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Interval-censored data

@ Interval-censored data arise when the failure time is only known to lie
within a broad time interval.

@ Commonly encountered when the disease onset can only be ascertained
through a small number of examinations.
» HIV infection: periodic blood tests
> Alzheimer's disease onset: periodic cognitive tests
» Tumor occurrence: biopsies at periodic clinical visits

@ Types of interval-censored data:

> Case 1: only one examination time per subject, aka current status data
» Case k (k > 2): k examination times per subject’
> Mixed case: number of examination times varies among subjects

@ Theoretical and computational challenges: no exact failure time

YHuang, J., & Wellner, J. A. (1997). Interval censored survival data: a review of recent progress. In Proceedings of the first Seattle symposium
in biostatistics: survival analysis (pp. 123-169). New York, NY: Springer US.
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Transformation models

Notation:
o T: failure time
e X(t): potentially time-dependent covariates

e A(t|X): conditional cumulative hazard function for T given X(-)

Semiparametric transformation model:
t
A(tIX) =G [/ exp {BTX(s)} d\(s)
0

@ G(-): strictly increasing transformation function

» G(x) = x = proportional hazards model
> G(x) = log(1 + x) = proportional odds model

@ [3: unknown regression parameters

@ A(:): unknown increasing function
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Frailty-induced transformations

Log-Laplace transform:
G(x) = —log / e *¢F(€)d¢
0

@ &: frailty variable with support [0, c0)
o f(£): density function of £

» Gamma density with mean 1 and variance r = logarithmic transformations
G(x) = rtlog(1 4 rx) (r > 0)

> Positive stable distribution with parameter p < 1 = Box-Cox
transformations G(x) = {(1+ x)? — 1}/p
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Data

Raw data:

o Event statuses: A = (Ag, Aq,...,Apn), with Ay =I(U < T < Up1)
o Covariates: X(t)

e Examination times: U = (0= Uy, Uy, ..., Uy, Uyq1 = 00)

Independent censoring assumption: (U, M) 1L T conditional on X(t)

Simplified data: (L, R, X)
o L=max{U;: U< T} and R=min{U,: U > T}
@ L =0 = left censoring

@ R = 0o = right censoring

Data from n independent samples: {O; = (L;,R;,X;) :i=1,...,n}
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Likelihood

Observed-data likelihood:

n

L.(B,N) = H (exp {—G{/Oh eﬁTX"(S)d/\(s)}} — exp {—G{/ORI eﬁTX’(s)d/\(s)}:|>

i=1

NPMLE:

La(B,A) = H [exp{ 6(

i=1

3 ae) |- e < wpon{ -6 (0}

<L H<R;

@ t; < <ty distinct values of all L; >0and R, < oo (i=1,...,n)
@ )\ jumpsizeof Aat t; (I=1,...,m)
e Xy = X,'(t/)
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Poisson data augmentation

o Consider the class of frailty-induced transformations, L,(3,A) can be
written as

I(Ri <o)
H / exp( & Nl X){ exp< & D, v X)} f (&) de

<L Li<t;<R;

p(O;l7)

@ Direct maximization of Zn(ﬁ,/\) over B and A, is difficult.

> Lack of analytical expressions for A,
» Many )\ are zero and lie on the boundary of the parameter space

e We introduce latent variables W " Poisson(&;Ae® X1). Then p(Oj|&) is
equivalent to the probability of the event

ty<L; Li<ti<R;
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EM algorithm

@ Therefore, maximizing z,,(ﬁ,/\) is equivalent to maximizing the likelihood
based on O; (i=1,...,n).

@ The maximization can be solved via an EM algorithm, treating &; and W
as missing data.

o Define R = LiI(R; = o0) + Ril(R; < 00). The complete-data
log-likelihood is

> [Z I(t < R7) {W,-, log(¢ihre” X) — &\e” X1 — log W,-,!} +log f (5,-)1

i=1 =1
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E-step

@ In the E-step, we evaluate the posterior means E(g,-) and E(W,,)

@ The posterior density of &; is proportional to p(O;|&)f(&;). Simple algebra
yields
E(g) _ exp {_G(Sll)} G/ (5,']_) — /(R, < OO) exp{—G (5,2)} GI (5[2)
' exp{—G(Si1)} — (R < 0)exp{—G(S2)}

)

_ TX; _ TX;
where S;1 = Zr,gL,- \eB X and S = Zt,gR,- e X,
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E-step (cont.)

~

o Clearly, E(Wj) =0if t; < L;.

@ For L; < t; < R; with R; < o0,

o)

E(W,/) = E {E(M/il|6i7§i)
> Wy > 0,5,-)

= E { E (Wf/
Lf<f// <R;

_E el Xi
|1 —exp{—&(S— Si)}

)

@ The integral over & can be approximated by Gaussian—Laguerre
quadrature.
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M-step

@ In the M-step, we first update A; by

S It < Ry )E(W )

A=
iy It < RY)E(&)e?™

forl=1,...,m

@ After plugging the above ), into the conditional expectation of the
complete-data log-likelihood, we can then update 3 by solving the

equation
n_m ~ S I < REE(E)e” Xﬂx,}
It < RYE(Wi) Xy — == :
221t = RDE ’){’ S0 (6 < RYE(g)e”

which can be solved using the one-step Newton-Raphson method.

14 /59



Remarks

@ By introducing Poisson variables, we turn the original nonconcave
likelihood function to a weighted sum of Poisson log-likelihood functions,
which is strictly concave.

@ In the M-step, the high-dimensional parameters \; (/ =1,...,m) have
closed-form solutions. This avoids the inversion of any large Hessian

matrices.

@ The observed-data likelihood is guaranteed to increase after each iteration
of the EM algorithm.
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Variance estimation

@ We use profile likelihood? to estimate the covariance matrix of 3
@ Define the profile likelihood as
pl(5) = maxlog La(53, M),
which can be computed using the same EM algorithm but with fixed 5.

@ The covariance matrix of B can be estimated by

Ve H plo(B) = Plo(B + hne;) = Plo(B + hnex) + pl,(B + hne; + hneo} ]
(k)

h2

where ¢; is the jth canonical vector and h,, is a constant of order n1/2,

2Murphy, S. A., & Van der Vaart, A. W. (2000). On profile likelihood. Journal of the American’Statistical Association, 95(450), 449-465.
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Asymptotic theory

Consistency: R R
18 = Boll + sup [A(t) = Ao(t)] =5 0

te[0,7]

Asymptotic normality & semiparametric efficiency:

V(B — Bo) % N(0,ZyY),

where fo is the efficient information matrix of 3.

Consistency of variance estimator: ||nV — fo_l||2 = 0,(1).

Mixed rate of convergence:

M U, ~ R U T 2
E Z{/O e’ X<5)d/\(s)—/0 eBOX(s)d/\o(s)} ]
=1

1/2

= Op(”71/3)
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Motivation

@ Interval-censored multiple-event data
» Study of chronic diseases: diabetes, hypertension, Alzheimer's disease

@ Interval-censored clustered data

> Twin/family study of infectious diseases
> Dental caries

o Challenges:

» Event times never exactly observed
» Dependence between events from the same subject
» Dependence within clusters
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Transformation models
Notation:
@ n: number of independent clusters
@ J;: number of subjects in the ith cluster
@ K: number of event types
@ Tjj: kth event time for the jth subject of the ith cluster
@ Xjy(t): potentially time-dependent covariates
@ b; ~ N(0,%;(v)): vector of random effects

Semiparametric transformation model:

/\;jk(t|Xijk, b,') = Gy [/ exp {[)’TXijk(S) + b;rZ,'jk(S)} d/\k(S)
0

@ Gi(-): type-specific transformation function
@ [3, v: unknown regression parameters
@ Zji(-): contains 1 and part of Xj(-)

@ Ak(+): arbitrary increasing function

21/59



Transformation models (cont.)

Semiparametric transformation model:

/\,-jk(t|X,'jk, b,‘) = G |:/0t exp {ﬁTX;jk(S) + b,TZ,'jk(S)} d/\k(s) (1)

@ By letting Xjj and Zj depend on k, model (1) allows the regression
parameters and random effects to vary across the K types of events.

@ The dependence of Zj on j allows for subject-specific random effects.

@ > ;(7y) usually does not depend on i, such that « contains the upper
diagonal elements of the common covariance matrix X.
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Data

Examination times for Tj:
Uik = (0 = Ujiko, Ujjiet - - -, Uijie, mye» Uik, M1 = 00)
Data:
{ O = (L Ris Xp) - 1= 1ooomij =1, Sk =1, K,
where (Ljj, Rijx] is the shortest time interval induced by Ujjc that brackets Tj.
Independent censoring assumption:

{(Ujji, Migee) 1 j=1,...,Ji; k=1,...,K} are independent of
{Tw:j=1,...,Jik=1,...,K} and b;
conditional on {Xju(-):j=1,...,Juk=1,...,K}.
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Likelihood

Let 0 = (B7,7T)T and A = {Ac}K_,. The likelihood is

La(0,A) = H/bHH {exp (—Gk [/0 " exp {B" Xi(s) + b Ziu(s) } dAk(s)D

i j=1 k=1

—exp (-Gk [ / . exp { B Xi(s) + b Zy(s) } d/\k(s)} > }

Ty . —14.
% (27T)7d/'/2 |zi(’7)|71/2 exp {_W} db,
NPMLE: treat each A, as a step function

0 tiy < typ < -+ < tym,: distinct values of all Lyy > 0 and Ry < oo
(I: 1,...,n;j:1,...,_/,-)

@ Ay jump size of Ay at ty (/ =1,..., mk)
o X = Xij(tir) and Zijy = Zije(ti)
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Likelihood (cont.)

Consider the class of frailty-induced transformations:

Gk(x) = —log /0°° e fil(€)d¢

The likelihood can then be written as

n Ji K
Zn(G,A) = H/ H H/ |f3xp{—§gk Z exp (BTXUk/ + b,TZ,-jk/) )\kl}
=1 7 bi Eijk

i j=1 k=1 thy <Lk

— 1 (Rijx < o0) eXP{—fijk Z exp (ﬁTXijk/ + biTZijk/) /\kl}‘| fie (&ijie) dEiji

ti < Rijk

T . 71 .
% (27T)_di/2 |Zi('y)|_1/2 exp {_b’zl(;/)b'} db,
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Poisson data augmentation
Latent variables: for i=1,....,n;j=1,...,Ji;k=1,... . K;I=1,..., my,
ind .
Wi = Poisson { A& exp (BT X + b Ziju) }
Equivalent likelihood: Conditional on b; and &, the probability of the event

I(R,-jk<2>0)
Uk-(Z VVUkI—0> N ( > VVijkI>O>
L

i <Lk ik <tw < Ryjk
is equal to
p(Ojjk| bi, &ijie) = eXP{—ﬁijk Z exp (B X + b Zju) Ak/}

tiy <Lijk

—I(Rij < 00) exp{fijk Z exp (BT X + b Zijua) >\kl}

ti < Rijk
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EM algorithm

@ Therefore, maximizing ZH(G,A) is equivalent to maximizing the likelihood
arising from {Op :i=1,....mj=1,...,Jnk=1,...,K}.

@ The maximization can be done through an EM algorithm, treating b;, &«
and Wy as missing data.

o Define R% = Liul(Rjx = 00) + Riul(Rjx < 00). The complete-data

log-likelihood is
n A K my
Z { Z (Z I(tw < Rjx) [VVijk/ log {)\klfijk exp (,BTXijk/ + biTZijk/)}
i=1 j=1 k=1 \ /=1
A& TX. T7.) — ] -
wéijk exp (ﬁ Xijki + b; qu/) log (VVUk/-)] + log fi (&ijk)
d; 1 b Zi(v) b
— log(27) — 7 log [%i(7)] — (;)}
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E-step
@ In the E-step, we evaluate E( Wijki) and some E{H(f,-jk, bi)}.

@ We use the fact that the joint posterior density of {; (j =1,...,J; and
k=1,...,K) and b; is proportional to

Ji

K
11 p(Osiclbi, &) (i) (i Zi(7))

j=1k=1

o In addition, E(Wij|b;, &) is given by
I (Lijk <t < Rijie < 00) M exp (BT Xijwa + b Zijua )
1—exp {_ ZLUk<tk/,§Rijk A Eijie exp (BT X + b,TZijk//)}

@ Then we integrate the above expressions over b; and ;i using Gaussian
quadrature approximations.
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M-step

@ In the M-step, we first update Ay (k=1,...,K and I =1,...,my) by

S S It < Ry)E (W)

Akl = - - =
S S Mt < R)E {€ucexp (BT Xy + b7 Zia) }

@ Then we solve the following score equation for 3 using the one-step
Newton-Raphson method:

n Ji K m
o:ZZZil(m < Rjse) E (W) x

i=1 j=1 k=1 I=1
3 i Zﬁ,:l I (tw < Rt XirjrE {&niiexp (B" Xivjrua + b Zojiu) }]
Yo ij;{:l / (tkq/ < R,-’?j/k) E {fi/j/k exp (ﬁTXi/j/k/ + b,IZi/j/k/)}

Xijki

e Finally, we maximize — log |~;(7)| — E {bT=; (7)b;} to update ~.
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Remarks

@ The starting values of the EM algorithm can be 5 =0, Ay = 1/my, and
Y= lg.

@ Due to the presence of the random effects, the conditional expectations in
the E-step are more complicated than those in Zeng et al. (2016).

@ The high-dimensional parameters Ay are calculated explicitly in the
M-step.

@ Each iteration of the EM algorithm guarantees an increase in the
likelihood.
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Variance estimation
@ Define the profile likelihood
pl,(0) = maxlog L, (6, A),
which can be computed using the same EM algorithm but with fixed 6.

o The covariance matrix of & can be estimated by

o ([Z {P1s(@+ he) = b1, 0} {p1 @+ hoes) - pln,-@}] )
i U:k)

h3

i—1

where pl,; denotes the ith cluster’s contribution to pl
canonical vector, and h,, is a constant of order n=1/2.

g is the jth

nt

o Compared to the variance estimator in Zeng et al. (2016), this Vis
guaranteed to be positive semidefinite and is more robust w.r.t. the
choice of h,.
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Asymptotic theory

Consistency: || — 60|l + 3} supsco g 1Ak(t) — Aok(t)] =5 0
Asymptotic normality & semiparametric efficiency:
V(@ — 60) % N(0,I;),
where fo is the efficient information matrix of 6.
Consistency of variance estimator: ||nV — Z3 ||, = o0,(1).

Convergence rate for A\y:

Ji K M
£ lZZZ {Ae W) ~ o (Uw)}Q] = 0, (W2 + 15 = olP + 17 = ) .
1=0

j=1 k=1
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Software

The methods developed in Zeng et al. (2016, 2017) have been implemented in
IntCens (https://dlin.web.unc.edu/software/intcens).
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Motivation

Random-effects models have several limitations.
@ Random effects may not adequately capture the dependence
@ Model misspecification may lead to invalid statistical inference
e Computationally demanding
@ Interpretation of 5 does not pertain to population-average effects

Marginal models formulate marginal distributions of multivariate event times
through univariate regression models while leaving the dependence structures
completely unspecified.

@ More robust inference
@ Faster and more stable computation

@ Interpretation of population-average effects for 3
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Marginal models

Notation:
@ n: number of independent clusters
@ Ji: number of subjects in the ith cluster
@ K: number of event types
@ Ty kth event time for the jth subject of the ith cluster
@ Xij(t): potentially time-dependent covariates

@ \jik(t|Xi): marginal hazard function for T conditional on Xj;

Marginal Cox model:
Nk (8 Xi) = Aw(t) exp { B X (t) }

@ [: type-specific regression parameters

@ Ai(+): arbitrary baseline hazard function
o Ai(t) = [y Mk(s)ds
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Remarks

Marginal Cox model:
Nk (8 Xi) = Aw(t) exp { B Xii (1) }

@ The dependence structures of the event times within a cluster and
between the K types of events are unspecified.

o By letting Xjx depend on k, we allow different sets of covariates for
different event types.
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Estimation
Data: {(L,‘jk,R,'jk,X,'jk)Z i = 1,...,n;j:1,...,J,-;k:1,...,K}

Independence working assumption: all event times are independent
conditional on covariates

Pseudo-likelihood:

~ n J Ly
Li(Br, Aie) = HH(GXP[—/O exp { Bk Xii(t) } d/\k(t)]

—exp {— /ORW exp { B X (t) } d/\k(t)D

Nonparametric maximum pseudo-likelihood estimation:
@ Extension of NPMLE

@ (Bk,N\k) can be estimated using the approach developed in Zeng et al.
(2016), i.e., Poisson data augmentation + EM algorithm.
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Variance estimation

@ Define the profile pseudo-log-likelihood for 5y as

Ple(Bk) = n}\axzk(ﬁka Ax)
k
o We estimate Cov(Bkﬁ,) by the sandwich covariance estimator

Vo = {08 oG} {Z Dhnplk,-(@)nhnpl,,@)T} {ohp(By}
i=1

> pl,;: ith cluster’'s contribution to pl,
> Dy, and Dﬁn: first- and second-order numerical derivatives with

perturbation constant h, = O(n~'/?)
» account for the dependence within clusters and between event types
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Asymptotic properties

Let 0 = (T,.... B)T.
Consistency: ||§— Bl + Zle SUPte[0,74] |ﬂk(t) — Nok(t)] 30
Asymptotic normality: /n(6 — 6p) % N(0, Q)

Consistency of variance estimator: {nd/}(k,l) is consistent for Q, regardless
of the dependence structures.
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Simultaneous Inference

e Parameters of interest: nx = By (k=1,...,K)

Estimators: 7y = Bkl (k=1,...,K)

o~

Covariance estimator: ¥V = {Vk,,ll}(k,,)
Global (Wald) test Hy : 1 = -+ =nx =0

N N1~ ~ d
W= (mn,...,nx)V¥ 1(771,...,T]K)T~>X%< under Hy

@ To make inference on an overall covariate effect, we can estimate a

common parameter 17y = --- =nx =1 by
K
ﬁ = Z Ckﬁk
k=1

> optimal weights cx are chosen to minimize Var(7)
> more efficient than the separate estimators 7x
» powerful test for no covariate effect on the K events
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Panel count data

@ Panel count data arise when only the number of recurrent events between
successive examinations can be observed.

> number of tumors in a cancer patient
» number of damaged joints in a psoriatic arthritis patient
> number of decayed teeth in a child

@ Investigators are often interested in evaluating the effects of covariates
(e.g., treatment) on the recurrent event process.

@ Challenges:

» Unknown recurrent event times
» Within-subject correlations of recurrent event times
> Within-subject correlations between different types of recurrent events

45 /59



Notation

n: number of subjects
K: number of types of recurrent events

Ni(t): number of the kth type of event that the ith subject has
experienced by time t (i=1,...,nand k=1,...,K);
non-homogeneous Poisson process

(]

Xi(t): potentially time-dependent covariates

bix: random effects for the kth type of event

& random effects shared by the K types of events
Aik(t| X, bik, &)  conditional intensity function for N (t)

e 6 o6 o
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Proportional intensity models

Ni(E1, b, &) = M) xp { BTX(8) + BLZi(1) + €7 Zi(1)}

Ak(t): unknown baseline intensity function

Bk: unknown type-specific regression parameters

Zi(t) and Zi(t): contain 1 and part of X;(t)

bix ~ N(0,Xy): accounts for within-subject correlations among recurrent
event times of the kth type

e & ~ N(0,WV): accounts for within-subject correlations between different
recurrent event processes

@ by (k=1,...,K) and & are mutually independent.
o If K=1, & is omitted.
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Data

Panel count data for the ith subject:

@ Examination times:
Uik = (0 = Uio, U1, - -, Uenr, ),  fork=1,... K
@ Event counts:
Nje = (D, ooy Dikns,), TFork=1,...,K
with Ay = Ni(Ui) — Nik(Uike j—1).

o Covariates: X;(t)

Independent censoring assumption: (U, ..., Uik) are independent of
(Ni, ..., Nik), (b, ..., bik), and & conditional on X;(-).
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Likelihood

° {A,-kj}J’.V’:fkl " Poisson with means f&j:’ k(] X, bik, &) dt
"=
@ The likelihood is proportional to

~ Ai:
) Uikj TXi(t)+b) Zi(t)+£T Zi(t ik
M {fu,-k,],-fl SPIXH O+ Zi(6)+€] Zi( )d,\k(t)}

n K
H (b(f;.W)H/ qb(b,-k;Zk)H —
i=1 [V k=1 * bik =1 Ajy!

Uik, >
X exp {_/ K e,BZXi(t)+blZ;(t)+§,-TZi(t)d/\k(t)} db,‘kdfi‘|
0

A(t) = fot Ak(s)ds: cumulative baseline intensity function

> t)
> ¢(-; X): multivariate normal density with mean 0 and covariance matrix X
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Estimation

NPMLE:
0 0 < ty1 < trp <+ < tkm,: unique values of Uy (i=1,...,n)
@ Ay jumpsize of A at tyy (I=1,...,my)
o Xt = Xi(tw), Zis = Zi(tw), and Zuy = Zi(tw)

New likelihood:

T Xy+bT Zi+£7 2
Mig (Z/tme U1, A €k Xiw by Zina & kl)
¢(s,,W)H ¢ (b Z) [ |

Ajyj

T T 5
X; b, Zj) . Z;
X exp (_ E )\kleﬂk ikl +by Ziki+€; 'kl)dbikdgi}
Ity < Ui

Direct maximization is infeasible due to lack of analytic expressions for Ag.
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Poissonization

@ We introduce independent latent Poisson variables Wiy with means
T T T .
NPk Xt by Zint&i Zin for j=1,... . m k=1,...,K; 1=1,...,m.

@ It is easy to see that the likelihood for Aj; is the same as the likelihood
for zg:litk/é(£hk44717Lhw] Wik = inkj'

@ Thus, we can maximize the likelihood through an EM algorithm, with
Wik, bik, and &; as missing data.
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EM algorithm

The complete-data log-likelihood is

n

K
1 110 4 1 1. 1o
>[5 tou(a) 9]~ 37w+ S { - log(en)? £l - 3015 o

i—1 k=1
K my
+ Z Z It < Uikm, ) {VV:kI (Iog Mt + B Xig + bl Zug + & /kl)
k=1 I=1

Ty T T
— APk Xt PaZia e 2 Jog Wiy }] -
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E-step

o In the E-step, we compute E(Wiq) and some E{H(by,&:)}.

@ For any tiy € (Ui j—1, Uij], conditional on Aj;, the covariates and
random effects, Wi, follows a binomial distribution with success
probability

Ail eﬂ;rxikl"'bl Zi+€] Zig

PikI = =
B Xikg+b} Zing+&T Zi
G tia € (Unes—1,Usg] )\kqe 1 Xikg+by Zikg+&; Zikg

Thus, E(Wig) = DNigE(pint).
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E-step (cont.)

@ In addition, the joint posterior density of {b,-k}f:1 and &; is proportional to

>\ D
K M; B Xini+by Zna+£7 Zina
d (Zl:tkIE(Ufk,j—hUikj] Awie '
fl: H lk zk H A |
k=1 j=1 ikj

X exp (_ E )\kleﬁzxikl+b;[<zikl+g;l—zikl> }

It < Ui,

@ The conditional expectations can then be calculated, with integrals over
bix and &; approximated by Gauss—Hermite quadrature.
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M-step

@ In the M-step, we first update Ay by

S0 H(Uses,, < ta) E(Wakg)
S0y WU, < tig) E (X0 bLZur+ 6] 2

Akl =

@ Then we update B¢ by applying the one-step Newton-Raphson method to
the score equation

n my
0= ZZ/ iy, < tk/)E( lkl){XikI

i=1 I=1

—~
Zin’:l I(U,le < tk/)E(eﬁer/k/+b’k I/kl+£i/Zi/kI)Xf’k/}

Sy Ursany, < ) (50w niieiin

o Finally, we set ¥ = n=2 37 E(b%?) and W = n~1 37, E(¢%2).
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Prediction

@ We can use the event history to improve the prediction of future events.
@ The event history at the current examination time t; consists of

H(to)z{nkZNk(to)Zk:l,...,K}

@ The key is to update the posterior density of the random effect £ based on
H(to), which is proportional to

¢(€ 'H(to f\ll H/ {/ +bT £)+&7 z d/\ (t)}nk

0 ~
X exp { /3kX( )+bTZ(t)+§T d/\k( )} ¢(bk; Zk)dbk
0

@ Then, the new event count of the kth type at t; > ty can be predicted by

[, 3l H(1w)) [ PIXOHTZOEZOGR, (1) e
fg (& H(to))dg
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Asymptotic properties

Let 6 contain fx and the upper triangular elements of ¥, and ¥
(k=1,...,K).

Consistency: [[§ — foll + 3iy suPeefo ) [Ak(t) — Aox(t)] 50

Asymptotic normality & semiparametric efficiency: /n(6 — 6y) converges
weakly to a mean-zero normal random vector whose covariance matrix attains
the semiparametric efficiency bound.

Variance estimation: The limiting covariance matrix of ﬁ(@— o) can be
consistently estimated by the inverse of the matrix whose (j, /)th element is

~

Cixm Pl (0 + Bner) = ply(@) | f pl(8 + haer) — ploi(6)
T e i

i=1

@ pl,;(#): ith subject’s contribution to the profile likelihood for 6
o h, = 0(n"1/?)
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Concluding remarks

@ The rationale behind Poisson data augmentation is that conditional on
latent variables, the counting process N(t) is a non-homogeneous Poisson
process with intensity function the same as the hazard/intensity function
for the failure time.

e With interval-censored data, the convergence rate of A is usually slower
than +/n. In all the papers discussed, A converges at a n'/3 rate.

@ However, the finite-dimensional component of the estimators is still
asymptotically normal and efficient, and the limiting variance can be
consistently estimated using profile likelihood.
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