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Course Logistics

Course website: https://yugu-stat.github.io/teaching/stat6018

Lectures:
Weeks 1–3
Mainly discuss papers by Lin–Zeng’s group
Attendance is required

Final presentation:
Week 4
Presentation (15 min) + Q&A (5 min)
Any statistical paper related to survival analysis
Please send me the paper you want to present via email (yugu@hku.hk)
for approval by Week 3.
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Censored Data

Univariate survival data: time to the occurrence of a given event/failure
Time to death
Time to the occurrence of a disease

Multivariate survival data: times to several events/failures
Recurrent events: repetitions of a phenomenon (e.g., illness)

I Tumor recurrences
I Infection episodes

Multiple types of events: combination of multiple types of phenomena
I Ordered events, such as HIV-infection → AIDS → death
I Unordered events, such as diseases in several organ systems (cardiovascular

disease, cancer, Alzheimer’s disease, etc.)
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Counting processes

Counting process is a continuous-time stochastic process {N(t) : t ≥ 0}
with N(0) = 0, whose sample paths are step functions with jumps of size
1 only.

In survival analysis without censoring, N(t) records the number of events
that have occurred by time t.

For univariate survival data, N(t) takes a single jump at the survival time.

For recurrent events data, N(t) takes jumps at all recurrent event times.
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Intensity function

Notation:
N∗(t): counting process recording the number of events by time t
X (t): potentially time-dependent covariates
Ft = {N∗(s),X (s) : 0 ≤ s ≤ t}: history up to time t
dN∗(t): increment of N∗ (i.e., number of events) over [t, t + dt)

Intensity function:

λ(t|X ) = lim
dt↓0

1
dt E{dN∗(t) | Ft−}

Cumulative intensity function:

Λ(t|X ) =
∫ t

0
λ(s|X )ds
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Proportional intensity model

Proportional intensity (PI) model:

Λ(t|X ) =
∫ t

0
Y ∗(s) exp

{
βTX (s)

}
dΛ(s)

Y ∗(t): indicator process
I Y ∗(t) = I(T ≥ t) for univariate survival data
I Y ∗(t) ≡ 1 for recurrent events data

Λ(t): unknown cumulative baseline intensity function
β: unknown regression parameters

A large-sample theory for this model based on maximum partial likelihood
estimation has been established via the counting-process martingale theory1.

1Andersen, P. K., & Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. The Annals of Statistics, 1100-1120.
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Discussion about PI model

For univariate survival data, the PI model reduces to the Cox proportional
hazards (PH) model.

The proportional hazards assumption may be violated in certain
applications, especially in long-term studies.

For example, the initial effect of a treatment may disappear with time,
such that the hazard ratio converges to 1 as t →∞.

A useful alternative is the proportional odds (PO) model2:

Pr(T ≤ t|X )
Pr(T > t|X ) = g(t) exp

{
βTX (t)

}
,

which constrains the hazard ratio to converge to 1 as t →∞.

2Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in medicine, 2(2), 273-277.
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Semiparametric transformation models

The PH/PI and PO models belong to the broad class of semiparametric
transformation models for general counting processes:

Λ(t|X ) = G
[∫ t

0
Y ∗(s) exp

{
βTX (s)

}
dΛ(s)

]
(1)

G(·): strictly increasing transformation function
I G(x) = x ⇒ PH/PI model
I G(x) = log(1 + x) ⇒ PO model

Λ(t): arbitrary increasing function
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Common choices of transformations

Box–Cox transformations:

G(x) = ρ−1 {(1 + x)ρ − 1} (ρ ≥ 0)

Logarithmic transformations:

G(x) = r−1 log(1 + rx) (r ≥ 0)

ρ = 1 or r = 0 ⇒ PH/PI model
ρ = 0 or r = 1 ⇒ PO model Figure 1: Plots of Λ(t|X = x)/Λ(t|X = 0)

against Λ(t) with eβ
Tx = 2
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Censored counting processes

Notation:
C : censoring time
N(t) = N∗(t ∧ C): counting process recording the number of events
observed by time t
Y (t) = Y ∗(t)I(C ≥ t): at-risk indicator process
τ : study end time

Independent censoring assumption: N∗(t) ⊥⊥ C conditional on X (t)

Observed data from n random samples:{
Ni (t),Yi (t),Xi (t) : t ∈ [0, τ ]

}
for i = 1, . . . , n
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Likelihood

Define λ(t) = Λ′(t). Under model (1), the intensity function for Ni (t) is

λ(t|Xi ) = Yi (t)eβ
TXi (t)λ(t)G ′

{∫ t

0
Yi (s)eβ

TXi (s)dΛ(s)
}
.

Thus, the likelihood function is

Ln(β,Λ) =
n∏

i=1

∏
t∈[0,τ ]

λ(t|Xi )dNi (t) exp {−Λ(τ |Xi )}

=
n∏

i=1

∏
t∈[0,τ ]

[
eβ

TXi (t)λ(t)G ′
{∫ t

0
Yi (s)eβ

TXi (s)dΛ(s)
}]dNi (t)

× exp
[
−G

{∫ τ

0
Yi (s)eβ

TXi (s)dΛ(s)
}]

.
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Likelihood (cont.)

And the log-likelihood function is

`n(β,Λ) =
n∑

i=1

(∫ τ

0

{
βTXi (t) + log λ(t)

}
dNi (t)

+
∫ τ

0
log G ′

{∫ t

0
Yi (s)eβ

TXi (s)dΛ(s)
}

dNi (t)

− G
{∫ τ

0
Yi (s)eβ

TXi (s)dΛ(s)
})

.

We maximize the log-likelihood over β and Λ.
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NPMLE
We adopt the nonparametric maximum likelihood estimation (NPMLE)
approach, where Λ is restricted to be a step function with non-negative
jumps at all the observed event times, denoted by t1 < t2 < · · · < tm.
The log-likelihood function under NPMLE becomes

`n(β,Λ) =
n∑

i=1

(∫ τ

0

{
βTXi (t) + log Λ{t}

}
dNi (t)

+
∫ τ

0
log G ′

{ ∑
k:tk≤t

eβ
TXi (tk )Λ{tk}

}
dNi (t)

− G
{ ∑

k:tk≤Ci

eβ
TXi (tk )Λ{tk}

})
,

where Λ{t} denotes the jump size of Λ at time t.
The estimators of β and Λ{tk} (k = 1, . . . ,m) are obtained via the
quasi-Newton method.
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Variance estimation

To estimate the limiting covariance function of
√

n(β̂ − β0, Λ̂− Λ0), it suffices
to obtain a variance estimator for the linear functional

√
n
∫ τ

0
w(t)d{Λ̂(t)− Λ0(t)}+

√
nbT(β̂ − β0),

where w(·) ∈ BV([0, τ ]) and b ∈ Rp.

We can treat β and Λ{tk}’s as the parameters and estimate their limiting
covariance matrix by the inverse of the observed information matrix nIn.

Since
√

n
∫ τ

0 w(t)d{Λ̂(t)− Λ0(t)}+
√

nbT(β̂ − β0) is linear with all parameter
estimates, its limiting variance V can be estimated by

V̂ =
(
W T bT) I−1

n

(
W
b

)
,

where W is the vector of w(·) evaluated at all observed event times.
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Asymptotic properties

Let (β̂, Λ̂) and (β0,Λ0) denote the nonparametric maximum likelihood
estimates and the true values of (β,Λ), respectively. We have:

Consistency: ‖β̂ − β0‖+ supt∈[0,τ ] |Λ̂− Λ0|
a.s.→ 0.

Asymptotic normality:
√

n(β̂ − β0, Λ̂− Λ0) converges weakly to a mean-zero
Gaussian process.

Semiparametric efficiency: The limiting covariance matrix of β̂ attains the
semiparametric efficiency bound.

Consistency of variance estimators: V̂ a.s.→ V .
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Motivation

Recall the proportional intensity model for recurrent events

λ(t|X ) = λ(t) exp
{
βTX (t)

}
Under the above model, the occurrence of an event is independent of any
earlier events of the same subjects, which may not hold true in practice.

For example, people who had a previous COVID-19 infection tend to have
a lower risk of reinfection, while people who develop tumors more quickly
than others tend to experience tumor recurrence more quickly.

We could let X (t) include the past event history, but this is not ideal
since modeling the within-subject correlation through time-dependent
covariates is very difficult.
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PI model with frailty

A useful approach to accommodating the dependence of the recurrent
event times within the same subject is to incorporate a random effect (or
frailty) into the model:

λ(t|X ) = ξλ(t) exp
{
βTX (t)

}
The frailty ξ may capture the within-subject correlation and is usually
assumed to follow the Gamma distribution.

However, gamma frailty induces a very restrictive form of dependence.
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Transformation models with random effects

We specify that the cumulative intensity function of N∗(t) takes the form

Λ(t|X ,Z , b) = G
[∫ t

0
exp

{
βTX (s) + bTZ (s)

}
dΛ(s)

]

b: subject-specific random effects with mean 0 and density function
φ(b; γ), used to capture the within-subject correlation
X (t) and Z (t): potentially time-dependent covariates, may include
covariates derived from the event history before time t
b is usually assumed to follow a mean-zero multivariate normal
distribution.
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Recurrent events data

Observed data from n random samples:{
Ni (t),Yi (t),Xi (t),Zi (t) : t ∈ [0, τ ]

}
for i = 1, . . . , n

Ni (t) = N∗i (t ∧ Ci )
Yi (t) = I(Ci ≥ t)

Independent censoring assumption: The conditional density of C at t given
{N∗(s),X (s),Z (s) : s ∈ [0, τ ]} and b depends only on {X (s),Z (s) : s ≤ t}
and is noninformative about (β, γ,Λ).

Noninformative covariate processes assumption: The conditional
distribution of {X (t),Z (t)} given {N(s),Y (s),X (s),Z (s) : s < t} is
noninformative about (β, γ,Λ).
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Likelihood and NPMLE

Let θ = (βT, γT)T. The likelihood function under the preceding two
assumptions is

Ln(θ,Λ) =
n∏

i=1

∫
bi

∏
t∈[0,τ ]

[
λ(t)eβ

TXi (t)+bT
i Zi (t)G ′

{∫ t

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]dNi (t)

× exp
[
−G
{∫ τ

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]
φ(bi ; γ)dbi

NPMLE: Λ is treated as a step function with non-negative jumps at all the
observed event times.
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EM algorithm

The estimators can be computed via an EM algorithm, treating the random
effects bi as missing data.

The complete-data log-likelihood function is

`c(θ,Λ) =
n∑

i=1

(∫ τ

0

{
βTXi (t) + bT

i Zi (t) + log Λ{t}
}

dNi (t)

+
∫ τ

0
log G ′

{∫ t

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}
dNi (t)

− G
{∫ τ

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}
+ log φ(bi ; γ)

)
.
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E-step

Let Ê (·) denote the conditional expectation given the observed data.

In the E-step, we compute Ê{H(bi )} for some function H(·) based on the
posterior density of bi , which is proportional to

n∏
i=1

∏
t∈[0,τ ]

[
λ(t)eβ

TXi (t)+bT
i Zi (t)G ′

{∫ t

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]dNi (t)

× exp
[
−G

{∫ τ

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]
φ(bi ; γ)

The integral over bi in Ê{H(bi )} can be approximated by Gauss–Hermite
quadrature.
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M-step

In the M-step, we maximize the objective function

M(θ,Λ) =
n∑

i=1

(∫ τ

0

{
βTXi (t) + log Λ{t}

}
dNi (t)

+
∫ τ

0
Ê
[
bT

i Zi (t) + log G ′
{∫ t

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]
dNi (t)

− Ê
[
G
{∫ τ

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dΛ(s)

}]
+ Ê {log φ(bi ; γ)}

)
.

We update γ by maximizing
∑n

i=1 Ê {log φ(bi ; γ)}.
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M-step (cont.)

To update β and Λ, define F (t) = Λ(t)/Λ(τ). We expand β to [log Λ(τ), β]
and expand Xi (t) to [1,Xi (t)]. For simplicity, we still denote the expanded
terms by β and Xi (t).

Then the objective function to be maximized is equivalent to

M̃(β,F ) =
n∑

i=1

(∫ τ

0

{
βTXi (t) + log F{t}

}
dNi (t)

+
∫ τ

0
Ê
[
bT

i Zi (t) + log G ′
{∫ t

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dF (s)

}]
dNi (t)

− Ê
[
G
{∫ τ

0
Yi (s)eβ

TXi (s)+bT
i Zi (s)dF (s)

}])
,

with the constraint that
∑n

i=1
∫ τ

0 F{t}dNi (t) = 1 (by NPMLE).
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M-step (cont.)
Notation:

Tij : jth event time of the ith subject (i = 1, . . . , n and j = 1, . . . , ni )
t1 < t2 < · · · < tm: sorted sequence of all distinct values of Tij

fk = F{tk}, for k = 1, . . . ,m
µ: Lagrange multiplier

The objective function can be written as

M̃(β,F ) =
m∑

k=1

log(fk ) +
n∑

i=1

(
ni∑

j=1

βTXi (Tij )

+
ni∑

j=1

Ê

bT
i Zi (Tij ) + log G ′

 ∑
k:tk≤Tij

eβ
TXi (tk )+bT

i Zi (tk )fk




− Ê

[
G

{ ∑
k:tk≤Ci

eβ
TXi (tk )+bT

i Zi (tk )fk

}])
− µ

(
m∑

k=1

fk − 1

)
.
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M-step (cont.)
We then solve the score equations for β and (f1, . . . , fm):

0 =
n∑

i=1

(
ni∑

j=1

Xi (Tij )

+
ni∑

j=1

Ê
[G ′′{

∑
k:tk≤Tij

eβ
TXi (tk )+bT

i Zi (tk )fk}

G ′{
∑

k:tk≤Tij
eβTXi (tk )+bT

i Zi (tk )fk}
×
∑

k:tk≤Tij

eβ
TXi (tk )+bT

i Zi (tk )Xi (tk )fk

]

− Ê
[

G ′
{ ∑

k:tk≤Ci

eβ
TXi (tk )+bT

i Zi (tk )fk

}
×
∑

k:tk≤Ci

eβ
TXi (tk )+bT

i Zi (tk )Xi (tk )fk

])
.

and

µ = 1
fk

+
n∑

i=1

(
ni∑

j=1

Ê
[G ′′{

∑
l :tl≤Tij

eβ
TXi (tl )+bT

i Zi (tl )fl}

G ′{
∑

l :tl≤Tij
eβTXi (tl )+bT

i Zi (tl )fl}
× I(tk ≤ Tij )eβ

TXi (tk )+bT
i Zi (tk )

]

− Ê
[

G ′
{∑

l :tl≤Ci

eβ
TXi (tl )+bT

i Zi (tl )fl

}
× I(tk ≤ Ci )eβ

TXi (tk )+bT
i Zi (tk )

])
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Recursive formula

When X (t) and Z (t) are both time-independent, it is easy to observe that the
second equation provides a recursive formula for calculating (f1, . . . , fm):

1
fk+1

= 1
fk

+
n∑

i=1

(
ni∑

j=1

Ê
[

G ′′{eβ
TXi +bT

i Zi F (tk )}
G ′{eβTXi +bT

i Zi F (tk )}
× I(Tij = tk )eβ

TXi +bT
i Zi

]

− Ê
[

G ′
{

eβ
TXi +bT

i Zi F (tk )
}
× I(tk ≤ Ci < tk+1)eβ

TXi +bT
i Zi

])

Write fk as fk(f1, β). We can solve (f1, β) via the Newton-Raphson method,
where the derivatives of fk w.r.t. f1 and β are calculated based on the above
recursive formula, with initial values ∂f1/∂f1 = 1 and ∂f1/∂β = 0.

This addresses the issue of high-dimensional parameters in NPMLE.
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Variance estimation

As in the previous paper, the limiting variances of (β̂, Λ̂) can be consistently
estimated by the inverse of the observed information matrix nIn.

By Louis’ formula3, nIn can be calculated within the EM algorithm by

−
n∑

i=1
Ê
{
∇2`i (bi ; θ,Λ)

}
−

n∑
i=1

[
Ê
{
∇`i (bi ; θ,Λ)⊗2}− Ê {∇`i (bi ; θ,Λ)}⊗2

]
,

where `i is the ith subject’s contribution to the complete-data log-likelihood
function, and ∇`i denotes the gradient of `i w.r.t. β and Λ{tk}’s.

3Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 44(2), 226-233.
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Asymptotic properties under known G

Let (θ̂, Λ̂) and (θ0,Λ0) denote the nonparametric maximum likelihood
estimates and the true values of (θ,Λ), respectively.

When the transformation G(·) is completely specified, we have:

Consistency: ‖θ̂ − θ0‖+ supt∈[0,τ ] |Λ̂− Λ0|
a.s.→ 0.

Asymptotic normality:
√

n(θ̂ − θ0, Λ̂− Λ0) converges weakly to a mean-zero
Gaussian process.

Semiparametric efficiency: The limiting covariance matrix of θ̂ attains the
semiparametric efficiency bound.
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Asymptotic properties under unknown G

When the transformation G(·) belongs to a one-parameter family
{Gη : η ∈ (a0, b0)}, η is another unknown parameter.

Write θ = (βT, γT, η)T. With some additional conditions, all the
asymptotic properties on the previous slide still hold.

I Linear independence of covariates at time 0
I Smoothness conditions for Gη w.r.t. η

The Box–Cox and logarithmic transformations introduced before satisfy
those additional conditions, so their parameters (ρ or r) can also be
estimated from the data.
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Motivation

In practice, recurrent event times are subject to censoring. Most of the
existing methods require independent censoring.

This is OK if censoring is caused by the end of the study or random loss
to follow-up.

In many medical studies, however, recurrent events may be terminated by
the subject’s withdrawal from the study due to deteriorating health or the
subject’s death.

In those cases, the censoring time is likely correlated with the recurrent
event times, and existing methods may yield misleading results.

To address the dependent censoring issue, we consider joint analysis of
recurrent and terminal evnets through shared random effects models.
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Joint transformation models

Submodel for recurrent event process N∗(t):

ΛR(t|X ,Z , b) = H
[∫ t

0
exp

{
αTX (s) + bTZ (s)

}
dA(s)

]

Submodel for terminal event time T :

ΛT (t|X ,Z , b) = G
[∫ t

0
exp

{
βTX (s) + bT(γ ◦ Z (s)

)}
dΛ(s)

]
H(·) and G(·): transformation functions
α, β, and γ: unknown regression parameters
X (t) and Z (t): potentially time-dependent covariates, Z (t) contains 1
γ ◦ Z (s): component-wise product of γ and Z (s)
b: shared random effects, with mean 0 and density function φ(b; η)

39 / 62



Joint transformation models (cont.)

Submodel for recurrent event process N∗(t):

ΛR(t|X ,Z , b) = H
[∫ t

0
exp

{
αTX (s) + bTZ (s)

}
dA(s)

]

Submodel for terminal event time T :

ΛT (t|X ,Z , b) = G
[∫ t

0
exp

{
βTX (s) + bT(γ ◦ Z (s)

)}
dΛ(s)

]
The variance of b characterizes the dependence among recurrent event
times.
γ characterizes the dependence between recurrent and terminal events
attributed to the unobserved random effects. γ = 0 implies that the
dependence can be fully explained by the covariates.
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Data and assumption

Data: {Yi ,∆i ,N∗i (t),Xi (t),Zi (t) : t ≤ Yi} (i = 1, . . . , n)
Yi = min(Ti ,Ci )
∆i = I(Ti ≤ Ci )
Ci : censoring time

Independent censoring assumption: Ci ⊥⊥ (N∗i ,Ti , bi ) conditional on the
covariates Xi and Zi

Conditional independence: N∗i ⊥⊥ Ti conditional on bi , Xi , and Zi
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Likelihood

Let a(t) = A′(t), λ(t) = Λ′(t), and Ri (t) = I(Yi ≥ t). The observed-data
likelihood function concerning (α, β, γ, η,A,Λ) is

n∏
i=1

∫
bi

[∏
t

{
a(t)eα

TXi (t)+bT
i Zi (t)H ′

(∫ t

0
eα

TXi (s)+bT
i Zi (s)dA(s)

)}Ri (t)dN∗
i (t)

× exp
{
−H
(∫ Yi

0
eα

TXi (t)+bT
i Zi (t)dA(t)

)}]

×

[{
λ (Yi ) eβ

TXi (Yi )+bT
i (γ◦Zi (Yi ))G ′

(∫ Yi

0
eβ

TXi (t)+bT
i (γ◦Zi (t))dΛ(t)

)}∆i

× exp
{
−G
(∫ Yi

0
eβ

TXi (t)+bT
i (γ◦Zi (t))dΛ(t)

)}]
φ(bi ; η)dbi
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NPMLE
We consider A as a step function with jumps only at the observed recurrent
event times, and consider Λ as a step function with jumps only at the observed
terminal event times.
Thus, we maximize the following modified log-likelihood function over
(α, β, γ, η) and the jump sizes of A and Λ:

n∑
i=1

log
∫

bi

[∏
t

{
A{t}eα

TXi (t)+bT
i Zi (t)H ′

(∫ t

0
eα

TXi (s)+bT
i Zi (s)dA(s)

)}Ri (t)dN∗
i (t)

× exp
{
−H
(∫ Yi

0
eα

TXi (t)+bT
i Zi (t)dA(t)

)}]

×

[{
Λ {Yi} eβ

TXi (Yi )+bT
i (γ◦Zi (Yi ))G ′

(∫ Yi

0
eβ

TXi (t)+bT
i (γ◦Zi (t))dΛ(t)

)}∆i

× exp
{
−G
(∫ Yi

0
eβ

TXi (t)+bT
i (γ◦Zi (t))dΛ(t)

)}]
φ(bi ; η)dbi
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Computing algorithm

We may use quasi-Newton or other optimization algorithms to obtain the
NPMLEs.

Alternatively, we can use an EM algorithm for computation, with the
subject-specific random effects bi treated as missing data.

In the M-step, the maximization is taken over only a small set of
parameters, thanks to some recursive formulae among the jump sizes of A
and Λ.
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Asymptotic properties

Let θ = (αT, βT, γT, ηT)T denote the set of all finite-dimensional parameters.
We have:

Consistency: ‖θ̂ − θ0‖+ supt∈[0,τ ] |Â− A0|+ supt∈[0,τ ] |Λ̂− Λ0|
a.s.→ 0.

Asymptotic normality:
√

n(θ̂ − θ0, Â− A0, Λ̂− Λ0) converges weakly to a
mean-zero Gaussian process.

Semiparametric efficiency: The limiting covariance matrix of θ̂ attains the
semiparametric efficiency bound.

The limiting variances and covariances can be consistently estimated by
inverting the observed information matrix for all parameters, including θ and
the jump sizes of A and Λ. The observed information matrix can be calculated
by Louis’ formula.
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Multivariate failure time data

Multivariate failure time data arise when each study subject can
experience several events.

It is interesting to determine risk factors that are predictive for some or all
of the failures.

For example, in COVID-19 vaccine trials, investigators want to access the
efficacy of a vaccine against infection, hospitalization, and death.

Like recurrent events data, multivariate failure times from the same
subject are potentially correlated. Ignoring such correlation may lead to
biased inference.
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Gamma frailty transformation models

Let Tk denote the failure time of the kth event type (k = 1, . . . ,K ). We
specify the following gamma frailty transformation model:

Λk(t|X , ξ) = ξGk

{
Λk(t)eβ

T
k X
}

(2)

ξ ∼ Gamma(γ−1, γ): captures the within-subject correlation
Gk(·): type-specific transformation function
Λk(t): unspecified type-specific increasing function
βk : type-specific regression parameters
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Gamma frailty transformation models (cont.)

Under model (2), the marginal cumulative hazard function for Tk is

ΛTk (t) = γ−1 log
[
1 + γGk

{
Λk(t)eβ

T
k X
}]

The above marginal distribution is equivalent to another linear
transformation model:

log Λk(Tk) = −βT
k X + εk ,

with εk following the distribution log G−1
k [γ−1{Unif(0, 1)−γ − 1}].

The dependence among failure times can be evaluated through γ. We
allow γ = 0, which corresponds to the scenario with independent failure
times.
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Reparameterization

Let τ denote the study end time. We define Fk(t) = Λk(t)/Λk(τ) and
αk = log Λk(τ). Model (2) can be rewritten as

Λk(t|X , ξ) = ξGk

{
Fk(t)eαk +βT

k X
}

(3)

Clearly, Fk(·) is a distribution function in [0, τ ], with Fk(0) = 0 and Fk(τ) = 1.

Under some mild conditions on the true parameter values, the transformation
functions, and the censoring distributions, all the parameters, including
(αk , βk ,Fk) (k = 1, . . . ,K ) and γ, are identifiable.
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Data and likelihood

Data: {Yik ,∆ik ,Xi : i = 1, . . . , n and k = 1, . . . ,K}
Yik = min(Tik ,Cik)
∆ik = I(Tik ≤ Cik)
Cik : censoring time for the kth event type of the ith subject

Independent censoring assumption: Cik ⊥⊥ (Tik , ξi ) given Xi

Likelihood function:

Ln(α, β, γ,F ) =
n∏

i=1

K∏
k=1

[
G ′k{Fk(Yik)eαk +βT

k Xi}F ′k(Yik)eαk +βT
k Xi
]∆ik

×
∫
ξi

ξ

∑K
k=1

∆ik

i exp
[
−ξi

K∑
k=1

Gk{Fk(Yik)eαk +βT
k Xi}

]
g(ξi ; γ)dξi ,

where g(ξ; γ) is the density of Gamma(γ−1, γ).
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NPMLE

We treat Fk as a discrete distribution function with positive jumps at all Yik
with ∆ik = 1.

Then the log-likelihood function is

`n(α, β, γ,F ) =
n∑

i=1

K∑
k=1

∆ik

[
log G ′k

{
Fk (Yik ) eαk +βT

k Xi
}

+ log Fk {Yik}+ αk + βT
k Xi

]
+

n∑
i=1

log
∫
ξi

ξ

∑K
k=1

∆ik
i exp

(
−ξi

[
K∑

k=1

Gk

{
Fk (Yik ) eαk +βT

k Xi
}])

g(ξi ; γ)dξi

We maximize the log-likelihood over αk , βk , γ, and the jump sizes of Fk ,
under the constraint that the sum of all jumps of Fk equals 1.
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EM algorithm

The maximization can be solved via an EM algorithm, with gamma frailties ξi
treated as missing data.

The complete-data log-likelihood function is

n∑
i=1

K∑
k=1

∆ik

[
log G ′k

{
Fk (Yik) eαk +βT

k Xi
}

+ log Fk {Yik}+ αk + βT
k Xi + log ξi

]
−

n∑
i=1

ξi

K∑
k=1

Gk

{
Fk (Yik) eαk +βT

k Xi
}

+
n∑

i=1
log g(ξi ; γ)
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E-step

In the E-step, we evaluate the conditional expectation of some function H(ξi )
given the observed data.

The conditional density of ξi given the observed data is proportional to

ξ

∑K
k=1

∆ik

i exp
[
−ξi

K∑
k=1

Gk{Fk(Yik)eαk +βT
k Xi}

]
g(ξi ; γ)

∼ Gamma
(
γ−1 +

K∑
k=1

∆ik ,

[
γ−1 +

K∑
k=1

Gk{Fk(Yik)eαk +βT
k Xi}

]−1
)

The integral over ξi can be calculated analytically or by a Laplace
approximation.
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M-step

Notation:
t1k < t2k < · · · < tmk ,k : sorted sequence of all Yik with ∆ik = 1
flk = Fk{tlk}, for k = 1, . . . ,K and l = 1, . . . ,mk

In the M-step, we maximize the following objective function:

M(α, β, γ,F ) =
n∑

i=1

K∑
k=1

∆ik

[
log G ′k

{ ∑
l :tlk≤Yik

flk (Yik ) eαk +βT
k Xi

}
+ log

∑
l :tlk≤Yik

flk

+ αk + βT
k Xi + Ê (log ξi )

]
−

n∑
i=1

Ê (ξi )
K∑

k=1

Gk

{ ∑
l :tlk≤Yik

flkeαk +βT
k Xi

}

− n log γ1/γΓ(γ−1) + (γ−1 − 1)
n∑

i=1

Ê (log ξi )− γ−1
n∑

i=1

Ê (ξi )

under the constraint
∑mk

l=1 flk = 1, for k = 1, . . . ,K .
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M-step (cont.)
The score equation for flk is

1
flk

= −
n∑

i=1
I(Yik ≥ tlk)∆ik

G ′′k
{

Fk (Yik) eαk +βT
k Xi
}

G ′k
{

Fk (Yik) eαk +βT
k Xi
} eαk +βT

k Xi

+
n∑

i=1
I(Yik ≥ tlk)Ê (ξi ) G ′k

{
Fk (Yik) eαk +βT

k Xi
}

eαk +βT
k Xi + µk ,

where µk is the Lagrange multiplier.

This yields a recursive formula

1
fl+1,k

= 1
flk

+
n∑

i=1
I(tlk ≤ Yik < tl+1,k)∆ik

G ′′k
{

Fk (Yik) eαk +βT
k Xi
}

G ′k
{

Fk (Yik) eαk +βT
k Xi
} eαk +βT

k Xi

−
n∑

i=1
I(tlk ≤ Yik < tl+1,k)Ê (ξi ) G ′k

{
Fk (Yik) eαk +βT

k Xi
}

eαk +βT
k Xi
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M-step (cont.)

Similar to Zeng & Lin (2007, JASA), we can then treat (αk , βk , f1k)
(k = 1, . . . ,K ) and γ as the parameters to be updated in the M-step, since all
other flk can be expressed as a function of these parameters.

This way, the maximization is carried out over only a small set of parameters,
such that the EM algorithm is immune to the high-dimensional parameters in
NPMLE.
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M-step (cont.)
We can update (αk , βk , f1k) (k = 1, . . . ,K ) and γ via the one-step
Newton-Raphson method. The equations to be solved are

0 =
n∑

i=1

∆ik

G ′′k
{

Fk (Yik ) eαk +βT
k Xi
}

G ′k
{

Fk (Yik ) eαk +βT
k Xi
} Fk (Yik ) eαk +βT

k Xi + 1

(1,X T
i
)T

−
n∑

i=1

Ê (ξi ) G ′k
{

Fk (Yik ) eαk +βT
k Xi
}

Fk (Yik ) eαk +βT
k Xi
(

1,X T
i
)T
,

mk∑
l=1

flk = 1,

for k = 1, . . . ,K , and

n
γ2 log γ − n

γ2 + n Γ′(γ−1)
γ2Γ(γ−1) −

1
γ2

n∑
i=1

Ê (log ξi ) + 1
γ2

n∑
i=1

Ê (ξi ) = 0.

Note that flk is now a function of (αk , βk , f1k), and the derivatives can be
calculated based on the recursive formula.
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Boundary issue

One limitation of this EM algorithm is that the estimate of γ must be
positive.

However, when γ = 0 (i.e., no correlation among all event types), the
MLE of γ can be 0 or even negative. The EM algorithm is not applicable
due to an improper density of ξi .

In that case, we estimate the other parameters using the same EM
algorithm while fixing γ = 0 and Ê (ξi ) = 1.

We then compare the observed-data likelihoods with and without the
constraint γ = 0. The estimates with a larger observed-data likelihood
will be treated as the final estimates.
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Asymptotic properties

Consistency:

K∑
k=1

(
|α̂k − α0k |+ |β̂k − β0k |

)
+ |γ̂ − γ0|+

K∑
k=1

sup
t∈[0,τ ]

|F̂k − F0k |
a.s.→ 0

Asymptotic normality:
√

n(β̂k − β0k , γ̂ − γ0, Λ̂k − Λ0k)k=1,...,K converges
weakly to a mean-zero Gaussian process.

Semiparametric efficiency: The limiting covariances of β̂k (k = 1, . . . ,K )
and γ̂ attains the semiparametric efficiency bound.

The limiting covariance for (α̂k , β̂k , F̂k) (k = 1, . . . ,K ) and γ̂ can be
consistently estimated based on the inverse of the observed information matrix
(treating the jump sizes of Fk as usual parameters) and the delta method.
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Concluding remarks

All these papers are rediscussed in Zeng & Lin (2007)4. Their likelihood
functions can be written in a generic form

Ln(θ,A) =
n∏

i=1

K∏
k=1

nik∏
l=1

∏
t6τ

λk(t)dNikl (t)Ψ (Oi ; θ,A)

A general asymptotic theory has been established in Zeng & Lin (2010)5.

To prove the asymptotic properties for each specific problem, we only
need to check the regularity conditions of the general theory.

4Zeng, D., & Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 69(4), 507-564

5Zeng, D., & Lin, D. Y. (2010). A general asymptotic theory for maximum likelihood estimation in semiparametric regression models with
censored data. Statistica Sinica, 20(2), 871.
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