STAT6018 Research Frontiers in Data Science Topic II: Introduction to empirical process theory

Yu Gu, PhD Assistant Professor

Department of Statistics & Actuarial Science The University of Hong Kong

Course Logistics

Course website: https://yugu-stat.github.io/teaching/stat6018

Lectures: Attendance is required

Final presentation: At Week 4, present an arbitrary theorem/lemma and its proof from the references within 20 mins (including Q & A).

References:

- van der Vaart, A. W. & Wellner, J. A. (1996). Weak Convergence and Empirical Processes. New York: Springer.
- Sen, B. (2018). A gentle introduction to empirical process theory and applications.
- Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. New York: Springer.

Table of Contents

Chapter 1: Introduction to empirical processes

- Overview
- Covering and bracketing numbers
- Maximal inequality and symmetrization

Table of Contents

Chapter 1: Introduction to empirical processes

- Overview
- Covering and bracketing numbers
- Maximal inequality and symmetrization

What is an empirical process?

- A stochastic process is a collection of random variables {X(t), t ∈ T} on the same probability space, indexed by an arbitrary index set T.
- In general, an *empirical process* is a stochastic process based on a random sample, usually of *n* i.i.d. random variables X_1, \ldots, X_n .

Example: empirical distribution function

Let X_1, \ldots, X_n be i.i.d. real-valued random variables with cumulative distribution function (c.d.f.) *F*. Then the *empirical distribution function* (e.d.f.) is defined as

$$\mathbb{F}_n(t) := rac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \leq t), \quad t \in \mathbb{R}.$$

 $\mathbb{F}_n(t)$ is one of the simplest examples of an empirical process.

Example: Kaplan-Meier estimator

Let $(X_1, \delta_1), \ldots, (X_n, \delta_n)$ be a sample of right-censored failure time observations. Then the *Kaplan-Meier estimator* of the survival function is given by

$$\widehat{S}(t) = \prod_{k:\mathcal{T}_k^0 \leq t} \left\{ 1 - \frac{\sum_{i=1}^n \delta_i \mathbf{1}(X_i = \mathcal{T}_k^0)}{\sum_{i=1}^n \mathbf{1}(X_i \geq \mathcal{T}_k^0)} \right\},\,$$

where $T_1^0 < T_2^0 < \cdots < T_K^0$ are unique observed failure times.

 $\widehat{S}(t)$ is another simple example of an empirical process.

General features of an empirical process

- The i.i.d. sample X_1, \ldots, X_n is drawn from a probability measure P on an arbitrary sample space \mathcal{X} .
- Define the *empirical measure* to be $\mathbb{P}_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$, where δ_x denotes the Dirac measure at x.
- For a measurable function $f : \mathcal{X} \mapsto \mathbb{R}$, define

$$\mathbb{P}_n f := \int f d\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

For any class *F* of such real-valued functions on *X*, {ℙ_nf : f ∈ *F*} is the empirical process indexed by *F*.

Start with the classical e.d.f. \mathbb{F}_n

- Setting $\mathcal{X} = \mathbb{R}$, \mathbb{F}_n can be re-expressed as the empirical process $\{\mathbb{P}_n f : f \in \mathcal{F}\}$, where $\mathcal{F} = \{\mathbb{1}(x \leq t), t \in \mathbb{R}\}$.
- By the law of large numbers, $\mathbb{F}_n(t) \stackrel{a.s.}{\rightarrow} F(t)$ for each $t \in \mathbb{R}$.
- By the central limit theorem, for each $t \in \mathbb{R}$,

$$\mathbb{G}_n(t) := \sqrt{n} \left(\mathbb{F}_n(t) - F(t) \right) \stackrel{d}{\to} N \Big(0, F(t)(1 - F(t)) \Big).$$

- From the functional perspective, uniform results over $t \in \mathbb{R}$ would be more appealing.
 - Need theory of empirical processes

Strengthened results on \mathbb{F}_n and \mathbb{G}_n

• Glivenko (1933) and Cantelli (1933) demonstrated that the previous result could be strengthened to

$$\|\mathbb{F}_n - F\|_{\infty} = \sup_{t\in\mathbb{R}} |\mathbb{F}_n(t) - F(t)| \stackrel{a.s.}{\to} 0.$$

• Donsker (1952) showed that

$$\mathbb{G}_n \stackrel{d}{\to} \mathbb{B}(F) \quad \text{in } \ell^{\infty}(\mathbb{R}),$$

where \mathbb{B} is the standard Brownian bridge process on [0, 1]; for any index set T, $\ell^{\infty}(T)$ denotes the space of all bounded functions $f : T \mapsto \mathbb{R}$.

Extend to general empirical processes

- Properties of the approximation of Pf by $\mathbb{P}_n f$, uniformly in \mathcal{F}
 - the random quantity $\|\mathbb{P}_n P\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathbb{P}_n f Pf|$
 - the empirical process $\mathbb{G}_n := \sqrt{n}(\mathbb{P}_n P)$
- Two special classes
 - ▶ Glivenko-Cantelli: *F* is *P*-Glivenko-Cantelli if

$$\|\mathbb{P}_n-P\|_{\mathcal{F}}\stackrel{a.s.}{\to} 0.$$

▶ **Donsker:** *F* is *P*-Donsker if

$$\mathbb{G}_n \stackrel{d}{\to} \mathbb{G}$$
 in $\ell^{\infty}(\mathcal{F})$,

where \mathbb{G} is a mean zero Gaussian process indexed by \mathcal{F} , and $\ell^{\infty}(\mathcal{F}) = \{ x : \mathcal{F} \mapsto \mathbb{R} | \|x\|_{\mathcal{F}} < \infty \}.$

Remarks

- Glivenko-Cantelli (GC): uniform almost surely convergence
- Donsker: uniform central limit theorem
- $\bullet \ \mathsf{Donsker} \Rightarrow \mathsf{GC}$
- \bullet GC or Donsker properties depend crucially on the complexity of $\mathcal{F}.$

Complexity of ${\mathcal F}$

For a given norm $\|\cdot\|$, such as the $L_r(Q)$ -norms, define the covering and bracketing numbers as follows:

Covering number

- denoted by $N(\epsilon, \mathcal{F}, \|\cdot\|)$
- minimum number of balls $B(f; \epsilon) := \{g : ||g f|| \le \epsilon\}$ needed to cover \mathcal{F}
- entropy without bracketing: $\log N(\epsilon, \mathcal{F}, \|\cdot\|)$

Bracketing number

- denoted by $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$
- minimum number of brackets $[\ell, u]$ with $\|\ell u\| < \epsilon$ needed to cover \mathcal{F}
- entropy with bracketing: $\log N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$

GC theorems

Theorem 1 (GC with bracketing)

A function class $\mathcal F$ is a P-Glivenko-Cantelli if

 $N_{[]}(\epsilon, \mathcal{F}, L_1(P)) < \infty,$ for every $\epsilon > 0.$

Theorem 2 (GC without bracketing)

A function class \mathcal{F} is a P-Glivenko-Cantelli if

$$\sup_{Q} N(\epsilon \|F\|_{L_1(Q)}, \mathcal{F}, L_1(Q)) < \infty, \quad \text{ for every } \epsilon > 0,$$

where F is an envelope function^a of \mathcal{F} , and the supremum is over all probability measures Q on \mathcal{X} .

^aAn envelope function of a class \mathcal{F} is any function $x \mapsto F(x)$ such that $|f(x)| \leq F(x)$, for every x and $f \in \mathcal{F}$.

Donsker theorems

Theorem 3 (Donsker with bracketing entropy integral)

A function class ${\mathcal F}$ is a P-Donsker if

$$\int_0^\infty \sqrt{\log N_{[]}\left(\epsilon, \mathcal{F}, L_2(P)\right)} d\epsilon < \infty.$$

Theorem 4 (Donsker with uniform entropy integral)

A function class \mathcal{F} is a P-Donsker if

$$\int_0^\infty \sup_Q \sqrt{\log N\left(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)\right)} d\epsilon < \infty,$$

where F is an envelope function of \mathcal{F} , and the supremum is over all probability measures Q on \mathcal{X} .

M-estimators

• Definition:

- Metric space: (Θ, d)
- $m_{ heta}: \mathcal{X}
 ightarrow \mathbb{R}$, for each $heta \in \Theta$
- "Empirical gain": $M_n(\theta) = \mathbb{P}_n m_{\theta}$
- *M*-estimator: $\hat{\theta}_n = \arg \max_{\theta \in \Theta} M_n(\theta)$
- Examples:
 - Maximum (penalized) likelihood estimator
 - Least squares estimator
 - Nonparametric maximum likelihood estimator

Application: consistency of *M*-estimators

• Two assumptions:

- 1. $\mathcal{F} := \{m_{\theta}(\cdot) : \theta \in \Theta\}$ is *P*-GC
- 2. θ_0 is a well-separated maximizer of $M(\theta) = Pm_{\theta}$, i.e., for every $\delta > 0$, $M(\theta_0) > \sup_{\theta \in \Theta: d(\theta, \theta_0) \ge \delta} M(\theta)$.

• For fixed $\delta > 0$, let $\psi(\delta) = M(\theta_0) - \sup_{\theta \in \Theta: d(\theta, \theta_0) \ge \delta} M(\theta) > 0$

$$egin{aligned} \left\{ d(\hat{ heta}_n, heta_0) \geq \delta
ight\} &\Rightarrow \mathcal{M}(\hat{ heta}_n) \leq \sup_{ heta \in \Theta: d(heta, heta_0) \geq \delta} \mathcal{M}(heta) \ &\Leftrightarrow \mathcal{M}(\hat{ heta}_n) - \mathcal{M}(heta_0) \leq -\psi(\delta) \ &\Rightarrow \mathcal{M}(\hat{ heta}_n) - \mathcal{M}(heta_0) + \left(\mathcal{M}_n(heta_0) - \mathcal{M}_n(\hat{ heta}_n)
ight) \leq -\psi(\delta) \ &\Rightarrow 2\sup_{ heta \in \Theta} |\mathcal{M}_n(heta) - \mathcal{M}(heta)| \geq \psi(\delta) \ &\Rightarrow \mathbb{P}\left(d(\hat{ heta}_n, heta_0) \geq \delta
ight) \leq \mathbb{P}\left(\sup_{ heta \in \Theta} |\mathcal{M}_n(heta) - \mathcal{M}(heta)| \geq \psi(\delta)/2
ight) o 0. \end{aligned}$$

Table of Contents

Chapter 1: Introduction to empirical processes

- Overview
- Covering and bracketing numbers
- Maximal inequality and symmetrization

Covering and packing numbers

Let (Θ, d) be an arbitrary semi-metric space.

Definition 5 (Covering number)

The ϵ -covering number $N(\epsilon, \Theta, d)$ is the minimal number of balls $B(x; \epsilon) := \{y \in \Theta : d(x, y) \le \epsilon\}$ of radius ϵ needed to cover the set Θ . The corresponding entropy number is $\log N(\epsilon, \Theta, d)$.

Definition 6 (Packing number)

Call a collection of points ϵ -separated if the distance between each pair of points is larger than ϵ . The packing number $D(\epsilon, \Theta, d)$ is the maximum number of ϵ -separated points in Θ .

Covering and packing numbers (cont.)

Lemma 7 (Covering vs packing numbers)

 $D(2\epsilon,\Theta,d) \leq N(\epsilon,\Theta,d) \leq D(\epsilon,\Theta,d), \quad \forall \epsilon > 0.$

Thus, packing and covering numbers have the same scaling in the radius ϵ .

- The first inequality can be easily proved by contradiction.
- The second inequality follows by the fact that Θ can be covered by the balls $B(\theta_i; \epsilon)$ (i = 1, ..., D), where $\theta_1, ..., \theta_D$ are the ϵ -separated points associated with the packing number D.

Example: bounded sets on Euclidean space

Example 8 (Bounded sets on Euclidean space)

For any bounded subset $\Theta \subset \mathbb{R}^p$, there exist constants c < C such that

$$c\left(rac{1}{\epsilon}
ight)^p \leq \textit{N}(\epsilon, \Theta, \|\cdot\|) \leq C\left(rac{1}{\epsilon}
ight)^p, \quad orall \epsilon \in (0,1).$$

Proof.

The union of $D(\epsilon, \Theta, \|\cdot\|)$ number of ϵ -separated balls of radius $\epsilon/2$ is contained in the set $\Theta' := \{\theta \in \mathbb{R}^p : \|\theta - \Theta\| < \epsilon/2\}$. Thus, $D(\epsilon, \Theta, \|\cdot\|) v_p \left(\frac{\epsilon}{2}\right)^p \leq Vol(\Theta')$, where v_p is the volume of the unit ball. On the other hand, $D(2\epsilon, \Theta, \|\cdot\|)$ number of 2ϵ -separated balls cover the set Θ . Thus, $D(2\epsilon, \Theta, \|\cdot\|) v_p(2\epsilon)^p \geq Vol(\Theta)$. The desired inequalities then follow by the above results and Lemma 7.

Example: bounded Lipschitz functions

Example 9 (Bounded Lipschitz functions)

Let $\mathcal{F} := \{f : [0,1] \mapsto [0,1] \mid f \text{ is } 1\text{-Lipschitz}\}$. Then there exists some constant A such that

$$\log N(\epsilon, \mathcal{F}, \left\|\cdot\right\|_{\infty}) \leq rac{A}{\epsilon}, \quad orall \epsilon > 0.$$

Proof.

If $\epsilon \geq 1$, take $f_0 \equiv 0$ and observe that $\forall f \in \mathcal{F}$, $||f - f_0||_{\infty} \leq 1 \leq \epsilon$. Then $N(\epsilon, \mathcal{F}, ||\cdot||_{\infty}) = 1$. Let $0 < \epsilon < 1$. Define a ϵ -grid of the interval [0, 1] (for both axes), i.e. $0 = a_0 < a_1 < \cdots, a_N = 1$ where $N = \lfloor 1/\epsilon \rfloor + 1$ and $a_k = k\epsilon$ for $k = 1, \cdots, N - 1$. Let $B_1 := [a_0, a_1]$ and $B_k := (a_{k-1}, a_k]$ for $k = 2, \cdots, N$. Example: bounded Lipschitz functions (cont.)

Proof (cont.)

For each $f \in \mathcal{F}$, define the step function $\widetilde{f} : [0,1] \mapsto \mathbb{R}$ as

$$\widetilde{f}(x) = \sum_{k=1}^{N} \epsilon \left\lfloor \frac{f(a_k)}{\epsilon} \right\rfloor \mathbb{1}_{B_k}(x).$$

Clearly, \tilde{f} is constant on each interval B_k and can only take values of the form $i\epsilon$ for $i = 0, \dots, N-1$. For any $x \in [0, 1]$, suppose that $x \in B_k$. By the Lipschitz property of f and the construction of \tilde{f} ,

$$\left|f(x)- ilde{f}(x)
ight|\leq\left|f(x)-f(a_k)
ight|+\left|f(a_k)- ilde{f}(a_k)
ight|\leq 2\epsilon.$$

Therefore, $\left\|f - \tilde{f}\right\|_{\infty} \leq 2\epsilon$.

Example: bounded Lipschitz functions (cont.)

Proof (cont.)

Now we count the number of distinct \tilde{f} 's obtained as f varies over \mathcal{F} . There are at most N choices for $\tilde{f}(a_1)$. Further, note that for any \tilde{f} and $k = 2, \dots, N$,

$$\begin{aligned} & \left|\tilde{f}(a_k) - \tilde{f}(a_{k-1})\right| \\ & \leq \left|\tilde{f}(a_k) - f(a_k)\right| + \left|f(a_k) - f(a_{k-1})\right| + \left|f(a_{k-1}) - \tilde{f}(a_{k-1})\right| \leq 3\epsilon. \end{aligned}$$

Thus, for fixed $\tilde{f}(a_{k-1})$, there are at most 7 choices left for $\tilde{f}(a_k)$. Therefore,

$$N(2\epsilon, \mathcal{F}, \left\|\cdot\right\|_{\infty}) \leq (\lfloor 1/\epsilon \rfloor + 1) 7^{\lfloor 1/\epsilon \rfloor},$$

which completes the proof.

Bracketing numbers

Let $(\mathcal{F}, \|\cdot\|)$ be a subset of a normed space of real functions $f : \mathcal{X} \mapsto \mathbb{R}$ on some set \mathcal{X} .

Definition 10 (Bracketing number)

Given two functions $I(\cdot)$ and $u(\cdot)$, the bracket [I, u] is the set of all functions $f \in \mathcal{F}$ with $I(x) \leq f(x) \leq u(x), \forall x \in \mathcal{X}$. An ϵ -bracket is a bracket [I, u] with $||I - u|| < \epsilon$. The bracketing number $N_{[]}(\epsilon, \mathcal{F}, ||\cdot||)$ is the minimum number of the ϵ -brackets needed to cover \mathcal{F} . The entropy with bracketing is $\log N_{[]}(\epsilon, \mathcal{F}, ||\cdot||)$.

Bracketing numbers (cont.)

Theorem 11 (Bracketing vs covering numbers)

Suppose that $\left\|\cdot\right\|$ has the Riesz property a. Then

$$N(\epsilon, \mathcal{F}, \|\cdot\|) \leq N_{[]}(2\epsilon, \mathcal{F}, \|\cdot\|), \quad \forall \epsilon > 0.$$

 $|f| \leq |g|$ implies that $||f|| \leq ||g||$.

- The proof uses the fact that every f within the 2ϵ -bracket [I, u] falls within the ball $B(\frac{l+u}{2}; \epsilon)$.
- In general, there is no converse inequality, so that bracketing numbers are bigger than covering numbers.
- A bracket gives pointwise control over a function.
- A ball under the $L_r(Q)$ -norm gives integrated control over a function.

Example: distribution functions

Example 12 (Distribution functions)

Recall that the function class relevant to the e.d.f. \mathbb{F}_n is $\mathcal{F} = \{\mathbb{1}_{(-\infty,t]} \mid t \in \mathbb{R}\}$. The bracketing numbers of \mathcal{F} are of polynomial orders:

$$N_{[]}(\epsilon, \mathcal{F}, L_1(P)) \leq \frac{2}{\epsilon},$$
$$N_{[]}(\epsilon, \mathcal{F}, L_2(P)) \leq \frac{2}{\epsilon^2}.$$

Proof.

Consider the brackets of the form $[\mathbb{1}_{(-\infty,t_{i-1}]},\mathbb{1}_{(-\infty,t_i]}]$ for a grid of points $-\infty = t_0 < t_1 < \cdots < t_N = \infty$ such that $F(t_i) - F(t_{i-1}) < \epsilon$ for $i = 1, \ldots, N$, where $N = \lfloor 1/\epsilon \rfloor + 1 < 2/\epsilon$. Clearly, these brackets can cover \mathcal{F} . Moreover, these brackets have $L_1(P)$ -size ϵ and $L_2(P)$ -size bounded by $\sqrt{\epsilon}$ (since $Pf^2 \leq Pf$ for every $0 \leq f \leq 1$).

27/45

Example: classes Lipschitz in a parameter

Example 13 (Classes Lipschitz in a parameter)

Consider a function class $\mathcal{F} = \{m_{\theta} : \theta \in \Theta\}$ which has a Lipschitz dependence on θ , i.e., there exists some function $F : \mathcal{X} \mapsto \mathbb{R}$ such that

$$|m_{ heta_1}(x) - m_{ heta_2}(x)| \leq F(x)d(heta_1, heta_2), \quad orall heta_1, heta_2 \in \Theta, orall x \in \mathcal{X}.$$

Then, for any norm $\|\cdot\|$,

$$N_{[]}(2\epsilon \|F\|, \mathcal{F}, \|\cdot\|) \leq N(\epsilon, \Theta, d).$$

Proof.

Let $\theta_1, \dots, \theta_p$ be an ϵ -cover of Θ (under the metric d). Then for every $\theta \in B(\theta_i; \epsilon)$, $|m_{\theta}(x) - m_{\theta_i}(x)| \le \epsilon F(x)$. Thus, the brackets $[m_{\theta_i} - \epsilon F, m_{\theta_i} + \epsilon F]$ $(i = 1, \dots, p)$, each of size $2\epsilon ||F||$, can cover \mathcal{F} .

Monotone functions

Theorem 14 (Monotone functions)

The class \mathcal{F} of monotone functions $f : \mathbb{R} \mapsto [0, 1]$ satisfies

$$\log N_{[]}(\epsilon, \mathcal{F}, L_r(Q)) \leq K(\frac{1}{\epsilon}), \quad \forall \epsilon > 0,$$

for every probability measure Q, every $r \ge 1$, and some constant K that depends on r only.

- The result implies that \mathcal{F} is Donsker (by Theorem 3).
- See Theorem 2.7.5 of VW for the proof.

Smooth functions

- \mathcal{X} : bounded, convex subset of \mathbb{R}^p with nonempty interior
- $\underline{\alpha}$: largest integer smaller than α , for any $\alpha > 0$
- D^k : differential operator of order k
- For a function $f : \mathcal{X} \mapsto \mathbb{R}$, define

$$\left\|f\right\|_{\alpha} = \max_{k \leq \underline{\alpha}} \sup_{D^{k}, x} |D^{k}f(x)| + \sup_{D^{\underline{\alpha}}, x, y} \frac{|D^{\underline{\alpha}}f(x) - D^{\underline{\alpha}}f(y)|}{\left\|x - y\right\|^{\alpha - \underline{\alpha}}}$$

 C^α_M(X): set of all continuous functions f : X → ℝ with ||f||_α ≤ M (f has uniformly bounded partial derivatives and the highest partial derivatives are Lipschitz)

Smooth functions (cont.)

Theorem 15 (Smooth functions)

There exists a constant K depending only on α , diam \mathcal{X} , and p such that

$$\log \mathsf{N}(\epsilon, C^{lpha}_1(\mathcal{X}), \left\|\cdot\right\|_{\infty}) \leq \mathsf{K}\left(rac{1}{\epsilon}
ight)^{p/lpha}, \ \log \mathsf{N}_{[]}(\epsilon, C^{lpha}_1(\mathcal{X}), \mathsf{L}_r(\mathcal{Q})) \leq \mathsf{K}\left(rac{1}{\epsilon}
ight)^{p/lpha},$$

for every $\epsilon > 0$, $r \ge 1$, and probability measure Q.

See Theorem 2.7.1 and Corollary 2.7.2 of VW for the proofs.

Convex functions

Theorem 16 (Convex functions)

For a compact, convex subset $C \subset \mathbb{R}^p$, the class \mathcal{F} of all convex functions $f : C \mapsto [0, 1]$ that are L-Lipschitz satisfies

$$\log N(\epsilon, \mathcal{F}, \left\|\cdot\right\|_{\infty}) \leq K(1+L)^{p/2} \left(rac{1}{\epsilon}
ight)^{p/2},$$

for some constant K depending on p and C only.

See Corollary 2.7.10 of VW for the proof.

Table of Contents

Chapter 1: Introduction to empirical processes

- Overview
- Covering and bracketing numbers
- Maximal inequality and symmetrization

Tail probability of random variables

Markov's inequality

Let $Z \ge 0$ be a random variable. Then for any t > 0,

$$P(Z \ge t) \le \frac{EZ}{t}.$$

• Chebyshev's inequality If Z has a finite variance Var(Z), then

$$P(|Z - EZ| \ge t) \le rac{Var(Z)}{t^2}$$

But these inequalities can only yield a tail bound of order t^{-2} , which may be too relaxed. The tail bound can be improved to an exponential decrease in t^2 by Hoeffding's inequality.

Hoeffding's inequality

Lemma 17 (Hoeffding's inequality)

Let X_1, \ldots, X_n be independent bounded random variables such that $X_i \in [a_i, b_i]$ with probability 1. Let $S_n = \sum_{i=1}^n X_i$. Then,

$$P(S_n - ES_n \ge t) \le e^{-2t^2 / \sum_{i=1}^n (b_i - a_i)^2},$$

 $P(S_n - ES_n \le -t) \le e^{-2t^2 / \sum_{i=1}^n (b_i - a_i)^2}.$

The proof uses Markov's inequality and the following lemma:

Lemma 18

Let X be a random variable with EX = 0 and $X \in [a, b]$ with probability 1. Then for any $\lambda > 0$,

$$\mathsf{E}(e^{\lambda X}) \leq e^{\lambda^2 (b-a)^2/8}.$$

Sub-Gaussian random variables

Definition 19 (Sub-Gaussian random variables)

A random variable X is called sub-Gaussian if there exist constants C, v > 0 such that $P(|X| > t) \le Ce^{-vt^2}$ for every t > 0.

Some equivalent characterizations of sub-Gaussian random variables:

- There exists a > 0 such that $E[e^{aX^2}] < \infty$.
- Laplace transform condition: $\exists B, b > 0$ such that $\forall \lambda \in \mathbb{R}, Ee^{\lambda(X E[X])} \leq Be^{\lambda^2 b}$.
- Moment condition: $\exists K > 0$ such that $\forall p \ge 1$, $(E|X|^p)^{1/p} \le K\sqrt{p}$.
- Union bound condition: $\exists c > 0$ such that $\forall n \ge c$,

$$E[\max\{|X_1 - E[X]|, \dots, |X_n - E[X]|\}] \le c\sqrt{\log n}$$

where X_1, \ldots, X_n are i.i.d. copies of X.

Sub-Gaussian processes

Definition 20 (Sub-Gaussian processes)

Let (T, d) be a semi-metric space and $\{X_t, t \in T\}$ be a stochastic process indexed by T. Then X_t is called sub-Gaussian w.r.t. the semi-metric d if

$$P(|X_s - X_t| > u) \leq 2 \exp\left(-\frac{u^2}{2d(s,t)^2}\right), \quad \forall s, t \in T, u > 0.$$

Any Gaussian process is sub-Gaussian w.r.t. the standard deviation semi-metric $d(s, t) = \sqrt{Var(X_s - X_t)}$.

Rademacher process and Hoeffding's inequality

Consider the Rademacher process

$$X_{a} = \sum_{i=1}^{n} a_{i} \varepsilon_{i}, \quad a = (a_{1}, \dots, a_{n}) \in \mathbb{R}^{n},$$
(1)

where ε_i 's are independent Radermacher variables which take values +1 and -1 with probability 1/2.

By the following special case of Hoeffding's inequality, Rademacher process is also sub-Gaussian (w.r.t. the Euclidean distance).

Lemma 21 (Hoeffding's inequality)

The Rademacher process $\{X_a : a \in \mathbb{R}^n\}$ defined in (1) satisfies

 $P(|X_a| > t) \le 2e^{-t^2/(2||a||^2)}.$

Bernstein's inequality

The following result gives tail bounds for random variables with larger than normal tails.

Lemma 22 (Bernstein's inequality)

For independent random variables Y_1, \ldots, Y_n with zero means and bounded ranges [-M, M], there exists a constant $v \ge Var(\sum_{i=1}^n Y_i)$ such that

$$P(|\sum_{i=1}^{n} Y_i| > t) \le 2e^{-rac{t^2}{2(v+Mt/3)}}.$$

- See page 855 of Shorack and Wellner (1986)¹ for the proof.
- Compared to the normal tail bound $e^{-t^2/(2\nu)}$, the extra term 2Mt/3 can be seen as a penalty for the non-normality.
- When $n \to \infty$, Mt/3 is typically negligible w.r.t. v.

¹ Shorack, G. R., & Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York 🗄 🕨 (🚊 👘 🔍 🔍 🔿

Maximal inequalities

Lemma 23 (Maximal inequality for sub-Gaussian variables)

Suppose that Y_1, \ldots, Y_N (not necessarily independent) are sub-Gaussian in the sense that $Ee^{\lambda Y_i} \leq e^{\lambda^2 \sigma^2/2}$ for all $\lambda > 0$ and $i = 1, \ldots, N$. Then,

$$E \max_{i=1,\ldots,N} Y_i \leq \sigma \sqrt{2 \log N}.$$

Proof.

By Jensen's inequality, we have

$$e^{\lambda E \max_{i=1,\ldots,N} Y_i} \leq E e^{\lambda \max_{i=1,\ldots,N} Y_i} \leq \sum_{i=1}^N E e^{\lambda Y_i} \leq N e^{\lambda^2 \sigma^2/2}.$$

Tanking logarithms yields

$$E \max_{i=1,\ldots,N} Y_i \leq \frac{\log N}{\lambda} + \frac{\lambda \sigma^2}{2} \leq \sigma \sqrt{2 \log N}.$$

40 / 45

Maximal inequalities (cont.)

Lemma 24

Let ψ be a strictly increasing, convex, non-negative function. Suppose that ξ_1, \ldots, ξ_N are random variables such that $E[\psi(|\xi_i|/c_i)] \leq L$ for $i = 1, \ldots, N$ and some constant L. Then,

$$E \max_{1 \leq i \leq N} |\xi_i| \leq \psi^{-1}(LN) \max_{1 \leq i \leq N} c_i.$$

Proof.

By the properties of $\psi\text{,}$

$$\psi\left(\frac{E\max|\xi_i|}{\max c_i}\right) \le \psi\left(E\max\frac{|\xi_i|}{c_i}\right) \le \sum_{i=1}^N E\psi\left(\frac{|\xi_i|}{c_i}\right) \le LN.$$

Apply ψ^{-1} to both sides.

Maximal inequalities (cont.)

Corollary 25

Let ξ_1, \ldots, ξ_N be Rademacher linear combinations, i.e., $\xi_i = \sum_{k=1}^n a_k^{(i)} \varepsilon_k$. Then there exists some constant C > 0 such that for $N \ge 2$,

$$\mathsf{E}\max_{1\leq i\leq N}|\xi_i|\leq C\sqrt{\log N}\max_{1\leq i\leq N}\|a^{(i)}\|,$$

where $a^{(i)} = (a_1^{(i)}, \dots, a_n^{(i)}) \in \mathbb{R}^n$.

Proof.

Use the fact that
$$E[e^{\xi_i^2/\left(6\|a^{(i)}\|^2\right)}] \leq 2$$
 and Lemma 24 with $\psi(x) = e^{x^2}$.

Symmetrization

Symmetrized empirical process:

$$f\mapsto \mathbb{P}_n^o f=rac{1}{n}\sum_{i=1}^n \varepsilon_i f(X_i),$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. Rademacher random variables.

• $\varepsilon_1, \ldots, \varepsilon_n$ are independent of (X_1, \ldots, X_n)

•
$$E(\mathbb{P}_n^o f) = 0$$

• For fixed (X_1, \ldots, X_n) , \mathbb{P}_n^o is a Rademacher process (hence sub-Gaussian).

Symmetrization result

Theorem 26 (Symmetrization)

For any class $\mathcal F$ of measurable functions,

$$E \left\| \mathbb{P}_n - P \right\|_{\mathcal{F}} \leq 2E \left\| \mathbb{P}_n^o \right\|_{\mathcal{F}}.$$

Proof.

Let Y_i be independent copies of X_i . For fixed (X_1, \ldots, X_n) ,

$$\left\|\mathbb{P}_n - P\right\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n [f(X_i) - Ef(Y_i)] \right| \le E_Y \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n [f(X_i) - f(Y_i)] \right|.$$

Taking expectation with respect to (X_1, \ldots, X_n) , we obtain

$$E \left\| \mathbb{P}_{n} - P \right\|_{\mathcal{F}} \leq E \left\| \frac{1}{n} \sum_{i=1}^{n} \left[f(X_{i}) - f(Y_{i}) \right] \right\|_{\mathcal{F}}$$

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Symmetrization result (cont.)

Proof (cont.)

We can see that adding a minus sign in front of $[f(X_i) - f(Y_i)]$ just exchanges X's and Y's, so the expectation remains unchanged. Thus, $E\frac{1}{n}\|\sum_{i=1}^{n}e_i[f(X_i) - f(Y_i)]\|_{\mathcal{F}}$ is the same for any $(e_1, \ldots, e_n) \in \{-1, +1\}^n$. Hence,

$$E\|\mathbb{P}_{n}-P\|_{\mathcal{F}} \leq E_{\varepsilon}E_{X,Y} \left\| \frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}[f(X_{i})-f(Y_{i})] \right\|_{\mathcal{F}}$$
$$\leq E_{\varepsilon}E_{X} \left\| \frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(X_{i}) \right\|_{\mathcal{F}} + E_{\varepsilon}E_{Y} \left\| \frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(Y_{i}) \right\|_{\mathcal{F}}$$
$$= 2E \|\mathbb{P}_{n}^{o}\|_{\mathcal{F}}.$$

45 / 45