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Censoring Mechanisms

In this course, we always assume that the failure time T and the censoring
time C are independent given the covariates X .

Here, we discuss some commonly seen censoring mechanisms in detail.
Right censoring

▶ Type I censoring
▶ Type II censoring
▶ Type III censoring

Interval censoring
▶ Case 1 interval censoring
▶ Case 2 interval censoring
▶ Case k interval censoring
▶ Mixed case interval censoring
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Type I Censoring

Suppose that a study ends at time τ and that every subject is followed
until failure or the end of the study, whichever occurs first.

For those who have experienced failure before or at τ , their failure times
are exactly observed; otherwise the failure time is right-censored at τ .

Mathematically, Ci = τ , which implies Yi = min(Ti , τ).

This is the most commonly used censoring mechanism in experimental
medical research (e.g., clinical trials for new treatments).
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Type II censoring

The choice of τ might be tricky: too small τ yields insufficient number of
observed failures, while too large τ requires high costs or delays important
clinical decisions.

Another option is to terminate the study when a prespecified number of
failures have been observed (e.g., 80 failures out of 100 subjects) and the
remaining 20 subjects will be regarded as censored.

Specifically, let T(1) < T(2) < · · · < T(r) < T(r+1) < · · · < T(n) be the
order statistics of T1, . . . , Tn. We only observe the first r failure times
and all other failures times are right-censored at T(r).

This guarantees enough number of observed failures while controlling the
cost and duration of a study.
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Type III censoring

Suppose that the study period is fixed, the entry and censoring times may
differ across subjects. In other words, censoring time C is a random
instead of fixed variable.

A subject’s failure time Ti is observed if Ti ≤ Ci and is right-censored at
Ci otherwise.

This corresponds to our general notation Yi = min(Ti , Ci) and
δi = I(Ti ≤ Ci).

Type III censoring is more well-known as random censoring and is
common in clinical trials or observational studies of chronic diseases.
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Interval Censoring

Interval-censored data arise when the failure of interest is known only to
occur within a time interval.

Such data are commonly encountered in medical research where it is too
expensive or even impossible to determine the exact failure time.

Examples:
▶ Alzheimer’s disease: no definitive symptoms; exact disease onset time can

only be determined through periodic cognitive tests.
▶ Breast cancer: daily screening is too expensive and harmful; exact time to

occurrence/recurrence of tumor can only be determined through periodic
clinic visits.

In such cases, ascertainment of failure can take place only at a small
number of monitoring times. The resulting data are called
interval-censored data.
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Case 1 Interval Censoring

Case 1 interval censored data is also known as current status data.

Each subject is examined at only one random monitoring time Zi and is
NOT under observation at any other times.

Thus, the only observed information for the ith subject is whether he/she
has experienced a failure by time Zi .

Observed data:
▶ Zi
▶ δi = I(Ti ≤ Zi)
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Case 2 Interval Censoring

There are two random monitoring times for each subject, say (Ui1, Ui2)
with Pr(Ui1 < Ui2) = 1.

The only observed information is whether the failure occurs before or at
Ui1 (left censoring), within (Ui1, Ui2], or after Ui2 (right censoring).

Observed data:
▶ (Ui1, Ui2)
▶ δi1 = I(Ti ≤ Ui1) and δi2 = I(Ui1 < Ti ≤ Ui2)
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Case k Interval Censoring

Similar to Case 1 and Case 2 interval censoring, now we suppose that
there are a sequence of k random monitoring times for each subject,
denoted by Ui1 < Ui2 < · · · < Uik .

In this case, the only observed information is whether the failure occurs
before or at the first monitoring time (left censoring), between any two
successive monitoring times, or after the last monitoring time (right
censoring).

Observed data:
▶ (Ui1, Ui2, . . . , Uik)
▶ δil = I(Uil < Ti ≤ Ui,l+1), for l = 0, . . . , k, with Ui0 = 0 and Ui,k+1 = ∞
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Mixed Case Interval Censoring

On the basis of case k interval censoring, now we allow the number of
monitoring times k to differ across subjects. In other words, k is now a
random variable rather than a fixed number.

For each individual subject, we change k to ki . Everything else is the
same as in case k interval censoring.

Observed data:
▶ (Ui1, Ui2, . . . , Uiki )
▶ δil = I(Uil < Ti ≤ Ui,l+1), for l = 0, . . . , ki , with Ui0 = 0 and Ui,ki +1 = ∞

In fact, the above observed data can be simplified as (Li , Ri), where
(Li , Ri ] is the smallest interval that brackets Ti .
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Data and Likelihood

Assume independent censoring always holds, i.e., T ⊥⊥ C | X .

Right-censored data (under random censoring):
Data: (Yi , δi , Xi), i = 1, . . . , n
Likelihood:

Ln(θ) ∝
n∏

i=1
f (Yi ; θ)δi S(Yi ; θ)1−δi =

n∏
i=1

λ(Yi ; θ)δi S(Yi ; θ)

Interval-censored data (under mixed case censoring):
Data: (Li , Ri , Xi), i = 1, . . . , n
Likelihood:

Ln(θ) ∝
n∏

i=1

{
S(Li ; θ) − S(Ri ; θ)

}
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Maximum Likelihood Estimation

Let ℓn(θ) = log Ln(θ) be the log-likelihood function, with gradient ℓ̇n(θ)
and Hessian ℓ̈n(θ) with respect to θ. Write θ = (θ1, . . . , θr ), then

ℓ̇n(θ) = ∂

∂θ
ℓn(θ) =

(
∂

∂θ1
ℓn(θ), · · · ,

∂

∂θr
ℓn(θ)

)T

ℓ̈n(θ) = ∂2

∂θ∂θT ℓn(θ) =


∂2

∂θ2
1
ℓn(θ) · · · ∂2

∂θ1∂θr
ℓn(θ)

... ∂2

∂θj ∂θk
ℓn(θ)

...
∂2

∂θr ∂θ1
ℓn(θ) · · · ∂2

∂θ2
r
ℓn(θ)


In the MLE setting, ℓ̇n(θ) is called the score function, and −ℓ̈n(θ) is called
the information matrix.

To obtain the maximum likelihood estimator θ̂, we solve the score
equation ℓ̇n(θ) = 0.

16 / 30



Inference

Theorem (MLE theorem)
Under some mild regularity conditions,

√
n(θ̂ − θ) d→ N(0, I(θ)−1)

as n → ∞, where I(θ) is the Fisher information defined as

I(θ) = E
{

ℓ̇1(θ)⊗2}
= −E

{
ℓ̈1(θ)

}
.

Thus, the covariance matrix of θ̂ is

Cov(θ̂) = {nI(θ)}−1 =
[
−E{ℓ̈n(θ)}

]−1
,

which can be estimated by the inverse information matrix {−ℓ̈n(θ)}−1 or
{−ℓ̈n(θ̂)}−1 (when θ is unknown in practice).
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Inference (Cont.)

Based on the limiting distribution of θ̂, the 100(1 − α)% confidence interval
(CI) for θj can be constructed by[

θ̂j − zα/2

√
Var(θ̂j), θ̂j + zα/2

√
Var(θ̂j)

]
⇒

[
θ̂j − zα/2

√{
−ℓ̈n(θ̂)

}−1

jj
, θ̂j + zα/2

√{
−ℓ̈n(θ̂)

}−1

jj

]
, for j = 1, . . . , r ,

where zα/2 is the (α/2)th quantile of N(0, 1), and {−ℓ̈n(θ̂)}−1
jj denotes the

(j , j)th element of the inverse information matrix {−ℓ̈n(θ̂)}−1, which is the
variance estimator for θ̂j .
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Hypothesis Testing

We can test H0 : θ = θ∗ using one of the following tests.

Wald test:

Wn = (θ̂ − θ∗)T{nI(θ∗)}(θ̂ − θ∗) d→ χ2
r under H0

Score test:

SCn = ℓ̇n(θ∗)T{nI(θ∗)}−1ℓ̇n(θ∗) d→ χ2
r under H0

Likelihood ratio test:

LRCn = 2{ℓn(θ̂) − ℓn(θ∗)} d→ χ2
r under H0

Given the significance level α, we reject H0 if the test statistic is greater than
χ2

r (α), which is the αth upper quantile of χ2
r .
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Hypothesis Testing (Cont.)

These three tests are asymptotically equivalent.

In practice, we may replace nI(θ∗) by −ℓ̈n(θ̂) or −ℓ̈n(θ∗).

An advantage of the score test is that it does not require the computation
of θ̂ and hence no iterative calculation is necessary.
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Exponential Distribution
Suppose that T1, T2, . . . , Tn

iid∼ Exp(λ). The hazard and survival functions are

λ(t; λ) = λ, S(t; λ) = e−λt .

We consider the general random censoring scenario. The likelihood function
arising from the observed data (Yi , δi)n

i=1 is

Ln(λ) ∝
n∏

i=1
λδi e−λYi

⇒ ℓn(λ) = log(λ)
n∑

i=1
δi − λ

n∑
i=1

Yi .

We differentiate ℓn(λ) with respect to λ to obtain the score and information:

ℓ̇n(λ) = 1
λ

n∑
i=1

δi −
n∑

i=1
Yi , −ℓ̈n(λ) = 1

λ2

n∑
i=1

δi .
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Solving the score equation yields

λ̂ =
∑n

i=1 δi∑n
i=1 Yi

.

By the MLE theorem, the asymptotic variance estimator of λ̂ is

V̂ar(λ̂) = {−ℓ̈n(λ)}−1 = λ2∑n
i=1 δi

,

and the asymptotic normal approximation is

λ̂
·∼ N(λ,

λ2∑n
i=1 δi

).

We replace the unknown λ by λ̂ to construct its 95% CI:[ ∑n
i=1 δi∑n
i=1 Yi

− 1.96
√ ∑n

i=1 δi(∑n
i=1 Yi

)2 ,

∑n
i=1 δi∑n
i=1 Yi

+ 1.96
√ ∑n

i=1 δi(∑n
i=1 Yi

)2

]
.
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Alternatively, we can consider a log transformation for λ. Applying the Delta
method yields

log λ̂
·∼ N(log λ,

1∑n
i=1 δi

),

where the variance no longer depends on the unknown parameter λ.

Thus, the 95% CI of log λ is given bylog λ̂ − 1.96√∑n
i=1 δi

, log λ̂ + 1.96√∑n
i=1 δi

 .

Exponentiation on both limits yields an alternative 95% CI for λ:λ̂ exp

− 1.96√∑n
i=1 δi

 , λ̂ exp

 1.96√∑n
i=1 δi

 .

Empirically, this CI has better coverage as it is guaranteed to be positive.
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To test the null hypothesis H0 : λ = λ∗, we compute the Wald, score, and
likelihood ratio test statistics:

Wald test:

Wn = (λ̂ − λ∗)T{−ℓ̈n(λ∗)}(λ̂ − λ∗) d→ χ2
1 under H0

Score test:

SCn = ℓ̇n(λ∗)T{−ℓ̈n(λ∗)}−1ℓ̇n(λ∗) d→ χ2
1 under H0

Likelihood ratio test:

LRCn = 2{ℓn(λ̂) − ℓn(λ∗)} d→ χ2
1 under H0
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Exact Inference

In some special cases, the non-asymptotic distribution of λ̂ is easily available,
thus exact inference on λ can be made without applying the MLE theorem.

Without censoring, λ̂ =
∑n

i=1
δi∑n

i=1
Yi

reduces to n∑n
i=1

Ti
. The denominator

follows a Gamma distribution.

When C1, C2, . . . , Cn
iid∼ Exp(θ),

∑n
i=1 δi and

∑n
i=1 Yi follow the Binomial

distribution and Gamma distribution, respectively, and they are
statistically independent.

26 / 30



Weibull Regression
Now we relate the covariates X to the failure time T through the Weibull
regression model

λ(t; X ) = λp(λt)p−1eβTX ,

S(t; X ) = exp
{

−(λt)peβTX
}

.

It would be easier to reparameterize γ = λp so that the hazard and survival
functions become

λ(t; X ) = γptp−1eβTX ,

S(t; X ) = exp
{

−γtpeβTX
}

.

The likelihood function arising from the observed data (Yi , δi , Xi)n
i=1 is

Ln(γ, p, β) ∝
n∏

i=1

{
γpY p−1

i eβTXi
}δi

exp
{

−γY p
i eβTXi

}
⇒ ℓn(γ, p, β) =

n∑
i=1

[
δi

{
log(γp) + (p − 1) log(Yi) + βTXi

}
− γY p

i eβTXi
]

.

27 / 30



We then obtain the score function

ℓ̇n(γ, p, β) =


∑n

i=1

(
δi/γ − Y p

i eβTXi
)

∑n
i=1

{
δi (1/p + log Yi) − γY p

i eβTXi log Yi

}
∑n

i=1

(
δi − γY p

i eβTXi
)

Xi


The score equation has no explicit solutions. We can use the Newton Raphson
method to compute the MLE (γ̂, p̂, β̂) instead.

The survival function S(t; X ) can be estimated by

Ŝ(t; X ) = exp
{

−γ̂t p̂eβ̂TX
}

,

but the construction of its 95% CI is not that straightforward.

A log-log transformation of S(t; X ) can help.
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Define the log-log transformation of S(t; X ) as

B(t; X ) = log{− log S(t; X )} = log γ + p log t + βTX ,

which can be estimated by

B̂(t; X ) = log γ̂ + p̂ log t + β̂TX .

By the Delta method, the asymptotic variance estimator of B̂(t; X ) is

V̂ar{B(t; X )} = (1/γ̂, log t, X T)Cov(γ̂, p̂, β̂)(1/γ̂, log t, X T)T.

We first construct the 95% CI for B(t; X ), then take exponentiation twice to
obtain the 95% CI for S(t; X ).

The log-log transformation not only restricts the resulting CI within the
meaningful range, but also improves greatly the small-sample performance.
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Concluding Remarks

In parametric models, inference of the failure time distribution is simply
based on maximum likelihood estimation and its large-sample theory.

The computation is relatively easy because the number of unknown
parameters is usually small.

However, parametric models are restrictive as they involve strong
distributional assumptions that may not be suitable for a particular
dataset. Therefore, the inference procedures may not be robust against
model misspecification.

To overcome this limitation, non- and semi-parametric methods can be
considered, although they in general require more complex computation.
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