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Stochastic Processes

A stochastic process is a collection of random variables

X = {X (t) : t ∈ Γ}

indexed by a set Γ.
▶ X(t) is a random variable for each t
▶ Γ is regarded as time, either {0, 1, 2, · · · } (discrete-time process) or [0, ∞)

(continuous-time process)

The realization of X (t) (seen as a function as t) is called the sample path.

A stochastic process is called increasing or right-continuous if its sample
paths have the corresponding property.
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Counting Process

Counting process is a continuous-time stochastic process {N(t) : t ≥ 0}
with N(0) = 0 whose sample paths are right-continuous, piecewise
constant and have jumps of size 1 only.

In survival analysis, N(t) records the number of failures observed within
the time interval [0, t].

Without censoring, N(t) = I(T ≤ t).

In the presence of censoring, N(t) = I(Y ≤ t, δ = 1) = δI(Y ≤ t).
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Gaussian Process

A continuous-time stachastic process {X (t) : t ∈ Γ} is Gaussian if and only if
for every finite set of indices t1, . . . , tm ∈ Γ, (X (t1), . . . , X (tm)) is a
multivariate Gaussian random variable.
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Martingale

A right-continuous stochastic process {X (t) : t ∈ Γ} is a martingale with
respect to the filtration Ft if

E {X (t + s) | Ft} = X (t), ∀t ≥ 0, s ≥ 0

▶ Ft is generated by the stochastic process up to t:
Ft = σ{X(s) : 0 ≤ s ≤ t}.

▶ Ft represents the available data at time t or the past history up to t.
▶ s ≤ t ⇒ Fs ⊂ Ft .

Properties of a martingale:
(i) E {X(t + s)} = E{X(t)}, ∀t ≥ 0, s ≥ 0.
(ii) Cov {X(t + s), X(t)} = Var{X(t)}, ∀t ≥ 0, s ≥ 0.

In survival analysis, Ft is the information of failure and censoring over the
interval [0, t].
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Parametric vs Nonparametric Estimation

Parametric Nonparametric

Survival function S(t; θ) arbitrary S(t)

Parameter θ (finite-dimensional) function (infinite-dimensional)

Estimation MLE on θ nonparametric methods such as
NPMLE and kernel smoothing

Computation easy more challenging

Flexibility restrictive flexible
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Empirical Survival Function

A useful way of portraying survival data is to compute and plot the
empirical survival function (ESF), which is a nonparametric estimator of
the survival function of the failure time T .

When there is no censoring, ESF is simply defined as

Ŝ(t) = # failures after time t
total number of subjects , t ≥ 0.

This is just a step function which takes jumps at all distinct failure times
observed in the data.

If there are d failures recorded at time t among all n subjects, then Ŝ(t)
drops by d/n at t.
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Empirical Survival Function (Cont.)

It can be easily observed that Ŝ(t) is a binomial proportion of subjects
still alive at time t:

Ŝ(t) = n−1
n∑

i=1
I(Ti > t),

with mean S(t) and variance S(t){1 − S(t)}/n.

For example, consider n = 35 patients with colon cancer, 8 of them died
during the first year of follow-up. The estimator of 1-year survival
probability is

Ŝ(1) = (35 − 8)/35 = 0.771,

with an estimated standard error of√
0.771 × (1 − 0.771)/35 = 0.071.
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When Censoring Exists

Suppose that 10 patients died within 2 years of follow-up, but 2 patients
were censored at 13 and 14 months, respectively. How can we estimate
the 2-year survival probability?

Excluding the two censored patients from the analysis, we have
Ŝ(2) = (33 − 10)/33 = 0.697. This will underestimate the true survival
probability since we ignore the fact that each of these two patients were
at risk of death between one and two years but did not die while under
observation.

If we use Ŝ(2) = (35 − 10)/35 = 0.714, it will overestimate the true
survival probability since we are assuming that both two censored patients
survived beyond the 2-year follow-up.

Two common methods for the estimation of S(t) in the presence of
censoring are the Kaplan-Meier method and the life-table method.
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Kaplan-Meier Estimator

A heuristic derivation of the KM estimator has been discussed in Chapter
1. Here, we study its rigorous derivation based on MLE.

Notation:
▶ t1 < t2 < · · · < tK : distinct failure times observed in the data
▶ dk : number of failures occurring at time tk (k = 1, . . . , K)
▶ ckl (l = 1, . . . , mk): all censoring times observed within [tk , tk+1)

The likelihood function can be written as

L =
K∏

k=1

{
Pr(T = tk)dk ×

mk∏
l=1

Pr(T > ckl)
}

=
K∏

k=1

[{
S(t−

k ) − S(tk)
}dk

×
mk∏
l=1

S(ckl)
]
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Kaplan-Meier Estimator (Cont.)
We adopt the nonparametric maximum likelihood estimation (NPMLE)
method and treat S(t) as a step function with jumps only at
t1 < t2 < · · · < tK .

In addition, we consider the reparameterization

1 − λk = S(tk)
S(tk−1) ⇒ S(tk) =

k∏
l=1

(1 − λl).

Under this set-up, the likelihood becomes

L =
K∏

k=1

[{
S(tk−1) − S(tk)

}dk
× S(tk)mk

]

=
K∏

k=1

{
λk

k−1∏
l=1

(1 − λl)
}dk

×

{ k∏
l=1

(1 − λl)
}mk
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Kaplan-Meier Estimator (Cont.)

Maximizing the likelihood function with respect to λk yields

λ̂k = dk
rk

⇒ Ŝ(t) =
∏

k:tk ≤t
(1 − dk

rk
) (KM estimator),

where rk =
∑K

l=k(dl + ml) is the number of subjects at risk at time tk .

A slightly problematic point of the KM estimator Ŝ(t) is that it never
reduces to zero. Thus, Ŝ(t) is usually taken to be undefined for t > τ ,
where τ is the study end time.
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Variance of the KM Estimator
The asymptotic variance of Ŝ(t) can be estimated by the inverse of the
information matrix

V̂ar(λ̂k) =
{

− ∂2ℓ

∂λ2
k

∣∣∣∣
λk =λ̂k

}−1

= dk(rk − dk)
r3
k

.

Since log Ŝ(t) =
∑

k:tk ≤t log(1 − λ̂k), applying the Delta method yields

V̂ar
{

log Ŝ(t)
}

=
∑

k:tk ≤t

1
(1 − λ̂k)2

V̂ar(λ̂k)

=
∑

k:tk ≤t

dk
rk(rk − dk) .

(1)

Exponentiating log Ŝ(t) and applying the Delta method again, we obtain

V̂ar
{

Ŝ(t)
}

= Ŝ(t)2
∑

k:tk ≤t

dk
rk(rk − dk) (Greenwood’s Formula) (2)
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Limiting Distribution of the KM Estimator

Theorem (Limiting distribution of Ŝ(t))
Under mild conditions on the censoring mechanism, the process
G(t) =

√
n{Ŝ(t) − S(t)} converges weakly to a mean-zero Gaussian process

whose covariance function can be consistently estimated by

Ĉov {G(s), G(t)} = nŜ(s)Ŝ(t)
∑

k:tk ≤min(s,t)

dk
rk(rk − dk) .
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Confidence Interval of S(t)
By the asymptotic normality of Ŝ(t), a 95% CI for S(t) is given by

Ŝ(t) ± 1.96
√

V̂ar
{

Ŝ(t)
}

.

To avoid impossible values outside the range [0, 1], we apply the log-log
transformation B̂(t) = log{− log Ŝ(t)}. By (1) and the Delta method,

V̂ar
{

B̂(t)
}

= 1{
log Ŝ(t)

}2 V̂ar
{

log Ŝ(t)
}

=
∑

k:tk ≤t
dk

rk (rk −dk ){∑
k:tk ≤t log( rk −dk

rk
)
}2 .

Therefore, a 95% CI for B(t) is given by B̂(t) ± 1.96
√

V̂ar{B̂(t)}.
Exponentiation twice yields a 95% CI for S(t) by

Ŝ(t)
exp

[
±1.96

√
V̂ar{B̂(t)}

]
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Nelson-Aalen Estimator

Recall that in Chapter 1, we have also studied the NA estimator for Λ(t):

Λ̂(t) =
∑

k:tk ≤t

dk
rk

(NA estimator)

By the martingale theory for counting processes, we can establish the
limiting distribution of Λ̂(t).

Theorem (Limiting distribution of Λ̂(t))
Under mild conditions on the censoring mechanism, the process
M(t) =

√
n{Λ̂(t) − Λ(t)} converges weakly to a mean-zero Gaussian

martingale whose variance function can be consistently estimated by

V̂ar {M(t)} =
∑

k:tk ≤t

ndk

r2
k

⇒ V̂ar
{

Λ̂(t)
}

=
∑

k:tk ≤t

dk

r2
k
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Compare NA and KM Estimators

Another estimator for Λ(t) is based on the KM estimator:

Λ̃(t) = − log Ŝ(t) = −
∑

k:tk ≤t
log(1 − dk

rk
),

with variance estimator [by (1)]

V̂ar
{

Λ̃(t)
}

=
∑

k:tk ≤t

dk
rk(rk − dk)

The variance of Λ̂(t) is slightly smaller than that of Λ̃(t). Thus, the NA
estimator has better finite-sample performance (more efficient) and is
more commonly used.
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Life Table
Life tables are often used in actuarial applications, where the survival data
are grouped into successive time intervals I1, I2, . . . , IJ .

The life table presents the number of failures and censored survival times
falling within each interval.

Notation (j = 1, . . . , J):
▶ dj : number of observed failure times within the interval Ij
▶ mj : number of censored failure times within the interval Ij
▶ rj =

∑
k≥j(dk + mk): number of subjects at risk at the start of Ij

The standard life-table estimator of the conditional probability of failure
in Ij given survival to enter Ij is

q̂j =
{ dj

rj −mj /2 if rj > 0,

1 otherwise.
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Life Table (Cont.)

The mj/2 term in the denominator is used to adjust for the fact that not
all of the rj subjects are at risk for the whole of Ij .

The corresponding life-table estimator of the survival function at the end
of Ij is

Ŝj =
j∏

k=1
(1 − q̂k).

The variance estimator of Ŝj is given by Greenwood’s formula (2), with rj
replaced by rj − mj/2.

The life-table method is designed primarily for situations where actual
failure and censoring times are unavailable but only numbers of failures
and censored subjects are known for each time interval.
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Estimation of Quantiles

Quantiles of the failure time T are most conveniently estimated by the
graphical method based on the plot of the estimated survival function
such as the KM estimator.

To obtain graphical estimates of the pth quantile Qp, say the median
Q0.5, we search for the first time point at which the estimated survival
probability attains 0.5.

Mathematically, the estimator of the pth quantile is given by

Q̂p = min
{

t : Ŝ(t) ≤ 1 − p
}

Ŝ(t) refers to the KM estimator hereafter.
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Variance of the Quantile Estimator
By the large-sample theory for Ŝ(t) and the Delta method, Q̂p is
asymptotically normal, with mean Qp and variance estimator

V̂ar(Q̂p) =
V̂ar

{
Ŝ(Q̂p)

}
{

f̂ (Q̂p)
}2

The numerator can be computed using the Greenwood’s formula. The
denominator is commonly estimated by

f̂ (Q̂p) = Ŝ (̂lp) − Ŝ(ûp)
ûp − l̂p

.

The values l̂p and ûp satisfy l̂p < Q̂p < ûp and are most often chosen by

l̂p = max
{

t : Ŝ(t) ≥ 1 − p + c
}

and ûp = min
{

t : Ŝ(t) ≤ 1 − p − c
}

,

where c is a positive constant and is usually taken as 0.05.
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Confidence Interval of Quantiles

We may construct the (1 − α) × 100% CI for the quantile Qp by

Q̂p ± z1−α/2

√
V̂ar(Q̂p)

However, the above CI requires to estimate the density function at Qp

and depends on the assumption that Q̂p is normal. The sensitivity of the
CI to the choice of the density estimator and the normal assumption has
not been studied.

An alternative (1 − α) × 100% CI for Qp consists of all the values of t
such that ∣∣∣∣∣∣∣∣

Ŝ(t) − (1 − p)√
V̂ar

{
Ŝ(t)

}
∣∣∣∣∣∣∣∣ ≤ z1−α/2, (3)

which can be obtained easily by the graphical method described previously.
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Estimation of the Mean

In the presence of censoring, nonparametric estimation of the mean of the
failure time T has been extremely difficult and inaccurate.

We can only estimate the mean of T within the interval [0, τ ], where τ is
usually the largest observed failure time tK .

This estimate may not make much sense in practice and we would not
discuss much on it.

Instead, we usually estimate the restricted mean survival time (RMST),
defined as

RMST = E{min(T , τ)} =
∫ τ

0
S(t)dt.
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Multi-Group Comparison

Suppose that there are G groups of subjects, whose failure times are iid
within each group with survival functions S1, S2, . . . , SG , respectively.

We want to test whether the G survival functions are all the same, i.e.,

H0 : S1(t) = S2(t) = · · · = SG(t) for all t > 0

In Chapter 1, we have considered the simplest case with G = 2 and
studied the log-rank test. The basic idea is similar here.
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2 × G Contingency Table

Let t1 < t2 < · · · < tK be the distinct failure times from all G groups.

At each observed failure time tk (k = 1, . . . , K ), we create a 2 × G
contingency table.

Group 1 2 · · · G Total
Failures d1k d2k · · · dGk dk
Non-failures r1k − d1k r2k − d2k · · · rGk − dGk rk − dk
At risk r1k r2k · · · rGk rk

Under H0, the conditional distribution of (d1k , . . . , dGk) given the
marginals is the multivariate hypergeometric distribution, with conditional
mean and covariance

egk = dk rgk
rk

and vghk = dk(rk − dk)rgk {rk I(g = h) − rhk}
r2
k (rk − 1) ,

for g , h = 1, . . . , G .
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Weighted Log-Rank Test

For g = 1, . . . , G , define the statistic Zg for Group g to be a weighted
sum of (O − E ) over all K failure times:

Zg =
K∑

k=1
w(tk)(dgk − egk),

where w(t) is a prespecified bounded nonnegative weight function.

It can be shown that the statistic

Z = (Z1, Z2, . . . , ZG−1)T d→ NG−1(0, Σ),

with the (g , h)th element of Σ given by
∑K

k=1 w(tk)2vghk .

The weighted log-rank statistic is thus

Q2 = ZTΣ−1Z d→ χ2
G−1 under H0.
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Remarks

When G = 2 and w(t) ≡ 1, Q reduces to the two-sample log-rank
statistic discussed in Chapter 1.

Some commonly used weight functions are listed below.

Test w(tk)

Log-rank 1

Gehan rk

Tarone-Ware √rk

Prentice-Wilcoxon Ŝ(t−
k )

Harrington-Fleming Ŝρ(t−
k ) for ρ ≥ 0

In general, the log-rank test and the Gehan test are most commonly used
partly because they are available in most statistical software.
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Kernel Smoothed Estimator

Based on the NA estimator for Λ(t), a crude estimator of the hazard
function λ(t) is given by

∆Λ̂(t) =
{

dk
rk

if t = tk for some k ∈ {1, . . . , K}
0 otherwise

However, this crude estimator does not make much sense since it implies
that a subject cannot fail at any other times than t1, . . . , tK .

We can use the kernel smoothing method to obtain a smooth estimator of
λ(t), which is a weighted average of the crude estimator over the distinct
failure times close to t:

λ̂(t) =
K∑

k=1
wk(t)dk

rk
,

where wk(t) are kernel weights depending on |t − tk |.
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Kernel Smoothed Estimator (Cont.)

Given a bandwidth h and a kernel function K (·) defined on [−1, 1], the
kernel weights are chosen as

wk(t) = Kh(t − tk) = h−1K
(

t − tk
h

)
,

This yields the kernel smoothed estimator for λ(t):

λ̂(t) =
K∑

k=1
Kh(t − tk)dk

rk
(Ramlau-Hansen estimator)

Since K ≡ 0 outside the interval [−1, 1], only those distinct failure times
within [t − h, t + h] will contribute to λ̂(t).
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Variance of λ̂(t)
The variance of λ̂(t) can be estimated by

V̂ar
{

λ̂(t)
}

=
K∑

k=1
K 2

h (t − tk)V̂ar
(

dk
rk

)

=
K∑

k=1
K 2

h (t − tk)V̂ar
{

Λ̂(tk) − Λ̂(tk−1)
}

=
K∑

k=1
K 2

h (t − tk)
[
V̂ar

{
Λ̂(tk)

}
− V̂ar

{
Λ̂(tk−1)

}]
=

K∑
k=1

K 2
h (t − tk)dk

r2
k

A (1 − α) × 100% CI for λ(t) can be obtained by the log transformation

λ̂(t) exp
[
±z1−α/2

√
V̂ar{λ̂(t)}/λ̂(t)

]
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Bandwidth

The bandwidth h determines the smoothness of λ̂(t). The bigger h, the
smoother λ̂(t).

Muller & Wang (1994) 1 suggested setting h = c(tK − t1)D−1/5, where c
is a tuning parameter, D =

∑K
k=1 dk is the total number of observed

failures.

1Muller H. G., Wang J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 61–76.
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Kernel Function

The kernel function K (·) must satisfy the following conditions:
(i)

∫ 1
−1 K(u)du = 1 (weights sum up to 1)

(ii)
∫ 1

−1 u2ℓ−1K(u)du = 0 for ℓ = 1, 2, · · · (symmetric weights)

(iii)
∫ 1

−1 |up |K(u)du < ∞ (finite moments)

To some extent, kernel function can be viewed as a density function
defined over [−1, 1].

Some common choices of K (·) are
▶ Uniform kernel: K(u) = 1

2 for u ∈ [−1, 1]
▶ Epanechnikov kernel: K(u) = 0.75(1 − u2) for u ∈ [−1, 1]
▶ Biweight kernel: K(u) = 15

16 (1 − u2)2 for u ∈ [−1, 1]
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Alternative Method: B-Splines

Alternatively, we can estimate the hazard function λ(t) using B-splines.

Tuning parameters in B-splines:
▶ d : degree of spline basis functions (order d + 1)
▶ 0 < x1 < x2 < · · · < xG < τ : G internal knots that partition the study

period [0, τ ]

The hazard function is specified as a linear combination of (G + d + 1)
spline basis functions:

λ(t) =
G+d+1∑

l=1
eαl Bl(t)

▶ eαl : unknown spline parameters. Exponentiation ensures that λ(t) is
nonnegative.

▶ Bl(t): spline basis functions, derived from the Cox-de Boor recursion
formula 2

2De Boor, C. (2001). A Practical Guide to Splines. Springer-Verlag New York.
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B-splines of degrees 0 through 3. The knot points are marked by dashed blue vertical lines.
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B-Splines (Cont.)

Under B-splines, nonparametric estimation of λ(t) reduces to parameteric
estimation of the spline parameters α = (α1, . . . , αG+d+1), which can be
done easily through maximum likelihood estimation.

Specifically, the likelihood function is

L(α) =
n∏

i=1

{G+d+1∑
l=1

eαl Bl(Yi)
}∆i

exp
{

−
∫ Yi

0

G+d+1∑
l=1

eαl Bl(t)dt
}

=
n∏

i=1

{G+d+1∑
l=1

eαl Bl(Yi)
}∆i

exp
{

−
G+d+1∑

l=1
eαl IBl(Yi)

}
,

where IBl(t) =
∫ t

0 Bl(u)du is the lth integrated spline basis function.

The MLE for α can be computed using the Newton-Raphson algorithm.
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Penalized Maximum Likelihood Estimation

In practice, it may occur that αl → −∞ for some l , indicating that the
corresponding basis functions are not needed (since eαl → 0).

To avoid numerical difficulties caused by sparsity of eα, we can add a
penalty term to the log-likelihood function, i.e.,

α̂ = arg max
α

ℓ(α) − pη(α),

where pη(α) is some penalty function for α and η > 0 is a tuning
parameter.

A proper penalty function should encourage small values of eαl .
▶ pη(α) = η

∑G+d+1
l=1 (10 + αl)3

+ when d = 3 (Rosenberg, 1995) 3.
▶ pη(α) = η

∑G+d+1
l=1 erαl (r=1: Lasso penalty; r=2: Ridge penalty)

3Rosenberg, P. S. (1995). Hazard function estimation using B-splines. Biometrics, 874–887.
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Selection of Tuning Parameters

Theoretically, the internal knots should be equally distributed. In practice,
however, we often place the knots at equal quantiles of the distinct failure
times t1, . . . , tK .

The degree d is often taken as 1, 2, or 3, which corresponds to linear,
quadratic, or cubic splines (most commonly used), respectively.

The optimal values for d and G can be determined by the Akaike
information criterion (AIC):

(d , G)(opt) = arg min
(d,G)

AIC = arg min
(d,G)

2(G + d + 1) − 2ℓ̂,

where ℓ̂ is the maximum of the (penalized) log-likelihood function.
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Class Test

Time: March 21, 12:30–1:20 pm

Location: TBD

Contents to be covered: Chapters 1–3

Format: closed-book

You should bring a calculator.
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