STAT6018 Research Frontiers in Data Science Topic I: Statistical methods for analyzing complex survival data

Yu Gu, PhD Assistant Professor

Department of Statistics & Actuarial Science The University of Hong Kong

<ロト</td>
 < 目ト</td>
 目
 < 目</td>
 < 回</td>
 < 回</td>
 < 1/59</td>

Table of Contents

Chapter 2: Semiparametric regression analysis of interval-censored data

- Transformation models for interval-censored data
- Transformation models for multivariate interval-censored data
- Marginal models for multivariate interval-censored data
- Semiparametric regression models for panel count data

Table of Contents

Chapter 2: Semiparametric regression analysis of interval-censored data

- Transformation models for interval-censored data
- Transformation models for multivariate interval-censored data
- Marginal models for multivariate interval-censored data
- Semiparametric regression models for panel count data

Reference

Zeng, D., Mao, L., & Lin, D. Y. (2016). Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika, 103(2), 253-271.

Interval-censored data

- Interval-censored data arise when the failure time is only known to lie within a broad time interval.
- Commonly encountered when the disease onset can only be ascertained through a small number of examinations.
 - HIV infection: periodic blood tests
 - Alzheimer's disease onset: periodic cognitive tests
 - Tumor occurrence: biopsies at periodic clinical visits
- Types of interval-censored data:
 - Case 1: only one examination time per subject, aka current status data
 - ► Case k (k ≥ 2): k examination times per subject¹
 - Mixed case: number of examination times varies among subjects

• Theoretical and computational challenges: no exact failure time

¹ Huang, J., & Wellner, J. A. (1997). Interval censored survival data: a review of recent progress. In Proceedings of the first Seattle symposium in biostatistics: survival analysis (pp. 123-169). New York, NY: Springer US.

Transformation models

Notation:

- T: failure time
- X(t): potentially time-dependent covariates
- $\Lambda(t|X)$: conditional cumulative hazard function for T given $X(\cdot)$

Semiparametric transformation model:

$$\Lambda(t|X) = G\left[\int_0^t \exp\left\{\beta^\mathsf{T} X(s)\right\} d\Lambda(s)\right]$$

- $G(\cdot)$: strictly increasing transformation function
 - $G(x) = x \Rightarrow$ proportional hazards model
 - $G(x) = \log(1 + x) \Rightarrow$ proportional odds model
- β : unknown regression parameters
- $\Lambda(\cdot)$: unknown increasing function

Frailty-induced transformations

Log-Laplace transform:

$$G(x) = -\log \int_0^\infty e^{-x\xi} f(\xi) d\xi$$

- ξ : frailty variable with support $[0,\infty)$
- $f(\xi)$: density function of ξ
 - ► Gamma density with mean 1 and variance $r \Rightarrow$ logarithmic transformations $G(x) = r^{-1} \log(1 + rx) \ (r \ge 0)$
 - Positive stable distribution with parameter ρ < 1 ⇒ Box-Cox transformations G(x) = {(1 + x)^ρ − 1}/ρ

Data

Raw data:

- Examination times: $U = (0 = U_0, U_1, \dots, U_M, U_{M+1} = \infty)$
- Event statuses: $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_M)$, with $\Delta_l = l(U_l < T \le U_{l+1})$
- Covariates: X(t)

Independent censoring assumption: $(U, M) \perp T$ conditional on X(t)

Simplified data: (L, R, X)

- $L = \max\{U_I : U_I < T\}$ and $R = \min\{U_I : U_I \ge T\}$
- $L = 0 \Rightarrow$ left censoring
- $R = \infty \Rightarrow$ right censoring

Data from *n* independent samples: $\{O_i = (L_i, R_i, X_i) : i = 1, ..., n\}$

Likelihood

Observed-data likelihood:

$$L_n(\beta,\Lambda) = \prod_{i=1}^n \left(\exp\left[-G\left\{ \int_0^{L_i} e^{\beta^{\mathsf{T}} X_i(s)} d\Lambda(s) \right\} \right] - \exp\left[-G\left\{ \int_0^{R_i} e^{\beta^{\mathsf{T}} X_i(s)} d\Lambda(s) \right\} \right] \right)$$

NPMLE:

$$\widetilde{L}_{n}(\beta,\Lambda) = \prod_{i=1}^{n} \left[\exp\left\{ -G\left(\sum_{t_{i} \leq L_{i}} \lambda_{i} e^{\beta^{\mathsf{T}} X_{ij}}\right) \right\} - I(R_{i} < \infty) \exp\left\{ -G\left(\sum_{t_{i} \leq R_{i}} \lambda_{i} e^{\beta^{\mathsf{T}} X_{ij}}\right) \right\} \right]$$

• $t_1 < \cdots < t_m$: distinct values of all $L_i > 0$ and $R_i < \infty$ $(i = 1, \dots, n)$ • λ_l : jump size of Λ at t_l $(l = 1, \dots, m)$ • $X_{il} = X_i(t_l)$

Poisson data augmentation

• Consider the class of frailty-induced transformations, $\widetilde{L}_n(\beta, \Lambda)$ can be written as

$$\prod_{i=1}^{n} \int_{\xi_{i}} \underbrace{\exp\left(-\xi_{i} \sum_{t_{l} \leq L_{i}} \lambda_{l} e^{\beta^{\mathsf{T}} X_{il}}\right) \left\{1 - \exp\left(-\xi_{i} \sum_{L_{i} < t_{l} \leq R_{i}} \lambda_{l} e^{\beta^{\mathsf{T}} X_{il}}\right)\right\}^{l(R_{i} < \infty)}}_{\rho(\mathcal{O}_{i}|\xi_{i})} f\left(\xi_{i}\right) d\xi_{i}$$

- Direct maximization of $\widetilde{L}_n(\beta, \Lambda)$ over β and λ_I is difficult.
 - Lack of analytical expressions for λ_l
 - Many λ_l are zero and lie on the boundary of the parameter space
- We introduce latent variables $W_{il} \stackrel{\text{ind}}{\sim} \text{Poisson}(\xi_i \lambda_l e^{\beta^T X_{il}})$. Then $p(\mathcal{O}_i | \xi_i)$ is equivalent to the probability of the event

$$\widetilde{\mathcal{O}}_i = \left(\sum_{t_l \leq L_i} W_{il} = 0\right) \quad \bigcap \quad \left(\sum_{L_i < t_l \leq R_i} W_{il} > 0\right)^{I(R_i < \infty)}$$

・ロ・・ 白・・ ヨ・・ ヨ・ りゃぐ

10/59

EM algorithm

- Therefore, maximizing *L̃_n*(β, Λ) is equivalent to maximizing the likelihood based on *Õ_i* (*i* = 1,..., *n*).
- The maximization can be solved via an EM algorithm, treating ξ_i and W_{il} as missing data.
- Define $R_i^* = L_i I(R_i = \infty) + R_i I(R_i < \infty)$. The complete-data log-likelihood is

$$\sum_{i=1}^{n} \left[\sum_{l=1}^{m} I\left(t_{l} \leq R_{i}^{*}\right) \left\{ W_{il} \log(\xi_{i} \lambda_{l} e^{\beta^{\mathsf{T}} X_{il}}) - \xi_{i} \lambda_{l} e^{\beta^{\mathsf{T}} X_{il}} - \log W_{il}! \right\} + \log f\left(\xi_{i}\right) \right]$$

E-step

- In the E-step, we evaluate the posterior means $\widehat{E}(\xi_i)$ and $\widehat{E}(W_{il})$.
- The posterior density of ξ_i is proportional to $p(\mathcal{O}_i|\xi_i)f(\xi_i)$. Simple algebra yields

$$\widehat{E}(\xi_{i}) = \frac{\exp\{-G(S_{i1})\} G'(S_{i1}) - I(R_{i} < \infty) \exp\{-G(S_{i2})\} G'(S_{i2})}{\exp\{-G(S_{i1})\} - I(R_{i} < \infty) \exp\{-G(S_{i2})\}},$$

where $S_{i1} = \sum_{t_i \leq L_i} \lambda_i e^{\beta^\top X_{ii}}$ and $S_{i2} = \sum_{t_i \leq R_i} \lambda_i e^{\beta^\top X_{ii}}$.

E-step (cont.)

۲

• Clearly,
$$\widehat{E}(W_{il}) = 0$$
 if $t_l \leq L_i$.

For
$$L_i < t_l \le R_i$$
 with $R_i < \infty$,

$$\widehat{E}(W_{il}) = E_{\xi_i} \left\{ E(W_{il} | \widetilde{\mathcal{O}}_i, \xi_i) | \widetilde{\mathcal{O}}_i \right\}$$

$$= E_{\xi_i} \left\{ E\left(W_{il} | \sum_{L_i < t_{i'} \le R_i} W_{il'} > 0, \xi_i\right) | \mathcal{O}_i \right\}$$

$$= \widehat{E} \left[\frac{\xi_i \lambda_l e^{\beta^T X_{il}}}{1 - \exp\left\{-\xi_i (S_{i2} - S_{i1})\right\}} \right]$$

• The integral over ξ_i can be approximated by Gaussian–Laguerre quadrature.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

M-step

• In the M-step, we first update λ_l by

$$\lambda_{I} = \frac{\sum_{i=1}^{n} I(t_{i} \leq R_{i}^{*}) \widehat{E}(W_{il})}{\sum_{i=1}^{n} I(t_{i} \leq R_{i}^{*}) \widehat{E}(\xi_{i}) e^{\beta^{\mathsf{T}} X_{il}}}, \quad \text{ for } I = 1, \dots, m$$

• After plugging the above λ_l into the conditional expectation of the complete-data log-likelihood, we can then update β by solving the equation

$$\sum_{i=1}^{n}\sum_{l=1}^{m}I(t_{l}\leq R_{i}^{*})\widehat{E}(W_{il})\left\{X_{il}-\frac{\sum_{j=1}^{n}I(t_{l}\leq R_{j}^{*})\widehat{E}(\xi_{j})e^{\beta^{\mathsf{T}}X_{jl}}}{\sum_{j=1}^{n}I(t_{l}\leq R_{j}^{*})\widehat{E}(\xi_{j})e^{\beta^{\mathsf{T}}X_{jl}}}\right\},$$

which can be solved using the one-step Newton-Raphson method.

Remarks

- By introducing Poisson variables, we turn the original nonconcave likelihood function to a weighted sum of Poisson log-likelihood functions, which is strictly concave.
- In the M-step, the high-dimensional parameters λ_l (l = 1,..., m) have closed-form solutions. This avoids the inversion of any large Hessian matrices.
- The observed-data likelihood is guaranteed to increase after each iteration of the EM algorithm.

Variance estimation

- We use profile likelihood² to estimate the covariance matrix of $\hat{\beta}$.
- Define the profile likelihood as

$$\mathsf{pl}_n(\beta) = \max_{\Lambda} \log L_n(\beta, \Lambda),$$

which can be computed using the same EM algorithm but with fixed β .

 $\bullet\,$ The covariance matrix of $\widehat{\beta}$ can be estimated by

$$\widehat{V} = -\left[\left\{\frac{\mathsf{pl}_n(\widehat{\beta}) - \mathsf{pl}_n(\widehat{\beta} + h_n e_j) - \mathsf{pl}_n(\widehat{\beta} + h_n e_k) + \mathsf{pl}_n(\widehat{\beta} + h_n e_j + h_n e_k)}{h_n^2}\right\}_{(j,k)}\right]^{-1}$$

where e_i is the *j*th canonical vector and h_n is a constant of order $n^{-1/2}$.

² Murphy, S. A., & Van der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465. 🔗 🔍 🗠

Asymptotic theory

Consistency:

$$\|\widehat{\beta} - \beta_0\| + \sup_{t \in [0,\tau]} |\widehat{\Lambda}(t) - \Lambda_0(t)| \stackrel{a.s.}{\rightarrow} 0$$

Asymptotic normality & semiparametric efficiency:

$$\sqrt{n}(\widehat{\beta}-\beta_0)\stackrel{d}{\rightarrow} N(0,\widetilde{\mathcal{I}}_0^{-1}),$$

where $\widetilde{\mathcal{I}}_0$ is the efficient information matrix of β .

Consistency of variance estimator: $\|n\widehat{V} - \widetilde{\mathcal{I}}_0^{-1}\|_2 = o_p(1).$

Mixed rate of convergence:

$$E\left[\sum_{l=1}^{M}\left\{\int_{0}^{U_{l}}e^{\widehat{\beta}^{\mathsf{T}}X(s)}d\widehat{\Lambda}(s)-\int_{0}^{U_{l}}e^{\beta_{0}^{\mathsf{T}}X(s)}d\Lambda_{0}(s)\right\}^{2}\right]^{1/2}=O_{p}(n^{-1/3})$$

Table of Contents

Chapter 2: Semiparametric regression analysis of interval-censored data

Transformation models for interval-censored data

Transformation models for multivariate interval-censored data

- Marginal models for multivariate interval-censored data
- Semiparametric regression models for panel count data

Reference

Zeng, D., Gao, F., & Lin, D. Y. (2017). Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data. Biometrika, 104(3), 505-525.

Motivation

Interval-censored multiple-event data

- Study of chronic diseases: diabetes, hypertension, Alzheimer's disease
- Interval-censored clustered data
 - Twin/family study of infectious diseases
 - Dental caries
- Challenges:
 - Event times never exactly observed
 - Dependence between events from the same subject
 - Dependence within clusters

Transformation models

Notation:

- n: number of independent clusters
- J_i: number of subjects in the *i*th cluster
- K: number of event types
- T_{ijk}: kth event time for the *j*th subject of the *i*th cluster
- $X_{ijk}(t)$: potentially time-dependent covariates
- $b_i \sim N(0, \Sigma_i(\gamma))$: vector of random effects

Semiparametric transformation model:

$$\Lambda_{ijk}(t|X_{ijk}, b_i) = G_k \left[\int_0^t \exp \left\{ \beta^\mathsf{T} X_{ijk}(s) + b_i^\mathsf{T} Z_{ijk}(s) \right\} d\Lambda_k(s) \right]$$

- $G_k(\cdot)$: type-specific transformation function
- β , γ : unknown regression parameters
- $Z_{ijk}(\cdot)$: contains 1 and part of $X_{ijk}(\cdot)$
- $\Lambda_k(\cdot)$: arbitrary increasing function

Transformation models (cont.)

Semiparametric transformation model:

$$\Lambda_{ijk}(t|X_{ijk}, b_i) = G_k \left[\int_0^t \exp\left\{ \beta^\mathsf{T} X_{ijk}(s) + b_i^\mathsf{T} Z_{ijk}(s) \right\} d\Lambda_k(s) \right]$$
(1)

- By letting X_{ijk} and Z_{ijk} depend on k, model (1) allows the regression parameters and random effects to vary across the K types of events.
- The dependence of Z_{ijk} on j allows for subject-specific random effects.
- Σ_i(γ) usually does not depend on *i*, such that γ contains the upper diagonal elements of the common covariance matrix Σ.

Data

Examination times for T_{ijk} :

$$U_{ijk} = (0 = U_{ijk0}, U_{ijk1}, \dots, U_{ijk,M_{ijk}}, U_{ijk,M_{ijk}+1} = \infty)$$

Data:

$$\Big\{\mathcal{O}_{ijk}=(\mathcal{L}_{ijk},\mathcal{R}_{ijk},\mathcal{X}_{ijk}): i=1,\ldots,n; j=1,\ldots,J_i; k=1,\ldots,K\Big\},\$$

where $(L_{ijk}, R_{ijk}]$ is the shortest time interval induced by U_{ijk} that brackets T_{ijk} .

Independent censoring assumption:

$$\{ (U_{ijk}, M_{ijk}) : j = 1, \dots, J_i; k = 1, \dots, K \} \text{ are independent of}$$

$$\{ T_{ijk} : j = 1, \dots, J_i; k = 1, \dots, K \} \text{ and } b_i$$
conditional on $\{ X_{ijk}(\cdot) : j = 1, \dots, J_i; k = 1, \dots, K \}.$

Likelihood

Let
$$\theta = (\beta^{\mathsf{T}}, \gamma^{\mathsf{T}})^{\mathsf{T}}$$
 and $\mathcal{A} = \{\Lambda_k\}_{k=1}^{\mathcal{K}}$. The likelihood is

$$L_n(\theta, \mathcal{A}) = \prod_{i=1}^n \int_{b_i} \prod_{j=1}^{J_i} \prod_{k=1}^{\mathcal{K}} \left\{ \exp\left(-G_k \left[\int_0^{L_{ijk}} \exp\left\{\beta^{\mathsf{T}} X_{ijk}(s) + b_i^{\mathsf{T}} Z_{ijk}(s)\right\} d\Lambda_k(s) \right] \right) \right\}$$

$$- \exp\left(-G_k \left[\int_0^{R_{ijk}} \exp\left\{\beta^{\mathsf{T}} X_{ijk}(s) + b_i^{\mathsf{T}} Z_{ijk}(s)\right\} d\Lambda_k(s) \right] \right) \right\}$$

$$\times (2\pi)^{-d_i/2} |\Sigma_i(\gamma)|^{-1/2} \exp\left\{-\frac{b_i^{\mathsf{T}} \Sigma_i(\gamma)^{-1} b_i}{2}\right\} db_i$$

NPMLE: treat each Λ_k as a step function

- $t_{k1} < t_{k2} < \cdots < t_{km_k}$: distinct values of all $L_{ijk} > 0$ and $R_{ijk} < \infty$ $(i = 1, \dots, n; j = 1, \dots, J_i)$
- λ_{kl} : jump size of Λ_k at t_{kl} $(l = 1, ..., m_k)$
- $X_{ijkl} = X_{ijk}(t_{kl})$ and $Z_{ijkl} = Z_{ijk}(t_{kl})$

Likelihood (cont.)

Consider the class of frailty-induced transformations:

$$G_k(x) = -\log \int_0^\infty e^{-x\xi} f_k(\xi) d\xi$$

The likelihood can then be written as

$$\begin{split} \widetilde{L}_n(\theta, \mathcal{A}) &= \prod_{i=1}^n \int_{b_i} \prod_{j=1}^{J_i} \prod_{k=1}^K \int_{\xi_{ijk}} \left[\exp\left\{ -\xi_{ijk} \sum_{t_{kl} \leq L_{ijk}} \exp\left(\beta^\mathsf{T} X_{ijkl} + b_i^\mathsf{T} Z_{ijkl}\right) \lambda_{kl} \right\} \right] \\ &- I\left(R_{ijk} < \infty\right) \exp\left\{ -\xi_{ijk} \sum_{t_{kl} \leq R_{ijk}} \exp\left(\beta^\mathsf{T} X_{ijkl} + b_i^\mathsf{T} Z_{ijkl}\right) \lambda_{kl} \right\} \right] f_k\left(\xi_{ijk}\right) d\xi_{ijk} \\ &\times (2\pi)^{-d_i/2} |\Sigma_i(\gamma)|^{-1/2} \exp\left\{ -\frac{b_i^\mathsf{T} \Sigma_i(\gamma)^{-1} b_i}{2} \right\} db_i \end{split}$$

・ロト・日本・モー・モー ひゃぐ

25 / 59

Poisson data augmentation

Latent variables: for $i = 1, ..., n; j = 1, ..., J_i; k = 1, ..., K; l = 1, ..., m_k$,

$$W_{ijkl} \stackrel{\text{ind}}{\sim} \text{Poisson} \left\{ \lambda_{kl} \xi_{ijk} \exp \left(\beta^{\mathsf{T}} X_{ijkl} + b_i^{\mathsf{T}} Z_{ijkl} \right) \right\}$$

Equivalent likelihood: Conditional on b_i and ξ_{ijk} , the probability of the event

$$\widetilde{\mathcal{O}}_{ijk} = \left(\sum_{t_{kl} \leq L_{ijk}} W_{ijkl} = 0\right) \quad \bigcap \quad \left(\sum_{L_{ijk} < t_{kl} \leq R_{ijk}} W_{ijkl} > 0\right)^{I(R_{ijk} < \infty)}$$

is equal to

$$p(\mathcal{O}_{ijk}|b_i,\xi_{ijk}) = \exp\left\{-\xi_{ijk}\sum_{t_{kl}\leq L_{ijk}}\exp\left(\beta^{\mathsf{T}}X_{ijkl} + b_i^{\mathsf{T}}Z_{ijkl}\right)\lambda_{kl}\right\}$$
$$-I(R_{ijk}<\infty)\exp\left\{-\xi_{ijk}\sum_{t_{kl}\leq R_{ijk}}\exp\left(\beta^{\mathsf{T}}X_{ijkl} + b_i^{\mathsf{T}}Z_{ijkl}\right)\lambda_{kl}\right\}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ● ●

26 / 59

EM algorithm

- Therefore, maximizing *L̃_n*(θ, A) is equivalent to maximizing the likelihood arising from {*Õ_{ijk}* : *i* = 1,..., *n*; *j* = 1,..., *J_i*; *k* = 1,..., *K*}.
- The maximization can be done through an EM algorithm, treating b_i , ξ_{ijk} and W_{ijkl} as missing data.
- Define $R_{ijk}^* = L_{ijk}I(R_{ijk} = \infty) + R_{ijk}I(R_{ijk} < \infty)$. The complete-data log-likelihood is

$$\begin{split} \sum_{i=1}^{n} \left\{ \sum_{j=1}^{J_{i}} \sum_{k=1}^{K} \left(\sum_{l=1}^{m_{k}} I(t_{kl} \leq R_{ijk}^{*}) \left[W_{ijkl} \log \left\{ \lambda_{kl} \xi_{ijk} \exp \left(\beta^{\mathsf{T}} X_{ijkl} + b_{i}^{\mathsf{T}} Z_{ijkl} \right) \right\} \right. \\ \left. - \lambda_{kl} \xi_{ijk} \exp \left(\beta^{\mathsf{T}} X_{ijkl} + b_{i}^{\mathsf{T}} Z_{ijkl} \right) - \log \left(W_{ijkl} ! \right) \right] + \log f_{k} \left(\xi_{ijk} \right) \right\} \\ \left. - \frac{d_{i}}{2} \log(2\pi) - \frac{1}{2} \log |\Sigma_{i}(\gamma)| - \frac{b_{i}^{\mathsf{T}} \Sigma_{i}(\gamma)^{-1} b_{i}}{2} \right\} \end{split}$$

・ロ・・白・・ヨ・・ヨ・ ヨー りゃぐ

E-step

- In the E-step, we evaluate $\widehat{E}(W_{ijkl})$ and some $\widehat{E}\{H(\xi_{ijk}, b_i)\}$.
- We use the fact that the joint posterior density of ξ_{ijk} $(j = 1, ..., J_i$ and k = 1, ..., K) and b_i is proportional to

$$\prod_{j=1}^{J_i}\prod_{k=1}^{K}p(\mathcal{O}_{ijk}|b_i,\xi_{ijk})f_k(\xi_{ijk})\phi(b_i;\Sigma_i(\gamma))$$

• In addition, $E(W_{ijkl}|b_i, \xi_{ijk})$ is given by

$$\frac{I(L_{ijk} < t_{kl} \le R_{ijk} < \infty) \lambda_{kl} \xi_{ijk} \exp\left(\beta^{\mathsf{T}} X_{ijkl} + b_i^{\mathsf{T}} Z_{ijkl}\right)}{1 - \exp\left\{-\sum_{L_{ijk} < t_{kl'} \le R_{ijk}} \lambda_{kl'} \xi_{ijk} \exp\left(\beta^{\mathsf{T}} X_{ijkl'} + b_i^{\mathsf{T}} Z_{ijkl'}\right)\right\}}.$$

• Then we integrate the above expressions over b_i and ξ_{ijk} using Gaussian quadrature approximations.

M-step

• In the M-step, we first update λ_{kl} $(k=1,\ldots,K$ and $l=1,\ldots,m_k)$ by

$$\lambda_{kl} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{J_i} I(t_{kl} \leq R_{ijk}^*) \widehat{E}(W_{ijkl})}{\sum_{i=1}^{n} \sum_{j=1}^{J_i} I(t_{kl} \leq R_{ijk}^*) \widehat{E}\left\{\xi_{ijk} \exp\left(\beta^\mathsf{T} X_{ijkl} + b_i^\mathsf{T} Z_{ijkl}\right)\right\}}$$

• Then we solve the following score equation for β using the one-step Newton-Raphson method:

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{J_{i}} \sum_{k=1}^{K} \sum_{l=1}^{m_{k}} I\left(t_{kl} \leq R_{ijk}^{*}\right) \widehat{E}\left(W_{ijkl}\right) \times \left[X_{ijkl} - \frac{\sum_{i'=1}^{n} \sum_{j'=1}^{J_{i}'} I\left(t_{kl} \leq R_{i'j'k}^{*}\right) X_{i'j'kl} \widehat{E}\left\{\xi_{i'j'k} \exp\left(\beta^{\mathsf{T}} X_{i'j'kl} + b_{i'}^{\mathsf{T}} Z_{i'j'kl}\right)\right\}}{\sum_{i'=1}^{n} \sum_{j'=1}^{J_{i}'} I\left(t_{kql} \leq R_{i'j'k}^{*}\right) \widehat{E}\left\{\xi_{i'j'k} \exp\left(\beta^{\mathsf{T}} X_{i'j'kl} + b_{i'}^{\mathsf{T}} Z_{i'j'kl}\right)\right\}}\right]$$

• Finally, we maximize $-\log |\Sigma_i(\gamma)| - \widehat{E} \{ b_i^\mathsf{T} \Sigma_i^{-1}(\gamma) b_i \}$ to update γ .

Remarks

- The starting values of the EM algorithm can be $\beta = 0$, $\lambda_{kl} = 1/m_k$, and $\Sigma_i = I_{d_i}$.
- Due to the presence of the random effects, the conditional expectations in the E-step are more complicated than those in Zeng et al. (2016).
- The high-dimensional parameters λ_{kl} are calculated explicitly in the M-step.
- Each iteration of the EM algorithm guarantees an increase in the likelihood.

Variance estimation

• Define the profile likelihood

$$\operatorname{pl}_n(\theta) = \max_{\mathcal{A}} \log L_n(\theta, \mathcal{A}),$$

which can be computed using the same EM algorithm but with fixed θ .

• The covariance matrix of $\widehat{\theta}$ can be estimated by

$$\widehat{V} = \left(\left[\sum_{i=1}^{n} \frac{\left\{ \mathsf{pl}_{ni}(\widehat{\theta} + h_n \mathsf{e}_j) - \mathsf{pl}_{ni}(\widehat{\theta}) \right\} \left\{ \mathsf{pl}_{ni}(\widehat{\theta} + h_n \mathsf{e}_k) - \mathsf{pl}_{ni}(\widehat{\theta}) \right\}}{h_n^2} \right]_{(j,k)} \right)^{-1},$$

where pl_{ni} denotes the *i*th cluster's contribution to pl_n , e_j is the *j*th canonical vector, and h_n is a constant of order $n^{-1/2}$.

• Compared to the variance estimator in Zeng et al. (2016), this \hat{V} is guaranteed to be positive semidefinite and is more robust w.r.t. the choice of h_n .

イロト イヨト イヨト イヨト 二日

Asymptotic theory

Consistency:
$$\|\widehat{ heta} - heta_0\| + \sum_{k=1}^{\mathcal{K}} \sup_{t \in [0, \tau_k]} |\widehat{\Lambda}_k(t) - \Lambda_{0k}(t)| \stackrel{a.s.}{ o} 0$$

Asymptotic normality & semiparametric efficiency:

$$\sqrt{n}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} N(0,\widetilde{\mathcal{I}}_0^{-1}),$$

where $\widetilde{\mathcal{I}}_0$ is the efficient information matrix of θ .

Consistency of variance estimator: $\|n\hat{V} - \tilde{\mathcal{I}}_0^{-1}\|_2 = o_p(1)$.

Convergence rate for $\widehat{\Lambda}_k$:

$$E\left[\sum_{j=1}^{J_{i}}\sum_{k=1}^{K}\sum_{l=0}^{M_{ijk}}\left\{\widehat{\Lambda}_{k}\left(U_{ijkl}\right)-\Lambda_{0k}\left(U_{ijkl}\right)\right\}^{2}\right]=O_{p}\left(n^{-2/3}+\|\widehat{\beta}-\beta_{0}\|^{2}+\|\widehat{\gamma}-\gamma_{0}\|^{2}\right).$$

4 ロト 4 日 ト 4 玉 ト 4 玉 ト 玉 の Q (ひ)
32 / 59

Software

The methods developed in Zeng et al. (2016, 2017) have been implemented in IntCens (https://dlin.web.unc.edu/software/intcens).

Table of Contents

Chapter 2: Semiparametric regression analysis of interval-censored data

- Transformation models for interval-censored data
- Transformation models for multivariate interval-censored data

Marginal models for multivariate interval-censored data

• Semiparametric regression models for panel count data

Reference

🔋 Xu, Y., Zeng, D., & Lin, D. Y. (2023). Marginal proportional hazards models for multivariate interval-censored data. Biometrika, 110(3), 815-830.

Motivation

Random-effects models have several limitations.

- Random effects may not adequately capture the dependence
- Model misspecification may lead to invalid statistical inference
- Computationally demanding
- $\bullet\,$ Interpretation of β does not pertain to population-average effects

Marginal models formulate marginal distributions of multivariate event times through univariate regression models while leaving the dependence structures completely unspecified.

- More robust inference
- Faster and more stable computation
- \bullet Interpretation of population-average effects for β

・ロン ・四 と ・ ヨ と ・ ヨ ・

Marginal models

Notation:

- n: number of independent clusters
- J_i: number of subjects in the *i*th cluster
- K: number of event types
- T_{ijk}: kth event time for the *j*th subject of the *i*th cluster
- X_{ijk}(t): potentially time-dependent covariates
- $\lambda_{ijk}(t|X_{ijk})$: marginal hazard function for T_{ijk} conditional on X_{ijk}

Marginal Cox model:

$$\lambda_{ijk}(t|X_{ijk}) = \lambda_k(t) \exp\left\{\beta_k^{\mathsf{T}} X_{ijk}(t)\right\}$$

- β_k : type-specific regression parameters
- $\lambda_k(\cdot)$: arbitrary baseline hazard function
- $\Lambda_k(t) = \int_0^t \lambda_k(s) ds$

イロン 不可と 不可と 不可と 一回

Remarks

Marginal Cox model:

$$\lambda_{ijk}(t|X_{ijk}) = \lambda_k(t) \exp\left\{\beta_k^\mathsf{T} X_{ijk}(t)\right\}$$

- The dependence structures of the event times within a cluster and between the *K* types of events are unspecified.
- By letting X_{ijk} depend on k, we allow different sets of covariates for different event types.

Estimation

Data:
$$\{(L_{ijk}, R_{ijk}, X_{ijk}) : i = 1, ..., n; j = 1, ..., J_i; k = 1, ..., K\}$$

Independence working assumption: all event times are independent conditional on covariates

Pseudo-likelihood:

$$\widetilde{L}_{k}(eta_{k},\Lambda_{k}) = \prod_{i=1}^{n} \prod_{j=1}^{J_{i}} \left(\exp\left[-\int_{0}^{L_{ijk}} \exp\left\{ eta_{k}^{\mathsf{T}} X_{ijk}(t) \right\} d\Lambda_{k}(t)
ight]
onumber \ - \exp\left[-\int_{0}^{R_{ijk}} \exp\left\{ eta_{k}^{\mathsf{T}} X_{ijk}(t) \right\} d\Lambda_{k}(t)
ight]
ight)$$

Nonparametric maximum pseudo-likelihood estimation:

- Extension of NPMLE
- (β_k, Λ_k) can be estimated using the approach developed in Zeng et al. (2016), i.e., Poisson data augmentation + EM algorithm.

Variance estimation

• Define the profile pseudo-log-likelihood for β_k as

$$\mathsf{pl}_k(\beta_k) = \max_{\Lambda_k} \widetilde{L}_k(\beta_k, \Lambda_k)$$

• We estimate $Cov(\widehat{\beta}_k, \widehat{\beta}_l)$ by the sandwich covariance estimator

$$\widehat{V}_{kl} = \left\{ D_{h_n}^2 \mathsf{pl}_k(\widehat{\beta}_k) \right\}^{-1} \left\{ \sum_{i=1}^n D_{h_n} \mathsf{pl}_{ki}(\widehat{\beta}_k) D_{h_n} \mathsf{pl}_{li}(\widehat{\beta}_l)^\mathsf{T} \right\} \left\{ D_{h_n}^2 \mathsf{pl}_l(\widehat{\beta}_l) \right\}^{-1}$$

- pl_{ki}: ith cluster's contribution to pl_k
- ▶ D_{h_n} and $D_{h_n}^2$: first- and second-order numerical derivatives with perturbation constant $h_n = O(n^{-1/2})$
- account for the dependence within clusters and between event types

・ロ・・ 日・ ・ ヨ・ ・ ヨ・

Asymptotic properties

Let $\theta = (\beta_1^\mathsf{T}, \dots, \beta_K^\mathsf{T})^\mathsf{T}$.

Consistency: $\|\widehat{\theta} - \theta_0\| + \sum_{k=1}^{K} \sup_{t \in [0, \tau_k]} |\widehat{\Lambda}_k(t) - \Lambda_{0k}(t)| \stackrel{a.s.}{\to} 0$

Asymptotic normality: $\sqrt{n}(\widehat{\theta} - \theta_0) \stackrel{d}{\rightarrow} N(0, \Omega)$

Consistency of variance estimator: $\{n\hat{V}_{kl}\}_{(k,l)}$ is consistent for Ω , regardless of the dependence structures.

Simultaneous Inference

- Parameters of interest: $\eta_k = \beta_{k1} \ (k = 1, \dots, K)$
- Estimators: $\widehat{\eta}_k = \widehat{\beta}_{k1} \ (k = 1, \dots, K)$
- Covariance estimator: $\widehat{\Psi} = \{\widehat{V}_{kl,11}\}_{(k,l)}$
- Global (Wald) test $H_0: \eta_1 = \cdots = \eta_K = 0$

$$W = (\widehat{\eta}_1, \dots, \widehat{\eta}_K) \widehat{\Psi}^{-1} (\widehat{\eta}_1, \dots, \widehat{\eta}_K)^{\mathsf{T}} \xrightarrow{d} \chi_K^2 \quad \text{ under } H_0$$

To make inference on an overall covariate effect, we can estimate a common parameter η₁ = · · · = η_K = η by

$$\widehat{\eta} = \sum_{k=1}^{K} c_k \widehat{\eta}_k$$

- optimal weights c_k are chosen to minimize $Var(\hat{\eta})$
- more efficient than the separate estimators $\widehat{\eta}_k$
- powerful test for no covariate effect on the K events

Table of Contents

Chapter 2: Semiparametric regression analysis of interval-censored data

- Transformation models for interval-censored data
- Transformation models for multivariate interval-censored data
- Marginal models for multivariate interval-censored data
- Semiparametric regression models for panel count data

Reference

Zeng, D., & Lin, D. Y. (2021). Maximum likelihood estimation for semiparametric regression models with panel count data. Biometrika, 108(4), 947-963.

Panel count data

• Panel count data arise when only the number of recurrent events between successive examinations can be observed.

- number of tumors in a cancer patient
- number of damaged joints in a psoriatic arthritis patient
- number of decayed teeth in a child
- Investigators are often interested in evaluating the effects of covariates (e.g., treatment) on the recurrent event process.
- Challenges:
 - Unknown recurrent event times
 - Within-subject correlations of recurrent event times
 - Within-subject correlations between different types of recurrent events

イロト イヨト イヨト イヨト 二日

Notation

- *n*: number of subjects
- K: number of types of recurrent events
- N_{ik}(t): number of the kth type of event that the ith subject has experienced by time t (i = 1,..., n and k = 1,..., K); non-homogeneous Poisson process
- X_i(t): potentially time-dependent covariates
- *b_{ik}*: random effects for the *k*th type of event
- ξ_i : random effects shared by the K types of events
- $\lambda_{ik}(t|X_i, b_{ik}, \xi_i)$: conditional intensity function for $N_{ik}(t)$

(日)

Proportional intensity models

$$\lambda_{ik}(t|X_i, b_{ik}, \xi_i) = \lambda_k(t) \exp\left\{\beta_k^\mathsf{T} X_i(t) + b_{ik}^\mathsf{T} Z_i(t) + \xi_i^\mathsf{T} \widetilde{Z}_i(t)\right\}$$

- $\lambda_k(t)$: unknown baseline intensity function
- β_k : unknown type-specific regression parameters
- $Z_i(t)$ and $\widetilde{Z}_i(t)$: contain 1 and part of $X_i(t)$
- b_{ik} ~ N(0, Σ_k): accounts for within-subject correlations among recurrent event times of the kth type
- $\xi_i \sim N(0, \Psi)$: accounts for within-subject correlations between different recurrent event processes
- b_{ik} (k = 1, ..., K) and ξ_i are mutually independent.
- If K = 1, ξ_i is omitted.

Data

Panel count data for the *i*th subject:

• Examination times:

$$U_{ik} = (0 = U_{ik0}, U_{ik1}, \dots, U_{ikM_{ik}}), \text{ for } k = 1, \dots, K$$

Event counts:

$$\Delta_{ik} = (\Delta_{ik1}, \dots, \Delta_{ikM_{ik}}), \quad ext{ for } k = 1, \dots, K$$

with
$$\Delta_{ikj} = N_{ik}(U_{ikj}) - N_{ik}(U_{ik,j-1})$$
.

• Covariates: $X_i(t)$

Independent censoring assumption: (U_{i1}, \ldots, U_{iK}) are independent of (N_{i1}, \ldots, N_{iK}) , (b_{i1}, \ldots, b_{iK}) , and ξ_i conditional on $X_i(\cdot)$.

Likelihood

• $\{\Delta_{ikj}\}_{j=1}^{M_{ik}} \stackrel{\text{ind}}{\sim} \text{Poisson with means } \int_{U_{ik,j-1}}^{U_{ikj}} \lambda_{ik}(t|X_i, b_{ik}, \xi_i) dt$

The likelihood is proportional to

$$\begin{split} \prod_{i=1}^{n} \left[\int_{\xi_{i}} \phi\left(\xi_{i};\Psi\right) \prod_{k=1}^{K} \int_{b_{ik}} \phi\left(b_{ik};\Sigma_{k}\right) \prod_{j=1}^{M_{ik}} \frac{\left\{ \int_{U_{ik,j-1}}^{U_{ikj}} e^{\beta_{k}^{\mathsf{T}}X_{i}(t) + b_{ik}^{\mathsf{T}}Z_{i}(t) + \xi_{i}^{\mathsf{T}}\widetilde{Z}_{i}(t)} d\Lambda_{k}(t) \right\}^{\Delta_{ikj}}}{\Delta_{ikj}!} \\ \times \exp\left\{ - \int_{0}^{U_{ikM_{ik}}} e^{\beta_{k}^{\mathsf{T}}X_{i}(t) + b_{ik}^{\mathsf{T}}Z_{i}(t) + \xi_{i}^{\mathsf{T}}\widetilde{Z}_{i}(t)} d\Lambda_{k}(t) \right\} db_{ik}d\xi_{i} \end{split} \right] \end{split}$$

• $\Lambda_k(t) = \int_0^t \lambda_k(s) ds$: cumulative baseline intensity function • $\phi(\cdot; \Sigma)$: multivariate normal density with mean 0 and covariance matrix Σ

Estimation

NPMLE:

• $0 < t_{k1} < t_{t2} < \cdots < t_{km_k}$: unique values of U_{ik} $(i = 1, \dots, n)$

•
$$\lambda_{kl}$$
: jump size of Λ_k at t_{kl} $(l = 1, ..., m_k)$

•
$$X_{ikl} = X_i(t_{kl}), \ Z_{ikl} = Z_i(t_{kl}), \ \text{and} \ \widetilde{Z}_{ikl} = \widetilde{Z}_i(t_{kl})$$

New likelihood:

$$\prod_{i=1}^{n} \left\{ \int_{\xi_{i}} \phi\left(\xi_{i};\Psi\right) \prod_{k=1}^{K} \int_{b_{ik}} \phi\left(b_{ik};\Sigma_{k}\right) \prod_{j=1}^{M_{ik}} \frac{\left(\sum_{l:t_{kl}\in\left(U_{ik,j-1},U_{ikj}\right]} \lambda_{kl} e^{\beta_{k}^{\mathsf{T}} X_{ikl} + \beta_{ik}^{\mathsf{T}} Z_{ikl} + \xi_{i}^{\mathsf{T}} \widetilde{Z}_{ikl}}\right)^{\Delta_{ikj}}{\Delta_{ikj}!} \times \exp\left(-\sum_{l:t_{kl}\leq\left(U_{ik,j-1},U_{ik}\right)_{kk}} \lambda_{kl} e^{\beta_{k}^{\mathsf{T}} X_{ikl} + \beta_{ik}^{\mathsf{T}} Z_{ikl} + \xi_{i}^{\mathsf{T}} \widetilde{Z}_{ikl}}\right) db_{ik} d\xi_{i}\right\}$$

Direct maximization is infeasible due to lack of analytic expressions for λ_{kl} .

Poissonization

- We introduce independent latent Poisson variables W_{ikl} with means $\lambda_{kl}e^{\beta_k^T X_{ikl}+b_{ik}^T Z_{ikl}+\xi_i^T \widetilde{Z}_{ikl}}$, for i = 1, ..., n; k = 1, ..., K; $l = 1, ..., m_k$.
- It is easy to see that the likelihood for Δ_{ikj} is the same as the likelihood for $\sum_{l:t_{kl} \in (U_{ik,j-1}, U_{ikj}]} W_{ikl} = \Delta_{ikj}$.
- Thus, we can maximize the likelihood through an EM algorithm, with W_{ikl} , b_{ik} , and ξ_i as missing data.

EM algorithm

The complete-data log-likelihood is

$$\begin{split} \sum_{i=1}^{n} \left[-\frac{1}{2} \log(2\pi)^{q} |\Psi| - \frac{1}{2} \xi_{i}^{\mathsf{T}} \Psi^{-1} \xi_{i} + \sum_{k=1}^{K} \left\{ -\frac{1}{2} \log(2\pi)^{p} |\Sigma_{k}| - \frac{1}{2} b_{ik}^{\mathsf{T}} \Sigma_{k}^{-1} b_{ik} \right\} \\ + \sum_{k=1}^{K} \sum_{l=1}^{m_{k}} l \left(t_{kl} \leq U_{ikM_{ik}} \right) \left\{ W_{ikl} \left(\log \lambda_{kl} + \beta_{k}^{\mathsf{T}} X_{ikl} + b_{ik}^{\mathsf{T}} Z_{ikl} + \xi_{i}^{\mathsf{T}} \widetilde{Z}_{ikl} \right) \\ - \lambda_{kl} e^{\beta_{k}^{\mathsf{T}} X_{ikl} + b_{ik}^{\mathsf{T}} Z_{ikl}} - \log W_{ikl}! \right\} \end{bmatrix}. \end{split}$$

<ロト < 回 ト < 臣 ト < 臣 ト 差 の Q (や 52 / 59

E-step

- In the E-step, we compute $\widehat{E}(W_{ikl})$ and some $\widehat{E}\{H(b_{ik},\xi_i)\}$.
- For any $t_{kl} \in (U_{ik,j-1}, U_{ikj}]$, conditional on Δ_{ikj} , the covariates and random effects, W_{ikl} follows a binomial distribution with success probability

$$p_{ikl} = \frac{\lambda_{kl} e^{\beta_k^{\mathsf{T}} X_{ikl} + b_{ik}^{\mathsf{T}} Z_{ikl} + \xi_i^{\mathsf{T}} \widetilde{Z}_{ikl}}}{\sum_{q: t_{kq} \in (U_{ik,j-1}, U_{ikj}]} \lambda_{kq} e^{\beta_k^{\mathsf{T}} X_{ikq} + b_{ik}^{\mathsf{T}} Z_{ikq} + \xi_i^{\mathsf{T}} \widetilde{Z}_{ikq}}}$$

Thus, $\widehat{E}(W_{ikl}) = \Delta_{ikj}\widehat{E}(p_{ikl})$.

E-step (cont.)

• In addition, the joint posterior density of $\{b_{ik}\}_{k=1}^{K}$ and ξ_i is proportional to

$$\phi\left(\xi_{i};\Psi\right)\prod_{k=1}^{K}\left\{\phi\left(b_{ik};\Sigma_{k}\right)\prod_{j=1}^{M_{ik}}\frac{\left(\sum_{l:t_{kl}\in\left(U_{ik,j-1},U_{ikj}\right]}\lambda_{kl}e^{\beta_{k}^{\mathsf{T}}X_{ikl}+b_{ik}^{\mathsf{T}}Z_{ikl}+\xi_{i}^{\mathsf{T}}\widetilde{Z}_{ikl}}\right)^{\Delta_{ikj}}}{\Delta_{ikj}!}\times\exp\left(-\sum_{l:t_{kl}\leq\left(U_{ik,j-1},U_{ikj}\right)}\lambda_{kl}e^{\beta_{k}^{\mathsf{T}}X_{ikl}+b_{ik}^{\mathsf{T}}Z_{ikl}+\xi_{i}^{\mathsf{T}}\widetilde{Z}_{ikl}}\right)\right\}$$

• The conditional expectations can then be calculated, with integrals over b_{ik} and ξ_i approximated by Gauss–Hermite quadrature.

M-step

• In the M-step, we first update λ_{kl} by

$$\lambda_{kl} = \frac{\sum_{i=1}^{n} I(U_{ikM_{ik}} \leq t_{kl}) \widehat{E}(W_{ikl})}{\sum_{i=1}^{n} I(U_{ikM_{ik}} \leq t_{kl}) \widehat{E}(e^{\beta_{k}^{\mathsf{T}} X_{ikl} + b_{ik}^{\mathsf{T}} Z_{ikl} + \xi_{i}^{\mathsf{T}} \widetilde{Z}_{ikl}})}$$

• Then we update β_k by applying the one-step Newton-Raphson method to the score equation

$$0 = \sum_{i=1}^{n} \sum_{l=1}^{m_{k}} I(U_{ikM_{ik}} \leq t_{kl}) \widehat{E}(W_{ikl}) \left\{ X_{ikl} - \frac{\sum_{i'=1}^{n} I(U_{i'kM_{i'k}} \leq t_{kl}) \widehat{E}(e^{\beta_{k}^{\mathsf{T}} X_{i'kl} + b_{i'k}^{\mathsf{T}} Z_{i'kl} + \xi_{i'}^{\mathsf{T}} \widetilde{Z}_{i'kl}) X_{i'kl}}{\sum_{i'=1}^{n} I(U_{i'kM_{i'k}} \leq t_{kl}) \widehat{E}(e^{\beta_{k}^{\mathsf{T}} X_{i'kl} + b_{i'k}^{\mathsf{T}} Z_{i'kl} + \xi_{i'}^{\mathsf{T}} \widetilde{Z}_{i'kl}}) \right\}$$

• Finally, we set $\Sigma_k = n^{-1} \sum_{i=1}^n \widehat{E}(b_{ik}^{\otimes 2})$ and $\Psi = n^{-1} \sum_{i=1}^n \widehat{E}(\xi_i^{\otimes 2})$.

◆□ > ◆母 > ◆臣 > ◆臣 > 「臣 - のへで

55 / 59

Prediction

- We can use the event history to improve the prediction of future events.
- The event history at the current examination time t₀ consists of

$$\mathcal{H}(t_0) = \{n_k = N_k(t_0) : k = 1, \ldots, K\}$$

• The key is to update the posterior density of the random effect ξ based on $\mathcal{H}(t_0)$, which is proportional to

$$egin{aligned} \widetilde{\phi}(\xi;\mathcal{H}(t_0)) &= \phi(\xi;\widehat{\Psi}) \prod_{k=1}^K \int_{b_k} \left\{ \int_0^{t_0} e^{\widehat{eta}_k^\mathsf{T} X(t) + b_k^\mathsf{T} Z(t) + \xi^\mathsf{T} \widetilde{Z}(t)} d\widehat{\Lambda}_k(t)
ight\}^{n_k} \ & imes \exp\left\{ - \int_0^{t_0} e^{\widehat{eta}_k^\mathsf{T} X(t) + b_k^\mathsf{T} Z(t) + \xi^\mathsf{T} \widetilde{Z}(t)} d\widehat{\Lambda}_k(t)
ight\} \phi(b_k;\widehat{\Sigma}_k) db_k \end{aligned}$$

• Then, the new event count of the *k*th type at $t_1 > t_0$ can be predicted by

$$\frac{\int_{\xi} \widetilde{\phi}(\xi; \mathcal{H}(t_0)) \int_{t_0}^{t_1} e^{\widehat{\beta}_k^{\mathsf{T}} X(t) + b_k^{\mathsf{T}} Z(t) + \xi^{\mathsf{T}} \widetilde{Z}(t)} d\widehat{\Lambda}_k(t) d\xi}{\int_{\xi} \widetilde{\phi}(\xi; \mathcal{H}(t_0)) d\xi}$$

56 / 59

Asymptotic properties

Let θ contain β_k and the upper triangular elements of Σ_k and Ψ (k = 1, ..., K).

Consistency:
$$\|\widehat{\theta} - \theta_0\| + \sum_{k=1}^{K} \sup_{t \in [0, \tau_k]} |\widehat{\Lambda}_k(t) - \Lambda_{0k}(t)| \stackrel{a.s.}{\to} 0$$

Asymptotic normality & semiparametric efficiency: $\sqrt{n}(\hat{\theta} - \theta_0)$ converges weakly to a mean-zero normal random vector whose covariance matrix attains the semiparametric efficiency bound.

Variance estimation: The limiting covariance matrix of $\sqrt{n}(\hat{\theta} - \theta_0)$ can be consistently estimated by the inverse of the matrix whose (j, l)th element is

$$n^{-1}\sum_{i=1}^{n}\left\{\frac{\mathsf{pl}_{ni}(\widehat{\theta}+h_{n}e_{j})-\mathsf{pl}_{ni}(\widehat{\theta})}{h_{n}}\right\}\left\{\frac{\mathsf{pl}_{ni}(\widehat{\theta}+h_{n}e_{l})-\mathsf{pl}_{ni}(\widehat{\theta})}{h_{n}}\right\}$$

pl_{ni}(θ): *i*th subject's contribution to the profile likelihood for θ
h_n = O(n^{-1/2})

Concluding remarks

- The rationale behind Poisson data augmentation is that conditional on latent variables, the counting process N(t) is a non-homogeneous Poisson process with intensity function the same as the hazard/intensity function for the failure time.
- With interval-censored data, the convergence rate of $\widehat{\Lambda}$ is usually slower than \sqrt{n} . In all the papers discussed, $\widehat{\Lambda}$ converges at a $n^{1/3}$ rate.
- However, the finite-dimensional component of the estimators is still asymptotically normal and efficient, and the limiting variance can be consistently estimated using profile likelihood.

Related work

- Mao, L., Lin, D. Y., & Zeng, D. (2017). Semiparametric regression analysis of interval-censored competing risks data. Biometrics, 73(3), 857-865.
- Gao, F., Zeng, D., & Lin, D. Y. (2018). Semiparametric regression analysis of interval-censored data with informative dropout. Biometrics, 74(4), 1213-1222.
- Gao, F., Zeng, D., Couper, D., & Lin, D. Y. (2019). Semiparametric regression analysis of multiple right-and interval-censored events. Journal of the American Statistical Association, 114(527), 1232-1240.
- Xu, Y., Zeng, D., & Lin, D. Y. (2024). Proportional rates models for multivariate panel count data. Biometrics, 80(1), ujad011.
- Gu, Y., Zeng, D., Heiss, G., & Lin, D. Y. (2024). Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data. Biometrika, 111(3), 971-988.