. Since conditional weak convergence
implies unconditional weak convergence (as argued in the proof of
Theorem 10.4), both Lemma 13.3 and Theorem 2.11 apply to Ψ◦

n, and
thus

sup
c∈Cp

∣∣∣√n(ψ̂n − ψ0)(σ(c))−
√
n(Ψ◦

n −Ψ)(c)
∣∣∣ = oP0(1),

unconditionally, for any 0 < p <∞. Combining this with previous results
for ψ̂n, we obtain for any 0 < p <∞

sup
c∈Cp

∣∣∣√n(ψ̂n − ψ̂n)(σ(c))−
√
n(Ψ◦

n −Ψn)(c)
∣∣∣ = oP0(1).

Since {U [ψ0](c) : c ∈ Cp} is Donsker for any 0 < p <∞, we have the
desired conclusion by reapplication of Theorem 2.6 and the continuous
invertibility of σ.
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The Piggyback Bootstrap

The ”profile sampler”: generating random realizations θn such that√
n(θn − θ̂n) given the data has the same limiting distribution as√
n(θ̂n − θ0) does unconditionally.

The piggyback bootstrap will utilize these θn realizations to improve
computational efficiency.
Notation: For any θ ∈ Θ, let Â◦

θ = argmaxAP◦
nℓ(θ,A)(X), where P◦

n is
the weighted bootstrap empirical measure.
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The Piggyback Bootstrap

The main idea of the piggyback bootstrap is to generate a realization of
θn, then generate the random weights ξ1, ..., ξn in P◦

n independent of both
the data and θn, and then compute Â◦

θn
.

This generates a joint realization ψ̂◦
n ≡ (θn, Â

◦
n).

For instance, one can generate a sequence of θns, θ
(1)
n , ..., θ

(m)
n , using the

profile sampler.
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The Piggyback Bootstrap

Under some regularity conditions, the conditional distribution of√
n(ψ̂◦

n − ψ̂n) converges to the same limiting distribution as
√
n(ψ̂n − ψ0)

does unconditionally.

Hence the realizations ψ̂◦
(1), ..., ψ̂

◦
(m) can be used to construct joint

confidence bands for Hadamard-differentiable functions of ψ0 = (θ0, A0)
(Theorem 12.1).

For example, this could be used to construct confidence bands for
estimated survival curves from a proportional odds model for a given
covariate value.
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The Piggyback Bootstrap

Corollary 20.3

Assume some conditions in addition to the conditions of Corollary 20.1.
Then the conclusions of Corollary 20.1 hold and

√
n

(
θn − θ̂n
Â◦
θn

− Ân

)
P
⇝
M,ξ

Z(σ−1(·)), in ℓ∞(C1).
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