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Regression Modeling

In many applications, it is interesting to study the associations between
the failure time and the covariates/risk factors.

▶ Does smoking increase the risk of lung cancer?
▶ Are COVID-19 vaccines effective against infection/hospitalization/death?
▶ Do people with type 2 diabetes have higher risk of Alzheimer’s disease?

This kind of questions can be formulated through regression models,
where the covariates are denoted by a p-dimensional vector
X = (x1, x2, . . . , xp)T, with each element representing a covariate.

For example, x1 = age, x2 = gender, x3 = smoking status, etc.
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Regression Models for Survival Data

In survival analysis, the most common regression models take the form

λ(t; X ) = λ0(t) exp{βTX} (1)

▶ λ(t; X): covariate-specific hazard function
▶ λ0(t): unknown baseline hazard function
▶ β: p-dimensional unknown regression parameters

Special cases of parametric models:
▶ If λ0(t) ≡ λ, model (1) becomes exponential regression model.
▶ If λ0(t) = λr(λt)r−1, model (1) becomes Weibull regression model.

In this chapter, we do NOT make any parametric assumptions on λ0(t).
Then model (1) is the Cox proportional hazards (PH) model.
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Proportional Hazards
For two subjects with covariates X1 and X2, their hazard ratio over time is

HR(t; X1,X2) = λ(t; X1)
λ(t; X2) = λ0(t) exp{βTX1}

λ0(t) exp{βTX2}
= exp{βT(X1 − X2)},

which is constant over t. This property is called proportional hazards.

For the jth covariate, eβj is hazard ratio and βj is log hazard ratio.

Generalizations of Cox PH model:
▶ Time-dependent covariates X(t): blood pressure, air pollution, vaccination

status, number of tumor relapse
▶ Time-varying coefficient β(t): useful for evaluating long-term treatment

effects (e.g., COVID-19 vaccine efficacy)
▶ Stratification λ0s(t): stratum s is determined by some covariates such as

age, gender, and treatment arm
The proportional hazards property no longer holds.
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Cox PH Model Versus Logistic Model
The Cox PH model is closely related to the logistic regression model. To
see this, we discretize the continuous failure time T by defining

T ∗ = sl if sl ≤ T < sl+1,

where {sl : l = 0, 1, 2, . . . } is an arbitrary partition of [0,∞).

For the discrete variable T ∗, its conditional hazard function given the
covariates X is given by

λ∗(sl ; X ) = Pr(T ∗ = sl | T ∗ ≥ sl ,X )

= 1 − exp
{

−
∫ sl+1

sl

λ(u; X )du
}

Conditional on T ∗ ≥ sl , we specify a logistic regression model for the
binary outcome I(T ∗ = sl):

log λ∗(sl ; X )
1 − λ∗(sl ; X ) = αl + βTX , for l = 0, 1, 2, . . .
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Cox PH Model Versus Logistic Model
Define λ0(t) = λ(t; X = 0). It can be easily observed that

λ∗(sl ; X )
1 − λ∗(sl ; X ) = λ∗(sl ; X = 0)

1 − λ∗(sl ; X = 0)eβTX

⇒
1 − exp

{
−

∫ sl+1
sl

λ(u; X )du
}

exp
{

−
∫ sl+1

sl
λ(u; X )du

} =
1 − exp

{
−

∫ sl+1
sl

λ0(u)du
}

exp
{

−
∫ sl+1

sl
λ0(u)du

} eβTX

Since the above proportionality holds for any partition, it implies that

1 − exp
{

−
∫ t+∆t

t λ(u; X )du
}

1 − exp
{

−
∫ t+∆t

t λ0(u)du
} =

exp
{

−
∫ t+∆t

t λ(u; X )du
}

exp
{

−
∫ t+∆t

t λ0(u)du
} eβTX

Letting ∆t ↓ 0 and applying L’Hôpital’s rule to the left-hand side yields

λ(t; X )
λ0(t) = eβTX ⇒ λ(t; X ) = λ0(t)eβTX (Cox PH model)
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Estimation for Cox Model

Cox model is a semiparametric model in that it contains both
finite-dimensional parameter β and infinite-dimensional parameter λ0(t).

The primary interest usually lies in the estimation of β, such that λ0(t) is
regarded as nuisance parameter and ideally should be eliminated from the
estimation procedure.

In some cases, however, the estimation of λ0(t) is also useful. For
example, to predict a patient’s survival outcome, both β and λ0(t) need
to be estimated.
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Marginal and Conditional Likelihood

General notation:
▶ Z : vector of observations with density fZ (z; θ)
▶ θ: vector of parameters, θ = (β, λ)
▶ β: parameter of interest (finite-dimensional)
▶ λ: nuisance parameter (infinite-dimensional)

If Z = (V T,W T)T, the likelihood for θ can be written as

fZ (z ; θ) = fW |V (w |v ; θ)︸ ︷︷ ︸
conditional likelihood

× fV (v ; θ)︸ ︷︷ ︸
marginal likelihood

(2)

Even in complex models, one of the conditional and marginal likelihoods
above may not involve λ, and can be used directly for inference on β.

The gain in avoiding the estimation of λ may compensate for any loss in
efficiency by using only part of the likelihood in (2).
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Partial Likelihood: A Generalization
Now suppose that Z can be transformed into a sequence of pairs
(V1,W1,V2,W2, . . . ,VK ,WK ). The likelihood for θ can be written as

fZ (z ; θ) = fV1,W1,V2,W2,...,VK ,WK (v1,w1, v2,w2, . . . , vK ,wK ; θ)

=
K∏

k=1

{
fWk |V1,W1,...,Vk−1,Wk−1,Vk (wk |v1,w1, . . . , vk−1,wk−1, vk ; θ)

× fVk |V1,W1,...,Vk−1,Wk−1(vk |v1,w1, . . . , vk−1,wk−1; θ)
}

=
{ K∏

k=1
fWk |Qk (wk |qk ; θ)

}
︸ ︷︷ ︸

partial likelihood: free of λ

×

{ K∏
k=1

fVk |Pk (vk |pk ; θ)
}
,

(3)
where P1 = ∅, Q1 = V1, and for k = 2, . . . ,K ,
Pk = (V1,W1, . . . ,Vk−1,Wk−1) and Qk = (V1,W1, . . . ,Vk−1,Wk−1,Vk).

Cox (1975)1 suggests using partial likelihood for inference on β.

1Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269-276.
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Partial Likelihood for Cox PH Model
Original data: (Yi , δi ,Xi) (i = 1, . . . , n)

▶ Assume no ties among observed failure times
▶ Independent censoring assumption: Ti ⊥⊥ Ci | Xi

Transformed data:
▶ t1 < · · · < tk < · · · < tK : observed failure times
▶ (1), . . . , (k), . . . , (K): labels for failing subjects (T(k) = tk)
▶ X(1), . . . , X(k), . . . , X(K): covariates for failing subjects
▶ Data from mk subjects censored within [tk , tk+1) (k = 0, . . . , K):

⋆ tk1, . . . , tkmk : observed censoring times
⋆ (k, 1), . . . , (k, mk): labels for censored subjects
⋆ X(k,1), . . . , X(k,mk ): covariates for censored subjects

14 / 50



Partial Likelihood for Cox PH Model (Cont.)
Conditional on the covariates {Xi : i = 1, . . . , n}, we construct
(V1,W1, . . . ,VK ,WK ) as follows: for k = 1, . . . ,K ,

Vk =
[
tk ,

{
tk−1,l , (k − 1, l) : l = 1 . . . ,mk−1

}]
= one failure at tk + times and labels of all censorings in [tk−1, tk),

Wk =
{

(k)
}

= label for the failing subject at tk .

Thus,

Pk = (V1,W1, . . . ,Vk−1,Wk−1)
= times and labels of all censorings in [0, tk−1)

+ times and labels of all failures in [0, tk−1],
Qk = (V1,W1, . . . ,Vk−1,Wk−1,Vk)

= Pk + Vk

= failure and censoring history up to t−
k + one failure at tk .
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Partial Likelihood for Cox PH Model (Cont.)
By the definition of partial likelihood in (3), we only need to derive the
conditional distribution of Wk given Qk .

Define Rk = {i : Yi ≥ tk} to be the risk set at tk . Then
Pr{Wk = (k) | Qk}

= Pr{subject (k) fails at tk | Rk , one failure at tk}

=
Pr{T(k) ∈ [tk , tk + dt) | T(k) ≥ tk}

∏
j∈Rk \{(k)} Pr{Tj /∈ [tk , tk + dt) | Tj ≥ tk}∑

i∈Rk

[
Pr{Ti ∈ [tk , tk + dt) | Ti ≥ tk}

∏
j∈Rk \{i} Pr{Tj /∈ [tk , tk + dt) | Tj ≥ tk}

]
=

λ{tk ; X(k)}dt
∏

j∈Rk \{(k)}{1 − λ(tk ; Xj )dt}∑
i∈Rk

[
λ(tk ; Xi )dt

∏
j∈Rk \{i}{1 − λ(tk ; Xj )dt}

]
≈

λ{tk ; X(k)}∑
i∈Rk

λ(tk ; Xi )

=
exp{βTX(k)}∑
i∈Rk

exp(βTXi )
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Partial Likelihood for Cox PH Model (Cont.)

Thus, the partial likelihood for the Cox PH model is given by

L(β) =
K∏

k=1
Pr{Wk = (k) | Qk}

=
K∏

k=1

exp{βTX(k)}∑
i∈Rk

exp(βTXi)

(4)

If we further assume noninformative censoring, that is,

Pr{subjects censored in [t, t + dt) | risk set at t, subjects failing at t}

does not depend on β, then the second term
∏K

k=1 fVk |Pk (vk |pk ; θ) in (3)
contains little or no information about β.

Therefore, loss in efficiency arising from the use of partial likelihood for
inference on β is negligible.
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Partial Likelihood = Marginal Likelihood
Interestingly, partial likelihood can also be derived as a marginal likelihood
for the ranks of {Ti : i = 1, . . . , n}.

We first consider the simple setting without censoring. The marginal
likelihood of the ranks is given by

Pr{T(1) < T(2) < · · · < T(n)} =
∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

n∏
i=1

f {ti ; X(i)}dtn · · · dt1.

Let Λ0(t) =
∫ t

0 λ0(s)ds be the cumulative baseline hazard function. First,∫ ∞

tn−1

f {tn; X(n)}dtn

= S{tn−1; X(n)} = exp
[
−Λ0(tn−1) exp{βTX(n)}

]
=

[∏
i≥n

exp{βTX(i)}∑
j≥i exp{βTX(j)}

]
exp

[
−Λ0(tn−1)

∑
j≥n

exp{βTX(j)}
]
.
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Partial Likelihood = Marginal Likelihood (Cont.)

Next,∫ ∞

tn−2

f {tn−1; X(n−1)}
[∏

i≥n

exp{βTX(i)}∑
j≥i

exp{βTX(j)}

]
exp

[
−Λ0(tn−1)

∑
j≥n

exp{β
TX(j)}

]
dtn−1

=
[∏

i≥n

exp{βTX(i)}∑
j≥i

exp{βTX(j)}

]∫ ∞

tn−2

λ{tn−1; X(n−1)} exp
[

−Λ0(tn−1)
∑

j≥n−1

exp{β
TX(j)}

]
dtn−1

=
[ ∏

i≥n−1

exp{βTX(i)}∑
j≥i

exp{βTX(j)}

]
exp

[
−Λ0(tn−2)

∑
j≥n−1

exp{β
TX(j)}

]
.

Recursive calculation yields

Pr{T(1) < T(2) < · · · < T(n)} =
n∏

i=1

exp{βTX(i)}∑
j≥i exp{βTX(j)}

,

which is equal to the partial likelihood in (4) for uncensored data.
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Partial Likelihood = Marginal Likelihood (Cont.)

When there are censored subjects, the marginal likelihood is the sum of
Pr{T(1) < · · · < T(n)} over all ranks of {Ti : i = 1, . . . , n} that are
consistent with the observed data.

For example, suppose (Y1,Y2,Y3,Y4) = (28, 15, 17, 6) and
(δ1, δ2, δ3, δ4) = (0, 0, 1, 1). Then all possible ranks are (4, 2, 3, 1),
(4, 3, 1, 2), and (4, 3, 2, 1).

Using the original labels (1), . . . , (K ) for failing subjects and
(k, 1), . . . , (k,mk) for censored subjects in [tk , tk+1), the marginal
likelihood can be written as

Pr
[
T(1) < · · · < T(K),

{
T(k,l) > T(k) : k = 1, . . . ,K ; l = 1, . . . ,mk

}]
.
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Partial Likelihood = Marginal Likelihood (Cont.)
Conditional on T(k) = tk , the likelihood contribution from the mk
censored subjects is

g(tk) =
mk∏
l=1

Pr{T(k,l) > tk} = exp
[
−Λ0(tk)

mk∑
l=1

exp{βTX(k,l)}
]

Thus, the marginal likelihood reduces to∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tK−1

K∏
k=1

f {tk ; X(k)}g(tk)dtK · · · dt1

=
K∏

k=1

exp{βTX(k)}∑
i∈Rk

exp{βTXi}
,

which is exactly the partial likelihood in (4).

The equivalence of the partial and marginal likelihoods suggests that
inferences based on partial likelihood are efficient.
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Partial Likelihood for Tied Data

Although failure time is a continuous random variable, ties in observed
failure times are still possible in practice (e.g., when failure times are
measured in integer days).

Notation for tied data:
▶ t1 < · · · < tk < · · · < tK : distinct observed failure times
▶ Rk = {i : Yi ≥ tk}: risk set at tk

▶ Dk = {i : Yi = tk , δi = 1}: set of all subjects failing at tk

▶ dk = |Dk |: number of subjects failing at tk

We can follow a similar procedure to derive the partial likelihood for tied
data. The conditional probability of Wk given Qk now becomes

Pr{Wk = Dk | Qk} = Pr{subjects in Dk fail at tk | Rk , dk failures at tk}.
(5)
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Partial Likelihood for Tied Data (Cont.)

Recall that Cox PH model can be approximated by logistic model:

log λ(t; X )dt
1 − λ(t; X )dt = α(t) + βTX

⇒ Pr{subject fails at tk | at risk at tk , X} = exp(αk + βTX )
1 + exp(αk + βTX )

Under the logistic model, the conditional probability in (5) is given by∏
i∈Dk

exp(αk +βTXi )
1+exp(αk +βTXi )

∏
i∈Rk \Dk

1
1+exp(αk +βTXi )∑

D∈C(Rk ,dk )
∏

i∈D
exp(αk +βTXi )

1+exp(αk +βTXi )
∏

i∈Rk \D
1

1+exp(αk +βTXi )

= exp(βTSDk )∑
D∈C(Rk ,dk ) exp(βTSD) ,

where C(Rk , dk) is the collection of all sets of dk failing subjects chosen
from Rk , and SD =

∑
i∈D Xi .
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Partial Likelihood for Tied Data (Cont.)

The partial likelihood for tied data then follows:

L(β) =
K∏

k=1

exp(βTSDk )∑
D∈C(Rk ,dk ) exp(βTSD)

The computation of the above partial likelihood can be very intensive
since the denominator requires enumeration of all possible failing set.

Some approximation methods have been proposed to simplify the
computation, including the Breslow and Efron approximations.
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Breslow and Efron Approximations

Breslow approximation2 is the easiest method for handling ties. It
suggests the partial likelihood

L(β) =
K∏

k=1

exp(βTSk){∑
i∈Rk

exp(βTXi)
}dk

,

where Sk =
∑

i∈Dk
Xi .

Alternatively, Efron approximation3 suggests the partial likelihood

L(β) =
K∏

k=1

exp(βTSk)∏dk
i=1

{∑
j∈Rk

exp(βTXj) − i−1
dk

∑
j∈Dk

exp(βTXj)
}

2Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, 89-99.
3Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 72(359),

557-565.
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Breslow and Efron Approximations (Cont.)

When there are a large number of ties, Efron approximation is more
accurate than Breslow approximation.

When the number of ties is small, there is typically little difference
between the two approaches.

Many software implement the Breslow approach for its simplicity, but the
“survival” package uses Efron approximation as the default.

For simplicity, the remaining sections will be based on Breslow’s likelihood.
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Maximum Partial Likelihood Estimation
Breslow’s partial likelihood:

Ln(β) =
K∏

k=1

exp(βTSk){∑
i∈Rk

exp(βTXi)
}dk

=
n∏

i=1

{
exp(βTXi)∑n

j=1 Rj(Yi) exp(βTXj)

}δi

,

where Rj(t) = I(Yj ≥ t) is the at-risk indicator at time t for the jth subject.

Log partial likelihood:

ℓn(β) =
n∑

i=1
δi

[
βTXi − log

{ n∑
j=1

Rj(Yi)eβTXj

}]

Maximum partial likelihood estimator:

β̂ = arg max
β

ℓn(β)
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Newton-Raphson Algorithm

Score function:

Un(β) = ℓ̇n(β) =
n∑

i=1
δi

[
Xi −

∑n
j=1 Rj(Yi)eβTXj Xj∑n

j=1 Rj(Yi)eβTXj

]

Information matrix:

In(β) = −ℓ̈n(β) =
n∑

i=1
δi

∑n
j=1 Rj(Yi)eβTXj X ⊗2

j∑n
j=1 Rj(Yi)eβTXj

−

{∑n
j=1 Rj(Yi)eβTXj Xj

}⊗2

{∑n
j=1 Rj(Yi)eβTXj

}2


Updating formula:

β̂(new) = β̂(old) +
[
In{β̂(old)}

]−1Un{β̂(old)}
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Large-Sample Theory for β̂

Theorem (Consistency and limiting distribution)
Under certain regularity conditions, the following are true:
(i) β̂

p→ β.

(ii)
√

n(β̂ − β) d→ N(0,Σ−1), where Σ = limn→∞ n−1In(β).

(iii) n−1/2Un(β) d→ N(0,Σ).

Regularity conditions:
(i) Subjects are i.i.d.
(ii) Xi(·) are bounded.
(iii)

∫ τ

0 λ0(t)dt < ∞, where τ = supn
i=1 Yi .

(iv) For any t ∈ [0, τ ], Pr{Ri(t) = 1} > 0.
(v) Σ is positive definite.
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Hypothesis Testing for β

H0 : β = β∗

Wald test:

Wn = (β̂ − β∗)TIn(β̂)(β̂ − β∗) d→ χ2
p under H0

Score test:

SCn = Un(β∗)T{In(β∗)}−1Un(β∗) d→ χ2
p under H0

Likelihood ratio test:

LRn = 2{ℓn(β̂) − ℓn(β∗)} d→ χ2
p under H0
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Test A Subset of Parameters

Partition of parameters and statistics:

β =
(
β1
β2

)
, β̂ =

(
β̂1
β̂2

)
, Un =

(
U1
U2

)
,

In =
(

I11 I12
I21 I22

)
, I−1

n =
(

I11 I12

I21 I22

)
,

where I11 = (I11 − I12I−1
22 I21)−1.

H0 : β1 = β∗
1 , where β1 is a q-dimensional subvector of β.

Wald test:

Wn = (β̂1 − β∗
1 )T{I11(β̂)}−1(β̂1 − β∗

1 ) d→ χ2
q under H0

32 / 50



Test A Subset of Parameters (Cont.)

Score test:

SCn = U1(β∗
1 , β̃2)T{I11(β∗

1 , β̃2)}U1(β∗
1 , β̃2) d→ χ2

q under H0,

where β̃2 = arg maxβ2 ℓn(β∗
1 , β2) is the restricted MLE under β1 = β∗

1 .

[Hint: U1(β∗
1 , β̃2) = U1(β∗

1 , β2) − I12(β∗
1 , β2)(β̃2 − β2) + o(1)

= U1(β∗
1 , β2) − I12(β∗

1 , β2){I22(β∗
1 , β2)}−1U2(β∗

1 , β2) + o(1)]

Likelihood ratio test:

LRn = 2{ℓn(β̂) − ℓn(β∗
1 , β̃2)} d→ χ2

q under H0
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Test on Linear Combination of Parameters

H0 : Cβ = Cβ∗, where C is a q × p matrix of full rank q (q ≤ p).

Wald test:

Wn = (C β̂ − Cβ∗)T[
C{In(β̂)}−1CT]−1(C β̂ − Cβ∗) d→ χ2

q under H0

In clinical trials, this kind of tests are useful for comparing effects of
different treatments.

For example, suppose that x1 and x2 are the binary indicators for
treatments 1 and 2, respectively. To test the difference between the two
treatments, we can let C = (1,−1).
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Estimation of Λ0

Several methods have been proposed to estimate infinite-dimensional
parameters related to λ0. One appealing estimator of Λ0(t) =

∫ t
0 λ0(s)ds

is Breslow estimator:

Λ̂0(t) =
n∑

i=1

I(Yi ≤ t)δi∑n
j=1 Rj(Yi) exp(β̂TXj)

=
K∑

k=1

I(tk ≤ t)dk∑
i∈Rk

exp(β̂TXi)

Breslow estimator is a natural generalization of the Nelson-Aalen
estimator for homogeneous samples. When there are no covariates, Λ̂0
reduces to the NA estimator.

The rationale behind is that one subject in the risk set failing at rate
λ0(t)eβ̂TXi produces the same expected number of failures as eβ̂TXi

subjects, each failing with rate λ0(t).
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Weak Convergence of Λ̂0

Theorem (Limiting distribution of Λ̂0)
Under certain regularity conditions, the stochastic process
G(t) =

√
n{Λ̂0(t) − Λ0(t)} converges weakly to a mean-zero Gaussian process

whose covariance function can be consistently estimated by

Ĉov{G(s), G(t)} =
{∫ s

0
E(β̂, u)dΛ̂0(u)

}T

{In(β̂)/n}−1
{∫ t

0
E(β̂, u)dΛ̂0(u)

)}

+
∫ s∧t

0

dΛ̂0(u)
S(0)(β̂, u)

,

where

S(r)(β, t) = n−1
n∑

i=1
Ri(t)eβTXi X ⊗r

i for r = 0, 1, 2;

E (β, t) = S(1)(β, t)
S(0)(β, t)

.
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Estimation of λ0

Estimation of λ0(t) can be done by applying the kernel smoothing method to
the Breslow estimator, as we did based on the NA estimator in Chapter 3.
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Estimation of Survival Function

The covariate-specific survival function is

S(t; X ) = exp
{

−Λ0(t)eβTX
}

= S0(t)exp(βTX)

We simply plug in β̂ and Λ̂0 to estimate S(t; X ):

Ŝ(t; X ) =
[
exp{−Λ̂0(t)}︸ ︷︷ ︸

Ŝ0(t)

]exp(β̂TX)
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Model Misspecification

Cox model relies on the following assumptions:
Proportional hazards (PH): hazard ratio is constant over time
Functional forms of covariates: e.g., age or log(age)?
Link function: ψ(βTX ) = βTX

When at least one of these assumptions does not hold, the model is
misspecified, resulting in loss of power for testing covariate effects and even
biased regression parameter estimates.
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Asymptotic Properties Under Misspecified Models

Let β∗ be the limit of the solution to the score equation Un(β) = 0.

(i) Un(β∗) ·∼ N(0,B), where B =
∑n

i=1 W ⊗2
i and

Wi = δi

{
Xi − S(1)(Yi ; β̂)

S(0)(Yi ; β̂)

}
−

n∑
j=1

δjRi(Yj) exp{β̂TXi}
nS(0)(Yj ; β̂)

{
Xi − S(1)(Yj ; β̂)

S(0)(Yj ; β̂)

}

(ii) β̂
·∼ N(β∗,D), where D = I−1

n (β̂)BI−1
n (β̂).

D is called the robust variance estimator, which is always valid. In contrast,
the model-based variance estimator I−1

n (β̂) may not be valid when the model
is misspecified.

To compute robust variance estimator in R, simply specify “robust = TRUE”
in coxph().
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Stratified Cox Model

Setup: G strata, ng subjects in the gth stratum
Tgi : failure time of the ith subject in the gth stratum
Cgi : censoring time of the ith subject in the gth stratum
Ygi = min(Tgi ,Cgi): observation time of the ith subject in the gth
stratum
δgi = I(Tgi ≤ Cgi): failure indicator of the ith subject in the gth stratum
Xgi : covariates of the ith subject in the gth stratum

Observed data: (Ygi , δgi ,Xgi), for g = 1, . . . ,G and i = 1, . . . , ng

Independent censoring: Tgi ⊥⊥ Cgi given Xgi within each stratum g
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Stratified Cox Model (Cont.)

The stratified Cox model is given by

λ(t; Xgi) = λ0g (t)eβTXgi , for g = 1, . . . ,G ; i = 1, . . . , ng

λ0g (t): stratum-specific baseline hazard function
β: common regression parameters across all strata

Notation:
Rgi(t) = I(Ygi ≥ t): at-risk indicator
For r = 0, 1, 2, define

S(r)
g (t;β) =

ng∑
i=1

Rgi(t)eβTXgi X ⊗r
gi
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Maximum Partial Likelihood Estimation

Ln(β) =
G∏

g=1

ng∏
i=1

{
eβTXgi

S(0)
g (Ygi ;β)

}δgi

Un(β) =
G∑

g=1

ng∑
i=1

δgi

{
Xgi − S(1)

g (Ygi ;β)
S(0)

g (Ygi ;β)

}

In(β) =
G∑

g=1

ng∑
i=1

δgi

S(2)
g (Ygi ;β)

S(0)
g (Ygi ;β)

−

{
S(1)

g (Ygi ;β)
}⊗2

{
S(0)

g (Ygi ;β)
}2


You can easily verify that when G = 1, the above formulas reduce to those on
Slides 28–29.

The asymptotic properties of Un(β) and β̂ are the same as the unstratified
case (see Slide 30).
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Fit Stratified Cox Model in R

# stratification on variable "vstrata"
coxph(Surv(time, status) ˜ covariates + strata(vstrata),

ties = "breslow")
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Accelerated Failure Time Model
Another class of semiparametric survival models is the accelerated failure
time model (AFT model), which specifies that the covariate effect is
multiplicative on the time scale:

log T = α+ βTX + σW ,

where W is an error variable with unspecified density f of standard form.

Under the AFT model, the role of the covariates X is to accelerate or
decelerate the failure time T .

The survival and hazard functions for T take the form

S(t; X ) = exp
{

−Λ0(te−α−βTX )
}
,

λ(t; X ) = λ0(te−α−βTX ) exp(−α− βTX ),

where λ0(t) is some unknown baseline hazard function and
Λ0(t) =

∫ t
0 λ0(u)du.
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Examples of AFT Model

If W ∼ N(0, 1), then log T ∼ N(βTX , σ2). That is, T follows a
log-normal distribution.

If W follows the extreme value distribution with density and survival
functions

fW (w) = exp (w − ew ) , SW (w) = exp (−ew ) ,

then T has a Weibull distribution with survival function

ST (t) = exp (−θtα) ,

where θ = exp [− (α+ x ′β) /σ] and α = 1/σ. This is a parametric version
of the class of proportional hazards models.
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Examples of AFT Model (Cont.)

If W follows the standard logistic distribution with density function

f (w) = ew

(1 + ew )2 ,

then T follows a log-logistic distribution with survival function

ST (t) = [1 + θtα]−1
,

where θ = exp [− (α+ x ′β) /σ] and α = 1/σ. This is a parametric version
of the class of proportional odds models.
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