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General Scheme for Semiparametric M-Estimators

Consider a semiparametric statistical model Pθ,η(X ), with i.i.d.

observations X1, . . . ,Xn drawn from Pθ,η, where θ ∈ Rk and η ∈ H.

Assume that the infinite dimensional space H has norm ∥·∥, and the true

unknown parameter is (θ0, η0). An M-estimator θ̂n, η̂n of (θ, η) has the

form

(θ̂n, η̂n) = argmaxPnmθ,η(X ), (1)

where m is a known, measurable function.

For simplicity, we assume the limit criterion function Pmψ, where

ψ = (θ, η), has a unique and ”well-separated” point of maximum ψ0, i.e.,

Pmψ0 > supψ∈G Pmψ for every open set G that contains ψ0.
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The Cox model with current status data

In the following paragraphs, derivatives will be denoted with superscript

”()”.

Let θ be the regression coefficient and Λ the baseline integrated hazard

function. The MLE approach to inference for this model was discussed in

Chapter 19. As an alternative estimation approach, (θ,Λ) can also be

estimated by OLS:

(θ̂n, Λ̂n) = argminPn

[
1− δi − exp{−eθ

′ZiΛ(ti )}
]2

In this model, the nuisance parameter Λ cannot be estimated at the
√
n

rate, but is estimable at the n1/3 rate.
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Binary regression under misspecified link function

Suppose that we observe an i.i.d. random sample

(Y1,Z1,U1), . . . , (Yn,Zn,Un) consisting of a binary outcome Y , a

k-dimensional covariate Z , and a one-dimensional continuous covariate

U ∈ [0, 1], following the additive model

Pθ,h(Y = 1 | Z = z ,U = u) = ϕ(θ′z + h(u)),

where h is a smooth function belonging to

H =

{
h : [0, 1] 7→ [−1, 1],

∫ 1

0
(h(s)(u))2du ≤ K

}
,

for a fixed and known K ∈ (0,∞) and an integer s ≥ 1, and where

ϕ : R 7→ [0, 1] is a known continuously differentiable monotone function.
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Binary regression under misspecified link function

The choices ϕ(t) = 1/(1 + e−t) and cumulative normal distribution

function correspond to the logit model and probit models, respectively.

The maximum likelihood estimator (θ̂n, ĥn) maximizes the (conditional)

log-likelihood function

ℓn(θ, h)(X ) = Pn

(
Y log ϕ{θ′Z + h(U)}+ (1− Y ) log[1− ϕ{θ′Z + h(U)}]

)
,

where X = (Y ,Z ,U). Here, we investigate the estimation of (θ, h) under

misspecification of ϕ.

Instead of maximizing the log-likelihood, we can take (β̂n, ĥn) to be the

maximizer o the penalized log-likelihood ℓn(θ, h)− λ2nJ
2(h), where λn is a

data-driven smoothing parameter.
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Mixture models

Suppose that an observation X has a conditional density pθ(x | z) given
an unobservable variable Z = z , where pθ is known up to the Euclidean

parameter θ. If the unobservable Z possesses an unknown distribution η,

then observation X has the following mixture density

pθ,η(x) =
∫
pθ(x | z)dη(z). The maximum likelihood estimator (θ̂n, η̂n)

maximizes the log-likelihood function ℓn(θ, η) = Pn log{pθ,η(X )}.

Examples of mixture models include frailty models, errors-in-variable

models in which the errors are modeled by a Gaussian distribution, and

scale mixture models over symmetric densities.
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Semiparametric M-Estimation

Analysis of the asymptotic behavior of M-estimators can be split into three

main steps:

establishing consistency (argmax theorem);

establishing a rate of convergence;

deriving the limiting distribution.
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√
n Consistency and Asymptotic Normality

Tow approaches:

Influence function

Score equation
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An influence function approach

For any fixed η ∈ H, let η(t) be a smooth curve running through η at

t = 0, that is η(0) = η. Let a = (∂/∂t)η(t)|t=0 be a proper tangent in the

tangent set Ṗ(η)
Pθ,η

for the nuisance parameter. For simplicity, we will use A

to denote Ṗ(η)
Pθ,η

and m(θ, η) to denote m(θ, η;X ). Set

m1(θ, η) =
∂

∂θ
m(θ, η), m2(θ, η)[a] =

∂

∂t

∣∣∣∣
t=0

m(θ, η(t)),

where a ∈ A. We also define

m11(θ, η) =
∂

∂θ
m1(θ, η), m12(θ, η)[a] =

∂

∂t

∣∣∣∣
t=0

m1(θ, η(t))

m21(θ, η)[a] =
∂

∂θ
m2(θ, η)[a], m22(θ, η)[a1][a2] =

∂

∂t

∣∣∣∣
t=0

m1(θ, η2(t))[a1]
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An influence function approach

If m is a log-likelihood, one way of estimating θ is by solving the efficient

score equations.

For general M-estimators, define

m2(θ, η)[A] = (m2(θ, η)[a1], . . . ,m2(θ, η)[ak ]), where A = (a1, . . . , ak) and

a1, . . . , ak ∈ A. We define m12[A1] and m22[A1][A2] accordingly, where

A1 = (a11, . . . , a1k),A2 = (a21, . . . , a2k) and aij ∈ A. Assume there exists

an A∗ = (a∗1, . . . , a
∗
k), where {a∗i } ∈ A, such that for any

A = (a1, . . . , ak), {ai} ∈ A,

P(m12(θ0, η0)[A]−m22(θ0η0)[A
∗][A]) = 0
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An influence function approach

Define m̃(θ, η) = m1(θ, η)−m2(θ, η)[A
∗]. θ is then estimated by solving

Pnm̃(θ, η̂n;X ) = 0, where we substitute an estimator η̂n for the unknown

nuisance parameter.

A variation of this approach is to obtain an estimator η̂n(θ) of η for each

given value of θ and then solve θ from

Pnm̃(θ, η̂n(θ);X ) = 0.

In some cases, estimators satisfying the above equation may not exist.

Hence we weaken it to the following ”nearly-maximizing” condition:

Pnm̃(θ̂n, η̂n) = oP(n
−1/2).
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An influence function approach

A1 (Consistency and rate of convergence) Assume

|θ̂n − θ0| = oP(1), ∥η̂n − η0∥ = OP(n
−c1),

for some c1 > 0, where | · | will be used in this chapter to denote the

Euclidean norm.

A2 (Finite variance) 0 < det(I ∗) <∞, where det denotes the

determinant of a matrix and

I ∗ ={P(m11(θ0, η0)−m21(θ0, η0)[A
∗])}−1

× P[m1(θ0, η0)−m2(θ0, η0)[A
∗]]⊗2

× {P(m11(θ0, η0)−m21(θ0, η0)[A
∗])}−1
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An influence function approach

A3 (Stochastic equicontinuity) For any δn ↓ 0 and C > 0,

sup
|θ−θ0|≤δn,∥η−η0∥≤Cn−c1

|
√
n(Pn − P)(m̃(θ, η)− m̃(θ0, η0))| = oP(1).

A4 (Smoothness of the model) For some c2 > 1 satisfying c1c2 > 1/2

and for all (θ, η) satisfying {(θ, η) : |θ − θ0| ≤ δn, ∥η − η0∥ ≤ Cn−c1},

|P {(m̃(θ, η)− m̃(θ0, η0))− (m11(θ0, η0)−m21(θ0, η0)[A
∗])(θ − θ0)

−
(
m12(θ0, η0)[

η − η0
∥η − η0∥

]−m22(θ0, η0)[A
∗][

η − η0
∥η − η0∥

]

)
∥η − η0∥

}∣∣∣∣
=o(|θ − θ0|) + O(∥η − η0∥c2).
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An influence function approach

Condition A2 corresponds to the nonsingular information condition for

the MLE.

Condition A3 can be verified via entropy calculations and certain

maximal inequalities.

Condition A4 can be checked via Taylor expansion techniques for

functionals.
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An influence function approach

Theorem

Suppose that (θ̂n, η̂n) satisfies Pnm̃(θ̂n, η̂n) = oP(n
−1/2), and that

Conditions A1-A4 hold, then

√
n(θ̂n − θ0) =−

√
n{P(m11(θ0, η0)−m21(θ0, η0)[A

∗])}−1

× Pn(m1(θ0, η0)−m2(θ0, η0)[A
∗]) + oP(1).

Hence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and variance

I ∗.
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A score equation approach

By definition, M-estimators maximize an objective function

(θ̂n, η̂n) = argmaxPnm(θ, η;X ).

We have

Pnm1(θ̂n, η̂n) = 0, Pnm2(θ̂n, η̂n)[a] = 0,

where a runs over A. We can relax above equations to the following

”nearly-maximizing” conditions:

Pnm1(θ̂n, η̂n) = oP(n
−1/2), Pnm2(θ̂n, η̂n)[a] = oP(n

−1/2),

for all a ∈ A.
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A score equation approach

B3 (Stochastic equicontinuity) For any δn ↓ 0 and C > 0,

sup|θ−θ0|≤δn,∥η−η0∥≤Cn−c1 |
√
n(Pn−P)(m1(θ, η)−m1(θ0, η0))| = oP(1),

sup|θ−θ0|≤δn,∥η−η0∥≤Cn−c1 |
√
n(Pn−P)(m2(θ, η)−m2(θ0, η0))[A

∗]| = oP(1),

where c1 is as in Condition A1.
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A score equation approach

B4 (Smoothness of the model) For some c2 > 1 satisfying c1c2 > 1/2

and for all (θ, η) satisfying {(θ, η) : |θ − θ0| ≤ δn, ∥η − η0∥ ≤ Cn−c1},

|P {m1(θ, η)−m1(θ0, η0)−m11(θ0, η0)(θ − θ0)

−m12(θ0, η0)[
η − η0

∥η − η0∥
]∥η − η0∥

}∣∣∣∣
=o(|θ − θ0|) + O(∥η − η0∥c2),

and

|P {m2(θ, η)[A
∗]−m2(θ0, η0)[A

∗]−m21(θ0, η0)[A
∗](θ − θ0)

−m22(θ0, η0)[A
∗][

η − η0
∥η − η0∥

]∥η − η0∥
}∣∣∣∣

=o(|θ − θ0|) + O(∥η − η0∥c2).
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A score equation approach

Corollary

Suppose that the estimator (θ̂n, η̂n) satisfies

Pnm1(θ̂n, η̂n) = oP(n
−1/2), Pnm2(θ̂n, η̂n)[a] = oP(n

−1/2),

for all a ∈ A, and Conditions A1, A2, B3 and B4 all hold. Then

√
n(θ̂n − θ0) =−

√
n{P(m11(θ0, η0)−m21(θ0, η0)[A

∗])}−1

× Pn(m1(θ0, η0)−m2(θ0, η0)[A
∗]) + oP(1).

Hence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and variance

I ∗.
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Weighted M-Estimators and the Weighted Bootstrap

The weighted bootstrap is an effective and nearly universal inference tool

for semiparametric M-estimation. We first study the unconditional

behavior of weighted M-estimators and then use these results to establish

conditional asymptotic validity of the weighted bootstrap.

Consider n i.i.d. observations X1, . . . ,Xn drawn from the true distribution

P. Denote ξi , i = 1, . . . , n as n i.i.d. positive random weights, satisfying

E (ξ) = 1 and 0 ≤ var(ξ) = v0 <∞ and which are independent of the

data Xn = σ{X1, . . . ,Xn}.
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Weighted M-Estimators and the Weighted Bootstrap

The weighted M-estimator (θ̂◦n, η̂
◦
n) satisfies

(θ̂◦n, η̂
◦
n) = argmaxPn{ξm(θ, η;X )}.

Since we assume the random weights are independent of Xn, the

consistency and convergence rate for the estimators of all parameters can

be established using previous theorems in Chapter 2 and Chapter 14.
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Weighted M-Estimators and the Weighted Bootstrap

Assume that the estimator (θ̂◦n, η̂
◦
n) satisfies

P◦
nm̃(θ̂◦n, η̂

◦
n) = Pn{ξm̃(θ̂◦n, η̂

◦
n)} = oP(n

−1/2).

We now investigate the unconditional limiting distribution of θ̂◦n:

Corollary

Replace all m̃ in the previous theorem with ξm̃. Suppose Conditions

A1-A4 hold, then

√
n(θ̂◦n − θ◦0) =−

√
n{P(m11(θ0, η0)−m21(θ0, η0)[A

∗])}−1

× P◦
n(m1(θ0, η0)−m2(θ0, η0)[A

∗]) + oP(1).

Thus
√
n(θ̂◦n − θ) is asymptotically normal with variance (1 + v0)I

∗.
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Weighted M-Estimators and the Weighted Bootstrap

Corollary

Suppose that the estimator (θ̂◦n, η̂
◦
n) satisfies

P◦
nm1(θ̂

◦
n, η̂

◦
n) = oP(n

−1/2), P◦
nm2(θ̂

◦
n, η̂

◦
n)[a] = oP(n

−1/2),

for all a ∈ A, and Conditions A1, A2, B3 and B4 all hold. Then

√
n(θ̂◦n − θ◦0) =−

√
n{P(m11(θ0, η0)−m21(θ0, η0)[A

∗])}−1

× P◦
n(m1(θ0, η0)−m2(θ0, η0)[A

∗]) + oP(1).

Thus
√
n(θ̂◦n − θ) is asymptotically normal with variance (1 + v0)I

∗.
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Weighted M-Estimators and the Weighted Bootstrap

The above results can be used to justify the use of weighted bootstrap for

general M-estimators. The following theorem shows that the weighted

bootstrap is asymptotically valid for inference on θ̂n.

Theorem

Suppose the M-estimator θ̂n, and the weighted M-estimator θ̂◦n satisfy:

√
n(θ̂n − θ0) = Ĩ−1

0

√
nPnm̃ + oP(1),

√
n(θ̂◦n − θ0) = Ĩ−1

0

√
nP◦

nm̃ + oP(1).

Assume that the conclusions of previous theorem and corollary hold. Then

we have
√
n(θ̂◦n − θ̂n) = Ĩ−1

0

√
n(P◦

n − Pn)m̃+ oP(1). Since E (ξ) = 1 and ξ

is independent of Xn,
√

n/v0(θ̂
◦
n − θ̂n)

P
⇝
ξ
Z0, where

P
⇝
ξ

denotes conditional

convergence given the data Xn, and Z0 is mean zero Gaussian with

covariance I ∗.
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