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Course Logistics

Course website: https://yugu-stat.github.io/teaching/stat6018

Lectures: Attendance is required

Final presentation: At Week 4, present an arbitrary theorem/lemma and its
proof from the references within 20 mins (including Q & A).
References:

@ van der Vaart, A. W. & Wellner, J. A. (1996). Weak Convergence and
Empirical Processes. New York: Springer.

[§ Sen, B. (2018). A gentle introduction to empirical process theory and
applications.

[§ Kosorok, M. R. (2008). Introduction to empirical processes and
semiparametric inference. New York: Springer.
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What is an empirical process?

@ A stochastic process is a collection of random variables {X(t),t € T} on
the same probability space, indexed by an arbitrary index set T.

@ In general, an empirical process is a stochastic process based on a random
sample, usually of ni.i.d. random variables Xi, ..., X,.
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Example: empirical distribution function

Let Xi,..., X, bei.i.d. real-valued random variables with cumulative
distribution function (c.d.f.) F. Then the empirical distribution function
(e.d.f.) is defined as

1 n
F,(t) == ;ZI(X; <t), teR.
i=1

F,(t) is one of the simplest examples of an empirical process.
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Example: Kaplan-Meier estimator

Let (X1,01),...,(Xy,d,) be a sample of right-censored failure time
observations. Then the Kaplan-Meier estimator of the survival function is

given by
2 > 6il(Xi = TY)
st = ]I {1 -5 oy (0
K TI<t Zi:l l(Xi 2 Tk)

where TP < TQ < --- < T} are unique observed failure times.

g(t) is another simple example of an empirical process.
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General features of an empirical process

@ The i.i.d. sample Xi,..., X, is drawn from a probability measure P on an
arbitrary sample space X.

o Define the empirical measure to be P, = n~! 27:1 dx,, where J, denotes
the Dirac measure at x.

@ For a measurable function f : X — R, define

1I'I
Pof = | fdP, = =3 £(X)).
/d P20

e For any class F of such real-valued functions on X, {P,f : f € F} is the
empirical process indexed by F.
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Start with the classical e.d.f. IF,,

o Setting X = R, F,, can be re-expressed as the empirical process
{P,f : f € F}, where F = {1(x < t),t € R}.

o By the law of large numbers, F,(t) 2% F(t) for each t € R.
@ By the central limit theorem, for each t € R,
Ga(t) := v (Fa(t) = F(£)) 5 N0, F(£)(1 = F(2)).
@ From the functional perspective, uniform results over t € R would be

more appealing.
> Need theory of empirical processes
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Strengthened results on F,, and G,

o Glivenko (1933) and Cantelli (1933) demonstrated that the previous result
could be strengthened to

|Fp — Flloo = sup [Fa(t) — F(£)| %5 0.
teR
@ Donsker (1952) showed that
G, S B(F) in (>(R),

where B is the standard Brownian bridge process on [0, 1]; for any index
set T, £°°(T) denotes the space of all bounded functions f : T — R.
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Extend to general empirical processes

@ Properties of the approximation of Pf by P,f, uniformly in F
> the random quantity ||P, — P||F := supscr |[Pnf — Pf|
> the empirical process G, := v/n(P, — P)

@ Two special classes

> Glivenko-Cantelli: F is P-Glivenko-Cantelli if
P, — P|l= 23 0.
> Donsker: F is P-Donsker if
Gn 3G in®(F),

where G is a mean zero Gaussian process indexed by F, and
12(F) = {x tF = ]R} Ix]|F < oo}
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Remarks

e Glivenko-Cantelli (GC): uniform almost surely convergence

Donsker: uniform central limit theorem

@ Donsker = GC

GC or Donsker properties depend crucially on the complexity of F.
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Complexity of F

For a given norm || - ||, such as the L,(Q)-norms, define the covering and
bracketing numbers as follows:

Covering number
@ denoted by N(e, F,| - 1)

@ minimum number of balls B(f;€) := {g : ||g — f|| < €} needed to cover F

@ entropy without bracketing: log N(e, F, || - ||)

Bracketing number
o denoted by Ny(e, 7,1 - ||)

@ minimum number of brackets [¢, u] with ||¢ — u|| < € needed to cover F

o entropy with bracketing: log Ny(e, F, || - ||)
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GC theorems

Theorem 1 (GC with bracketing)
A function class F is a P-Glivenko-Cantelli if

Ny(e, F, Li(P)) < oo,  for every € > 0.

Theorem 2 (GC without bracketing)
A function class F is a P-Glivenko-Cantelli if

sup N(el|FllL, (@), F» L1(Q)) < oo,  for every e > 0,
Q

where F is an envelope function® of F, and the supremum is over all
probability measures Q on X .

3 An envelope function of a class F is any function x — F(x) such that |f(x)| < F(x), for every x and f € F.
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Donsker theorems

Theorem 3 (Donsker with bracketing entropy integral)

A function class F is a P-Donsker if

/ \/Iog Ny (e, F, Lx(P))de < oo.
0

Theorem 4 (Donsker with uniform entropy integral)

A function class F is a P-Donsker if

/ sup \/log N (e[|l @.2. F L2(Q))de < oo,
0 Q

where F is an envelope function of F, and the supremum is over all probability
measures @ on X .

v
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M-estimators

o Definition:
> Metric space: (O, d)

> mp: X — R, for each 6 € ©
> “Empirical gain”: M,(0) = P,my
» M-estimator: 0, = arg maxoce M,(0)
o Examples:
» Maximum (penalized) likelihood estimator
> Least squares estimator

» Nonparametric maximum likelihood estimator
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Application: consistency of M-estimators

@ Two assumptions:

1. F:={mg(:): 0 € ©}is P-GC

2. 6o is a well-separated maximizer of M(6) = Pmy, i.e., for every § > 0,

M (60) > suPgce:q(0,00)>5 M(9).

o For fixed § > 0, let 'lp(é) =M (00) - Supgee:d(e)eo)zé M(e) >0

{d(B00) > 6} = M@) < sup  M(B)

0€0:d(0,00)>6
& M(0,) — M (60) < —(5)

= M(B7) = M (60) + (My (60) — Ma(01)) < —0(6)
= 2325 [M,(0) — M(0)| = ()

P (d(G,00) > 5) < P (ggg IM,(0) — M(6)] > w(é)/z) o
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Covering and packing numbers

Let (©, d) be an arbitrary semi-metric space.

Definition 5 (Covering number)

The e-covering number N(e,©, d) is the minimal number of balls
B(x;€) :={y € © : d(x,y) < €} of radius € needed to cover the set ©. The
corresponding entropy number is log N(¢, ©, d).

Definition 6 (Packing number)

Call a collection of points e-separated if the distance between each pair of
points is larger than €. The packing number D(e, ©, d) is the maximum
number of e-separated points in ©.
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Covering and packing numbers (cont.)

Lemma 7 (Covering vs packing numbers)

D(2¢,0,d) < N(e,0,d) < D(¢,0,d), Ve > 0.

Thus, packing and covering numbers have the same scaling in the radius e.

@ The first inequality can be easily proved by contradiction.

@ The second inequality follows by the fact that © can be covered by the
balls B(#;;¢) (i =1,...,D), where 64, ...,0p are the e-separated points
associated with the packing number D.
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Example: bounded sets on Euclidean space

Example 8 (Bounded sets on Euclidean space)
For any bounded subset © C RP, there exist constants ¢ < C such that

. (1)13 < N0, | < C (1)13 Ve € (0,1).

Proof.

The union of D(e, ©, ||||) number of e-separated balls of radius €/2 is
contained in the set © := {# € RP : ||§ — O] < €/2}. Thus,

D(e,®, ||-|)vy (§)7 < VoI(©'), where v, is the volume of the unit ball. On the
other hand, D(2¢, ©, ||||) number of 2¢-separated balls cover the set ©. Thus,
D(2¢,0, ||-||)vp(2€)P > VoI(©). The desired inequalities then follow by the
above results and Lemma 7. my
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Example: bounded Lipschitz functions

Example 9 (Bounded Lipschitz functions)

Let F :={f :[0,1] — [0,1] | f is 1-Lipschitz}. Then there exists some
constant A such that

log N(e, F, |||l.) < —, Ve>D0.

o>

Proof.

If € > 1, take fy = 0 and observe that Vf € F, ||f — ]|, <1 <e. Then
N(E,.F, ||||oo) =1

Let 0 < € < 1. Define a e-grid of the interval [0, 1] (for both axes), i.e.
0O=ayp<a <---,ay=1where N=|1/e| +1 and ax = ke for
k=1,--- ,N—1.

Let B; := [30, 31] and By = (ak_l, ak] for k = 2,---,N.
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Example: bounded Lipschitz functions (cont.)

Proof (cont.)

For each f € F, define the step function f : [0,1] — R as

F(x) = EN:E V(ak)J 1, (x).

€
k=1

Clearly, f is constant on each interval B, and can only take values of the form
je for i =0,--- , N —1.

For any x € [0,1], suppose that x € Bi. By the Lipschitz property of f and
the construction of 7‘,

|F(x) = FOO] < [F(x) = F(a)] + [F(ax) — F(ax)| < 2e.

Therefore, Hf — ?HDO < 2e.
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Example: bounded Lipschitz functions (cont.)

Proof (cont.)

Now we count the number of distjnct f's obtained as f varies over~]-'.
There are at most N choices for f(a;). Further, note that for any f and
k=2---,N,

|? ak 1)’

|? ak |#—|f ak)-— f(ak 1 |%—|f Ak— 1)-— f(ak 1)“< 3e.

Thus, for fixed 7(ax_1), there are at most 7 choices left for f(a,). Therefore,

NQ2e, F, |l lloe) < (11/e] + 1) 7H/),

which completes the proof.
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Bracketing numbers

Let (F,||-||) be a subset of a normed space of real functions f : X — R on
some set X.

Definition 10 (Bracketing number)

Given two functions I(-) and u(-), the bracket [I, u] is the set of all functions
f e F with I(x) < f(x) < u(x),Vx € X. An e-bracket is a bracket [/, u] with
Il = ull < e. The bracketing number Ny(e, F, ||-||) is the minimum number of
the e-brackets needed to cover F. The entropy with bracketing is

log Ny (e, 7, [|-[1)-
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Bracketing numbers (cont.)

Theorem 11 (Bracketing vs covering numbers)

Suppose that ||-|| has the Riesz property®. Then

N(e, F, ||-I) < Ng(2¢, F, [|-[), Ve > 0.

2|f| < gl implies that || f]| < ||gl|-

@ The proof uses the fact that every f within the 2e-bracket [/, u] falls
within the ball B(5%;¢).

@ In general, there is no converse inequality, so that bracketing numbers are
bigger than covering numbers.

@ A bracket gives pointwise control over a function.

o A ball under the L,(Q)-norm gives integrated control over a function.
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Example: distribution functions

Example 12 (Distribution functions)

Recall that the function class relevant to the e.d.f. I, is
F ={l(—c,q | t € R}. The bracketing numbers of F are of polynomial orders:

N

N[](E,.F, Ll(P)) < g,
2
Ny(e, F, Lx(P)) < =

5

Proof.

Consider the brackets of the form [1(_ s _,]; I (=] for a grid of points
—c0 =1ty <t <--- <ty =oosuch that F(t;) — F(ti—1) < € for
i=1,...,N, where N=[1/e] +1 < 2/e.

Clearly, these brackets can cover F. Moreover, these brackets have L;(P)-size
€ and Ly(P)-size bounded by +/¢ (since Pf? < Pf for every 0 < f < 1). O

v
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Example: classes Lipschitz in a parameter

Example 13 (Classes Lipschitz in a parameter)

Consider a function class F = {my : 0 € ©} which has a Lipschitz dependence
on 0, i.e., there exists some function F : X — R such that

|m91(x) = mgz(X)| < F(x)d(01,02), V01,02 € G),Vx e X.

Then, for any norm |-

’

Ny(2e[FI F5 I1-) < N(e, ©, d).

Proof.

Let 61,--- ,0, be an e-cover of © (under the metric d).

Then for every 0 € B(0;; €), |mg(x) — mp,(x)| < eF(x).

Thus, the brackets [my, — ¢F, my, + €F] (i =1,--- , p), each of size 2¢||F||,
can cover F. 0l
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Monotone functions

Theorem 14 (Monotone functions)

The class F of monotone functions f : R — [0, 1] satisfies

08 Ny(e, 7, L(Q)) < K(3), Ve >0,

for every probability measure Q, every r > 1, and some constant K that
depends on r only.

@ The result implies that F is Donsker (by Theorem 3).
@ See Theorem 2.7.5 of VW for the proof.
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Smooth functions

e X: bounded, convex subset of RP with nonempty interior
o «: largest integer smaller than «, for any a > 0

e Dk differential operator of order k

@ For a function f : X — R, define

D2f — D&f
]|, = max sup |D*f(x)| + sup | (*) aia(y)‘
k<o pr Drxy lx—ylITF

o Ci(X): set of all continuous functions f : X — R with [|f||, < M
(f has uniformly bounded partial derivatives and the highest partial
derivatives are Lipschitz)
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Smooth functions (cont.)

Theorem 15 (Smooth functions)

There exists a constant K depending only on «, diamX’, and p such that

1 p/o
og (e, ()M < K (1)

p/a
Iog N[](e, Cla(X), Lr(Q)) < K (1> )

€

for every € > 0, r > 1, and probability measure Q.

See Theorem 2.7.1 and Corollary 2.7.2 of VW for the proofs.
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Convex functions

Theorem 16 (Convex functions)

For a compact, convex subset C C RP, the class F of all convex functions
f: C > [0,1] that are L-Lipschitz satisfies

p/2
log N(e, 7, | [l) < K(1+ L)P2 (1) 7
€

for some constant K depending on p and C only.

See Corollary 2.7.10 of VW for the proof.
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Tail probability of random variables

@ Markov’s inequality
Let Z > 0 be a random variable. Then for any t > 0,

EZz
P(Z>1t)< -
o Chebyshev’s inequality
If Z has a finite variance Var(Z), then

< Var(Z).
<

P(1Z - EZ| > t)

But these inequalities can only yield a tail bound of order t~2, which may be
too relaxed. The tail bound can be improved to an exponential decrease in t2
by Hoeffding's inequality.
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Hoeffding's inequality

Lemma 17 (Hoeffding's inequality)

Let Xi,...,X, be independent bounded random variables such that
X; € [aj, bi] with probability 1. Let S, =" | X;. Then,

P(Sn - ES,, Z t) S e_2t2/ Z;’:l(b;—ai)27
P(Sn — ESn é _t) S e—2t2/ Z:’Zl(bi_ai)z.

The proof uses Markov's inequality and the following lemma:

Lemma 18

Let X be a random variable with EX = 0 and X € [a, b] with probability 1.

Then for any A > 0,
E(e’\X) < e/\z(b—a)z/s.
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Sub-Gaussian random variables

Definition 19 (Sub-Gaussian random variables)

A random variable X is called 2sub—Gaussian if there exist constants C,v > 0
such that P(|X| > t) < Ce™" for every t > 0.

Some equivalent characterizations of sub-Gaussian random variables:
o There exists a > 0 such that E[e™X] < oo.

@ Laplace transform condition: 3B, b > 0 such that
VA € R, EX—EX) < BeA’p,

o Moment condition: 3K > 0 such that Vp > 1, (E|X|P)/P < K/p.
@ Union bound condition: 3¢ > 0 such that Vn > c,

E[max{|X1 — E[X]],...,|Xs — E[X]|}] < c\/logn

where Xi,..., X, are i.i.d. copies of X.
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Sub-Gaussian processes

Definition 20 (Sub-Gaussian processes)

Let (T,d) be a semi-metric space and {X;,t € T} be a stochastic process
indexed by T. Then X; is called sub-Gaussian w.r.t. the semi-metric d if

2
P(|Xs — X <2 - T .
(| Xs = Xe| > ) < exp( 2d(s,t)2>’ Vs,t€ T,u>0

Any Gaussian process is sub-Gaussian w.r.t. the standard deviation

semi-metric d(s,t) = /Var(X; — X;).

37/45



Rademacher process and Hoeffding's inequality
Consider the Rademacher process

n
Xa:Za,-s,-, a=(a1,...,an) ER" (1)
i—1

where ¢;'s are independent Radermacher variables which take values +1 and
—1 with probability 1/2.

By the following special case of Hoeffding's inequality, Rademacher process is
also sub-Gaussian (w.r.t. the Euclidean distance).

Lemma 21 (Hoeffding's inequality)
The Rademacher process {X, : a € R"} defined in (1) satisfies

P(|1X,| > t) < 2e~/ClIalP),
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Bernstein's inequality

The following result gives tail bounds for random variables with larger than
normal tails.

Lemma 22 (Bernstein's inequality)

For independent random variables Y1, ..., Y, with zero means and bounded
ranges [—M, M|, there exists a constant v > Var(}_!_, Y;) such that

n 2
P(| Z Y’| > t) < e 2AviME/3)

i=1

o See page 855 of Shorack and Wellner (1986)! for the proof.

o Compared to the normal tail bound e=*/(2") the extra term 2Mt/3 can
be seen as a penalty for the non-normality.

e When n — oo, Mt/3 is typically negligible w.r.t. v.

LShorack, G. R., & Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
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Maximal inequalities

Lemma 23 (Maximal inequality for sub-Gaussian variables)

Suppose that Yi, ..., Yn (not necessarily independent) are sub-Gaussian in the
sense that Ee\Yi < eNo°/2 for all A\ >0 and i = 1,..., N. Then,

E max Y;<ogy/2logh.

i=1,...,

Proof.

By Jensen's inequality, we have

Tanking logarithms yields

logN  \o?
E;TaxNY,-S oi +%§J\/2logN.

)

40 /45



Maximal inequalities (cont.)

Lemma 24
Let 1) be a strictly increasing, convex, non-negative function. Suppose that

&, ...,&n are random variables such that E[(|&i|/ci)] < L fori=1,...,N
and some constant L. Then,

| < qhp L g
E max €] < 9T(LN) max

Proof.
By the properties of 1,

N
n (Emax|§,|) < <Emax|£i|) < ZEw (|£’|> < LN.
max ¢; Ci i1 Ci

Apply ¥~! to both sides. O
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Maximal inequalities (cont.)

Corollary 25

Let &1, ...,&y be Rademacher linear combinations, i.e., & = ZZ=1 af(")sk.

Then there exists some constant C > 0 such that for N > 2,
E max |&] < Cy/log N max ||a()
max [6] < C/log NV max. 12,

where al (a )) € R".

Proof.
Use the fact that E[eg"z/(mla(i)”z)] < 2 and Lemma 24 with ¢(x) = e*.
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Symmetrization

Symmetrized empirical process:

o 1 .
fs Pof = Z;e,-f(X,-),

where €1, ...,¢&, are i.i.d. Rademacher random variables.
@ c1,...,&, are independent of (Xi,...,X,)
o E(P°f) =0
o For fixed (Xi,...,X,), P2 is a Rademacher process (hence sub-Gaussian).
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Symmetrization result

Theorem 26 (Symmetrization)

For any class F of measurable functions,

E|[P, — Pllz < 2E P3| - -

Proof.
Let Y; be independent copies of X;. For fixed (Xi,...,X,),

1 n
P, — P||z = sup — f(Xi) — Ef(Y;
I, Pl = sup £ |3 #(X) — EF(Y)

1
< Ey sup —
fex n

D_IFX) = ()

Taking expectation with respect to (Xi, ..., X,), we obtain

EB,— Pl < E|| TS 1700) — £ (%)
i=1

F
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Symmetrization result (cont.)

Proof (cont.)

We can see that adding a minus sign in front of [f(X;) — f(Y;)] just exchanges
X's and Y's, so the expectation remains unchanged. Thus,

EL|S0, e[f(Xi) — £(Y7)]|| 7 is the same for any (e1,...,e,) € {—1,+1}".
Hence,

n

=S lf () - ()]

i=1

1 n

= (X))
n i=1

7 -

E|P, — Pl < EcEx,y

f

1 n
Ei;s,-f(y,)

< E.Ex + E.Ey

].'

F
=2E||P},
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