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Multivariate Failure Time Data

In general, there are two types of multivariate failure time data:

Multiple events data: each study subject may experience several
events/failures.

Clustered data: there exists natural/artificial clustering of subjects which
induces dependence among failure times of the same cluster.
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Multiple Events Data

Recurrent events: repetitions of a phenomenon (e.g., illness)
tumor recurrences
infection episodes
repeated breakdowns of machinery

Multiple types of events: combination of multiple types of phenomena
Ordered events: natural ordering of successive events

▶ HIV-infection → AIDS → death
▶ randomization → cancer recurrence → death
▶ birth → marriage → child birth

Unordered events: several concurrent failure processes
▶ physical symptoms or diseases in several organ systems (cardiovascular

disease, cancer, Alzheimer’s disease, etc.)
▶ purchases of various products

6 / 45



Clustered Data

family (twin) studies
litter matched carcinogeneicity experiments
group randomized studies

7 / 45



Real Example: Bladder Tumor Study

A randomized clinical trial was conducted to assess the efficacy of thiotepa in
reducing cancer recurrences in patients with superficial bladder tumors.

Cancer recurrences
Group n 0 1 2 3 4 > 4 Total
Thiotepa 38 20 8 3 2 2 3 45
Placebo 48 19 10 4 6 2 7 87

[Recurrent events]
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Real Example: Colon Cancer Study

A randomized clinical trial was conducted in the 1980’s to study the drugs Lev
and 5-FU for adjuvant therapy of resected colon carcinoma. Patients with
Stage C disease were randomly assigned to observation, Lev alone, or
Lev+5-FU. The time to cancer recurrence and the survival time were both
considered important outcome measures.

Group #Patients #Recurrences #Deaths
observation 315 155 114
Lev 310 144 109
Lev+5-FU 304 103 78

[Multiple types of events]
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Real Example: Diabetic Retinopathy Study

The Diabetic Retinopathy Study was conducted by the National Eye Institute
to assess the effectiveness of laser photocoagulation in delaying visual loss in
patients with diabetic retinopathy. One eye of each patient was randomly
selected for photocoagulation and the other eye was observed without
treatment. The patients were followed over several years for the occurrence of
visual loss in the left and right eyes.

Treatment Patients (eyes) Visual loss
Yes 1727 242
No 1727 535

[Clustered data]
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Analysis of Multivariate Failure Time Data

Questions:
Distributions of multivariate failure times (joint, marginal and conditional
distributions)
Effects of covariates (e.g., treatment) on multivariate failure times

Challenges:
Dependence of failure times within the same subject/cluster
Censoring due to patient withdrawal/study termination
Multiplicity of outcome measures
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Intensity Model

Notation:
N∗(t): counting process recording the number of events by time t
X (t): potentially time-dependent covariates
Ft = {N∗(s), X (s) : 0 ≤ s ≤ t}: history up to time t
dN∗(t): increment of N∗ (i.e., number of events) over [t, t + dt)
λ(t; X ) = limdt↓0 E{dN∗(t) | Ft−}/dt: intensity function

Intensity Model:
λ(t; X ) = λ0(t) exp

{
βTX (t)

}
λ0(t): arbitrary baseline intensity function
β: unknown regression parameters
Also known as Andersen–Gill model
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Recurrent Events Data

Notation:
Tij : jth event time of the ith subject
N∗

i (t) =
∑∞

j=1 I(Tij ≤ t): counting process of the ith subject
Ci : censoring time of the ith subject
Ni(t) = N∗

i {min(t, Ci)}: observed counting process
δij = I(Tij ≤ Ci): failure indicator
Ri(t) = I(Ci ≥ t): at-risk indicator
For r = 0, 1, 2, define

S(r)(t; β) =
n∑

i=1
Ri(t) exp{βTXi(t)}Xi(t)⊗r

Independent censoring assumption: Ci ⊥⊥ N∗(t) given X (t)
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Maximum Partial Likelihood Estimation

Ln(β) =
n∏

i=1

∞∏
j=1

[
exp{βTXi(Tij)}

S(0)(Tij ; β)

]δij

ℓn(β) =
n∑

i=1

∞∑
j=1

δij

{
βTXi(Tij) − log S(0)(Tij ; β)

}

Un(β) =
n∑

i=1

∞∑
j=1

δij

{
Xi(Tij) − S(1)(Tij ; β)

S(0)(Tij ; β)

}

In(β) =
n∑

i=1

∞∑
j=1

δij

{
S(2)(Tij ; β)
S(0)(Tij ; β)

−
{

S(1)(Tij ; β)
}⊗2{

S(0)(Tij ; β)
}2

}
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Unified Counting Process Representation

In fact, using the counting process notation, partial likelihood for single and
recurrent events data can be expressed uniformly:

Ln(β) =
n∏

i=1

∏
t≥0

{
exp{βTXi(t)}

S(0)(t; β)

}dNi (t)

ℓn(β) =
n∑

i=1

∫ ∞

0

{
βTXi(t) − log S(0)(t; β)

}
dNi(t)

Un(β) =
n∑

i=1

∫ ∞

0

{
Xi(t) − S(1)(t; β)

S(0)(t; β)

}
dNi(t)

In(β) =
n∑

i=1

∫ ∞

0

{
S(2)(t; β)
S(0)(t; β)

−
{

S(1)(t; β)
}⊗2{

S(0)(t; β)
}2

}
dNi(t)

For single event, Ri(t) = I(Yi ≥ t). For recurrent events, Ri(t) = I(Ci ≥ t).
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Asymptotic Properties

(i) Un(β) ·∼ N
(
0, In(β)

)
.

(ii) β̂
·∼ N

(
β, I−1

n (β̂)
)
.

For hypothesis testing on β, score and Wald test statistics can be derived
based on the asymptotic normality of Un(β) and β̂, respectively.

H0 : β = β∗. SCn = Un(β∗)TIn(β∗)−1Un(β∗) d→ χ2
p.

H0 : Cβ = Cβ∗. Wn = (C β̂ − Cβ∗)T{
CI−1

n (β̂)CT}−1(C β̂ − Cβ∗) d→ χ2
q

for a q × p matrix C .
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Implementation in R
Data input for the ith subject:

sid start stop status X1 X2

i 0 Ti1 1 Xi1 Xi2

i Ti1 Ti2 1 Xi1 Xi2
...

...
...

...
...

...

i Ti,Ji −1 Ti,Ji 1 Xi1 Xi2

i Ti,Ji Ci 0 Xi1 Xi2

The ith subject contributes (Ji + 1) records, where Ji is the number of observed
events. For the jth record of the ith subject, start is the time of the (j − 1)th
event (or 0 if j = 1), stop is the time of the jth event (or censoring time if
j = Ji + 1), and status indidates whether there is an event at the stop time.

coxph(Surv(start, stop, status) ˜ covariates, ties = "breslow")
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Multiple Events Data

Setup: n subjects, K types of events
Tki : failure time of the kth event and ith subject
Cki : censoring time of the kth event and ith subject
Yki = min(Tki , Cki): observation time of the kth event and ith subject
δki = I(Tki ≤ Cki): failure indicator of the kth event and ith subject
Xki(t): covariates of the kth event and ith subject

Observed data: (Yki , δki , Xki), for k = 1, . . . , K and i = 1, . . . , n

Independent censoring assumption: Tki ⊥⊥ Cki given Xki(t)

Notation:
Rki(t) = I(Yki ≥ t): at-risk indicator
S(r)

k (t; β) =
∑n

i=1 Rki(t) exp{βTXki(t)}Xki(t)⊗r , r = 0, 1, 2
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Marginal Cox model

We specify a Cox model for each type of event:

λk(t; Xki) = λ0k(t) exp
{

βT
k Xki(t)

}
, for k = 1, . . . , K and i = 1, . . . , n

λ0k(t): event-specific baseline hazard functions
βk : event-specific regression parameters
modeling the marginal distributions for each event without specifying the
dependence structures
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Maximum Partial Likelihood Estimation
For the kth event, we obtain β̂k via maximum partial likelihood estimation.

β̂k = arg max
β

Lk(β)

Lk(β) =
n∏

i=1

{
exp{βTXki (Yki)}

S(0)
k (Yki ; β)

}δki

ℓk(β) =
n∑

i=1
δki

{
βTXki (Yki) − log S(0)

k (Yki ; β)
}

Uk(β) =
n∑

i=1
δki

{
Xki (Yki) −

S(1)
k (Yki ; β)

S(0)
k (Yki ; β)

}

Ik(β) =
n∑

i=1
δki

{
S(2)

k (Yki ; β)
S(0)

k (Yki ; β)
−

S(1)
k (Yki ; β)⊗2

S(0)
k (Yki ; β)2

}
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Asymptotic Properties

 β̂1
...

β̂K

 ·∼ N


 β1

...
βK

 ,

 D11 . . . D1K
...

...
...

DK1 . . . DKK


 ,

where

Dkl = I−1
k (β̂k)BklI−1

l (β̂l),

Bkl =
n∑

i=1
WkiW T

li ,

Wki = δki

{
Xki (Yki) −

S(1)
k (Yki ; β̂k)

S(0)
k (Yki ; β̂k)

}

−
n∑

i′=1

δki′Rki(Yki′) exp{β̂T
k Xki (Yki′)}

S(0)
k (Yki′ ; β̂k)

{
Xki (Yki′) −

S(1)
k (Yki′ ; β̂k)

S(0)
k (Yki′ ; β̂k)

}
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Remarks

Robust sandwich covariance matrix estimators Dkl (k ̸= l) account for the
dependence of the multiple failure times.

For the kth event, Dkk is the robust variance estimator, while I−1
k (β̂k) is

the model-based variance estimator.
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Simultaneous Inference
Parameters of interest: ηk = βk1, k = 1, . . . , K
Estimators: η̂k = β̂k1, k = 1, . . . , K
Covariance estimator: Ψ̂ = Ĉov(η̂1, . . . , η̂K )
Global (Wald) test H0 : η1 = · · · = ηK = 0

W = (η̂1, . . . , η̂K )Ψ̂−1(η̂1, . . . , η̂K )T d→ χ2
K under H0

To estimate a common parameter η1 = · · · = ηK = η, we let

η̂ =
K∑

k=1
ck η̂k ,

where the weights ck are chosen to minimize the variance of η̂.
Define e = (1, . . . , 1)T. It can be shown that

(c1, . . . , cK )T = (eTΨ̂−1e)−1Ψ̂−1e

25 / 45



Event-Specific Breslow Estimator

The Breslow estimator for the kth event is

Λ̂0k(t) =
n∑

i=1

I(Yki ≤ t)δki

S(0)
k (Yki ; β̂k)

Asymptotic normality:{
Λ̂01(t), . . . , Λ̂0K (t)

}
·∼ NK

(
{Λ01(t), . . . , Λ0K (t)}, V (t)

)
,

where V (t) is the robust variance-covariance estimator that accounts for
the dependence of the multiple failure times.
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Implementation

Data input for the ith subject:

sid enum time status X1 X2

i 1 Y1i δ1i X1i1 X1i2

i 2 Y2i δ2i X2i1 X2i2
...

...
...

...
...

...

i K YKi δKi XKi1 XKi2

Each subject has K records, one for each event type (identified by enum).
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Implementation (Cont.)

R code:

coxph(Surv(time, status) ˜ covariates * strata(enum) +
cluster(sid) + strata(enum), ties = "breslow")

Note: additional calculation is needed since the output estimates for
enum=2–K are β̂k − β̂1!

SAS code:

proc phreg covs(aggregate);
model time*status(0)=covariates/cov ties=breslow;
strata enum;
id sid;

Note: covs(aggregate) is specified to compute the robust sandwich covariance
matrix estimator.
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Clustered Data

Setup: n clusters, Ji subjects in the ith cluster
Tij : failure time of the jth subject in the ith cluster
Cij : censoring time of the jth subject in the ith cluster
Yij = min(Tij , Cij): observation time of the jth subject in the ith cluster
δij = I(Tij ≤ Cij): failure indicator of the jth subject in the ith cluster
Xij(t): covariates of the jth subject in the ith cluster

Observed data: (Yij , δij , Xij), for i = 1, . . . , n and j = 1, . . . , Ji

Independent censoring assumption: Tij ⊥⊥ Cij given Xij(t)

Notation:
Rij(t) = I(Yij ≥ t): at-risk indicator
S(r)(t; β) =

∑n
i=1

∑Ji
j=1 Rij(t) exp{βTXij(t)}Xij(t)⊗r , r = 0, 1, 2
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Marginal Cox model

We consider the marginal Cox model:

λ(t; Xij) = λ0(t) exp
{

βTXij(t)
}

, for i = 1, . . . , n and j = 1, . . . , Ji

λ0(t): arbitrary baseline hazard function
β: unknown regression parameters
modeling the marginal distributions without specifying the within-cluster
dependence structures

To enable likelihood-based inference, we impose the independence working
assumption that failure times within the same cluster are independent.

This unrealistic independence working assumption will be fixed later by the
robust variance estimator.
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Maximum Pesudo Partial Likelihood Estimation
Pesudo Partial Likelihood:

Ln(β) =
n∏

i=1

Ji∏
j=1

{
exp{βTXij (Yij)}

S(0) (Yij ; β)

}δij

Compute β̂ = arg maxβ Ln(β):

ℓn(β) =
n∑

i=1

Ji∑
j=1

δij

{
βTXij (Yij) − log S(0) (Yij ; β)

}

Un(β) =
n∑

i=1

Ji∑
j=1

δij

{
Xij (Yij) − S(1) (Yij ; β)

S(0) (Yij ; β)

}

In(β) =
n∑

i=1

Ji∑
j=1

δij

{
S(2) (Yij ; β)
S(0) (Yij ; β)

− S(1) (Yij ; β)⊗2

S(0) (Yij ; β)2

}
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Asymptotic Properties

(i) Un(β) ·∼ N(0, B(β)), where B(β) =
∑n

i=1
∑Ji

j=1
∑Ji

j′=1 Wij(β)Wij′(β)T

and

Wij(β) = δij

{
Xij (Yij) − S(1) (Yij ; β)

S(0) (Yij ; β)

}

−
n∑

i′=1

Ji′∑
j′=1

δi′j′Rij (Yi′j′) exp{βTXij (Yi′j′)}
S(0) (Yi′j′ ; β)

{
Xij (Yi′j′) − S(1) (Yi′j′ ; β)

S(0) (Yi′j′ ; β)

}

(ii) β̂
·∼ N(β, D), where D = I−1

n (β̂)B(β̂)I−1
n (β̂).
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Remarks

Robust variance estimators B(β) and D account for within-cluster
dependence, while naive variance estimators In(β) and I−1

n (β̂) do not.

If Ji ≡ 1, then D becomes the robust variance estimator for misspecified
univariate Cox models.

Score and Wald tests:
▶ H0 : β = β∗. SCn = Un(β∗)TB(β∗)−1Un(β∗) d→ χ2

p .

▶ H0 : Cβ = Cβ∗. Wn = (C β̂ − Cβ∗)T(CDCT)−1(C β̂ − Cβ∗) d→ χ2
q for a

q × p matrix C .
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Estimation for Λ0

Breslow estimator:

Λ̂0(t) =
n∑

i=1

Ji∑
j=1

I(Yij ≤ t)δij

S(0)(Yij ; β̂)

Asymptotic normality:

Λ̂0(t) ·∼ N
(
Λ0(t), V (t)

)
,

where V (t) is the robust variance estimator that accounts for the
within-cluster dependence.
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Implementation in R

Data input for the ith cluster:

cid time status X1 X2

i Yi1 δi1 Xi11 Xi12

i Yi2 δi2 Xi21 Xi22
...

...
...

...
...

i YiJi δiJi XiJi 1 XiJi 2

The ith cluster contributes Ji records, one for each subject within the cluster.

coxph(Surv(time, status) ˜ covariates + cluster(cid),
ties = "breslow")
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Frailty Models

Another way to address the dependence of multivariate failure time data
is through frailty models, also known as random effects models.

This is simply by adding a frailty (or random effects) term to the original
Cox-type models.

For multiple events data, all events from the same subject share the same
frailty. For clustered data, all subjects within the same cluster share the
same frailty.

This shared frailty accounts for the within-subject or within-cluster
dependence.
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Frailty Models

Recurrent events: for the ith subject (i = 1, . . . , n), we specify the intensity
function as

λ(t; Xi , bi) = λ0(t) exp{βTXi(t) + bT
i X̃i(t)}

Multiple events: for the kth event and ith subject (k = 1, . . . , K and
i = 1, . . . , n), we specify the hazard function as

λ(t; Xki , bi) = λ0k(t) exp{βTXki(t) + bT
i X̃ki(t)}

Clustered data: for the jth subject in the ith cluster (i = 1, . . . , n and
j = 1, . . . , Ji), we specify the hazard function as

λ(t; Xij , bi) = λ0(t) exp{βTXij(t) + bT
i X̃ij(t)}
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Remarks

The frailty bi
iid∼ f (b; γ), which accounts for the within-subject or

within-cluster dependence.

The set of covariates X̃ contains 1 and part of X .

Under frailty models, the regression coefficient β is no longer the
population average effect of the covariates as under marginal models.

Instead, β should be interpreted as the subject-specific effect which can
vary from person to person.

A special case of frailty models is the Cox model with frailty:

λ(t; Xi , Zi) = Ziλ0(t) exp
{

βTXi(t)
}

, for Zi > 0,

where a larger Zi value indicates a higher risk of failure (i.e., the ith
subject is more frail than others).
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Other Advantages of Frailty Models

The frailty bi also addresses unobservable heterogeneity. For example,
immunocompromised subjects relapse into COVID-19 infection more
rapidly than others, but this cannot be fully described by the covariates.

Thus, prediction based on frailty models is usually more accurate than
that based on marginal models.

Frailty models also enable dynamic prediction based on the evolving
disease history, by dynamically updating the distribution of the frailty bi
given the observed data.

Finally, we can adjust for dependent censoring by jointly modelling the
failure and censoring times with shared frailty.
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Maximum Likelihood Estimation

The likelihood function for clustered data is
n∏

i=1

∫
bi

Ji∏
j=1

[
λ0(Yij) exp

{
βTXij(Yij) + bT

i X̃ij(Yij)
}]δij

× exp
[

−
∫ Yij

0
exp

{
βTXij(t) + bT

i X̃ij(t)
}

dΛ0(t)
]

× f (bi ; γ)dbi

Apply the nonparametric maximum likelihood estimation (NPMLE)
approach and treat Λ0(t) as a step function with nonnegative jumps at
observed event times.
Replace λ0(t) by the jump size of Λ0 at t.
Maximize the discretized likelihood function over β, γ and jump sizes of
Λ0 using standard MLE procedures.
Likelihoods for multiple events and recurrent events are similar.
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Computation

Compared to marginal models, the computation for frailty models is much
more challenging due to the integrals of frailty.

One can use numerical methods to approximate the integrals of frailty.
For example, when bi is normally distributed, Gauss-Hermite quadratures
can be used.

More accurate computation is achieved through EM algorithm, where
frailty bi (i = 1, . . . , n) are treated as missing data.

▶ E-step: compute the conditional expectation of the complete-data
log-likelihood given the observed data and the current parameter estimates.

▶ M-step: update the parameter estimates by maximizing the conditional
expectation of the complete-data log-likelihood obtained in the E-step.

▶ Iterate between E-step and M-step until convergence.
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Asymptotic Properties

Let θT = (βT, γ) be the vector of all finite-dimensional parameters. Denote
the nonparametric MLEs by θ̂ and Λ̂0(t).

(i) Consistency: ∥θ̂ − θ∥ + supt∈[0,τ ] |Λ̂0(t) − Λ0(t)| p→ 0.

(ii) Asymptotic normality:
√

n(θ̂ − θ) d→ N(0, V ).

(iii) Semiparametric efficiency: the covariance matrix V attains the
semiparametric efficiency bound.
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Implementation in R

Recurrent events:

coxph(Surv(start, stop, status) ˜ covariates +
frailty(sid, dist = "gaussian"), ties = "breslow")

Multiple events:

coxph(Surv(time, status) ˜ covariates + strata(enum) +
frailty(sid, dist = "gaussian"), ties = "breslow")

Clustered data:

coxph(Surv(time, status) ˜ covariates +
frailty(cid, dist = "gaussian"), ties = "breslow")
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