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Course Logistics

Course website: https://yugu-stat.github.io/teaching/stat6018

Lectures: Attendance is required

Final presentation: At Week 4, present an arbitrary theorem/lemma and its
proof from the references within 20 mins (including Q & A).

References:
van der Vaart, A. W. & Wellner, J. A. (1996). Weak Convergence and
Empirical Processes. New York: Springer.

Sen, B. (2018). A gentle introduction to empirical process theory and
applications.

Kosorok, M. R. (2008). Introduction to empirical processes and
semiparametric inference. New York: Springer.
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What is an empirical process?

A stochastic process is a collection of random variables {X (t), t ∈ T} on
the same probability space, indexed by an arbitrary index set T .

In general, an empirical process is a stochastic process based on a random
sample, usually of n i.i.d. random variables X1, . . . ,Xn.

5 / 45



Example: empirical distribution function

Let X1, . . . ,Xn be i.i.d. real-valued random variables with cumulative
distribution function (c.d.f.) F . Then the empirical distribution function
(e.d.f.) is defined as

Fn(t) := 1
n

n∑
i=1

1(Xi ≤ t), t ∈ R.

Fn(t) is one of the simplest examples of an empirical process.
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Example: Kaplan-Meier estimator

Let (X1, δ1), . . . , (Xn, δn) be a sample of right-censored failure time
observations. Then the Kaplan-Meier estimator of the survival function is
given by

Ŝ(t) =
∏

k:T 0
k ≤t

{
1 −

∑n
i=1 δi1(Xi = T 0

k )∑n
i=1 1(Xi ≥ T 0

k )

}
,

where T 0
1 < T 0

2 < · · · < T 0
K are unique observed failure times.

Ŝ(t) is another simple example of an empirical process.
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General features of an empirical process

The i.i.d. sample X1, . . . ,Xn is drawn from a probability measure P on an
arbitrary sample space X .

Define the empirical measure to be Pn = n−1 ∑n
i=1 δXi , where δx denotes

the Dirac measure at x .

For a measurable function f : X 7→ R, define

Pnf :=
∫

fdPn = 1
n

n∑
i=1

f (Xi).

For any class F of such real-valued functions on X , {Pnf : f ∈ F} is the
empirical process indexed by F .
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Start with the classical e.d.f. Fn

Setting X = R, Fn can be re-expressed as the empirical process
{Pnf : f ∈ F}, where F = {1(x ≤ t), t ∈ R}.

By the law of large numbers, Fn(t) a.s.→ F (t) for each t ∈ R.

By the central limit theorem, for each t ∈ R,

Gn(t) :=
√

n (Fn(t) − F (t)) d→ N
(

0,F (t)(1 − F (t))
)
.

From the functional perspective, uniform results over t ∈ R would be
more appealing.

▶ Need theory of empirical processes
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Strengthened results on Fn and Gn

Glivenko (1933) and Cantelli (1933) demonstrated that the previous result
could be strengthened to

∥Fn − F∥∞ = sup
t∈R

|Fn(t) − F (t)| a.s.→ 0.

Donsker (1952) showed that

Gn
d→ B(F ) in ℓ∞(R),

where B is the standard Brownian bridge process on [0, 1]; for any index
set T , ℓ∞(T ) denotes the space of all bounded functions f : T 7→ R.
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Extend to general empirical processes

Properties of the approximation of Pf by Pnf , uniformly in F
▶ the random quantity ∥Pn − P∥F := supf ∈F |Pnf − Pf |
▶ the empirical process Gn :=

√
n(Pn − P)

Two special classes
▶ Glivenko-Cantelli: F is P-Glivenko-Cantelli if

∥Pn − P∥F
a.s.→ 0.

▶ Donsker: F is P-Donsker if

Gn
d→ G in ℓ∞(F),

where G is a mean zero Gaussian process indexed by F , and
ℓ∞(F) =

{
x : F 7→ R

∣∣ ∥x∥F < ∞
}

.
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Remarks

Glivenko-Cantelli (GC): uniform almost surely convergence

Donsker: uniform central limit theorem

Donsker ⇒ GC

GC or Donsker properties depend crucially on the complexity of F .
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Complexity of F

For a given norm ∥ · ∥, such as the Lr (Q)-norms, define the covering and
bracketing numbers as follows:

Covering number
denoted by N(ϵ,F , ∥ · ∥)

minimum number of balls B(f ; ϵ) := {g : ∥g − f ∥ ≤ ϵ} needed to cover F

entropy without bracketing: log N(ϵ,F , ∥ · ∥)

Bracketing number
denoted by N[](ϵ,F , ∥ · ∥)

minimum number of brackets [ℓ, u] with ∥ℓ− u∥ < ϵ needed to cover F

entropy with bracketing: log N[](ϵ,F , ∥ · ∥)
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GC theorems

Theorem 1 (GC with bracketing)
A function class F is a P-Glivenko-Cantelli if

N[](ϵ,F , L1(P)) < ∞, for every ϵ > 0.

Theorem 2 (GC without bracketing)
A function class F is a P-Glivenko-Cantelli if

sup
Q

N(ϵ∥F∥L1(Q),F , L1(Q)) < ∞, for every ϵ > 0,

where F is an envelope functiona of F , and the supremum is over all
probability measures Q on X .

aAn envelope function of a class F is any function x 7→ F (x) such that |f (x)| ≤ F (x), for every x and f ∈ F .
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Donsker theorems

Theorem 3 (Donsker with bracketing entropy integral)
A function class F is a P-Donsker if∫ ∞

0

√
log N[] (ϵ,F , L2(P))dϵ < ∞.

Theorem 4 (Donsker with uniform entropy integral)
A function class F is a P-Donsker if∫ ∞

0
sup

Q

√
log N (ϵ∥F∥Q,2,F , L2(Q))dϵ < ∞,

where F is an envelope function of F , and the supremum is over all probability
measures Q on X .
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M-estimators

Definition:
▶ Metric space: (Θ, d)
▶ mθ : X → R, for each θ ∈ Θ
▶ “Empirical gain”: Mn(θ) = Pnmθ

▶ M-estimator: θ̂n = arg maxθ∈Θ Mn(θ)

Examples:
▶ Maximum (penalized) likelihood estimator
▶ Least squares estimator
▶ Nonparametric maximum likelihood estimator
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Application: consistency of M-estimators

Two assumptions:
1. F := {mθ(·) : θ ∈ Θ} is P-GC

2. θ0 is a well-separated maximizer of M(θ) = Pmθ, i.e., for every δ > 0,
M (θ0) > supθ∈Θ:d(θ,θ0)≥δ M(θ).

For fixed δ > 0, let ψ(δ) = M (θ0) − supθ∈Θ:d(θ,θ0)≥δ M(θ) > 0{
d(θ̂n, θ0) ≥ δ

}
⇒ M(θ̂n) ≤ sup

θ∈Θ:d(θ,θ0)≥δ

M(θ)

⇔ M(θ̂n) − M (θ0) ≤ −ψ(δ)

⇒ M(θ̂n) − M (θ0) +
(

Mn (θ0) − Mn(θ̂n)
)

≤ −ψ(δ)

⇒ 2 sup
θ∈Θ

|Mn(θ) − M(θ)| ≥ ψ(δ)

⇒ P
(

d(θ̂n, θ0) ≥ δ
)

≤ P
(

sup
θ∈Θ

|Mn(θ) − M(θ)| ≥ ψ(δ)/2
)

→ 0.
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Covering and packing numbers

Let (Θ, d) be an arbitrary semi-metric space.

Definition 5 (Covering number)
The ϵ-covering number N(ϵ,Θ, d) is the minimal number of balls
B(x ; ϵ) := {y ∈ Θ : d(x , y) ≤ ϵ} of radius ϵ needed to cover the set Θ. The
corresponding entropy number is log N(ϵ,Θ, d).

Definition 6 (Packing number)
Call a collection of points ϵ-separated if the distance between each pair of
points is larger than ϵ. The packing number D(ϵ,Θ, d) is the maximum
number of ϵ-separated points in Θ.
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Covering and packing numbers (cont.)

Lemma 7 (Covering vs packing numbers)

D(2ϵ,Θ, d) ≤ N(ϵ,Θ, d) ≤ D(ϵ,Θ, d), ∀ϵ > 0.

Thus, packing and covering numbers have the same scaling in the radius ϵ.

The first inequality can be easily proved by contradiction.
The second inequality follows by the fact that Θ can be covered by the
balls B(θi ; ϵ) (i = 1, . . . ,D), where θ1, . . . , θD are the ϵ-separated points
associated with the packing number D.
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Example: bounded sets on Euclidean space

Example 8 (Bounded sets on Euclidean space)
For any bounded subset Θ ⊂ Rp, there exist constants c < C such that

c
(

1
ϵ

)p
≤ N(ϵ,Θ, ∥·∥) ≤ C

(
1
ϵ

)p
, ∀ϵ ∈ (0, 1).

Proof.
The union of D(ϵ,Θ, ∥·∥) number of ϵ-separated balls of radius ϵ/2 is
contained in the set Θ′ := {θ ∈ Rp : ∥θ − Θ∥ < ϵ/2}. Thus,
D(ϵ,Θ, ∥·∥)vp

(
ϵ
2
)p ≤ Vol(Θ′), where vp is the volume of the unit ball. On the

other hand, D(2ϵ,Θ, ∥·∥) number of 2ϵ-separated balls cover the set Θ. Thus,
D(2ϵ,Θ, ∥·∥)vp(2ϵ)p ≥ Vol(Θ). The desired inequalities then follow by the
above results and Lemma 7.
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Example: bounded Lipschitz functions

Example 9 (Bounded Lipschitz functions)
Let F := {f : [0, 1] 7→ [0, 1] | f is 1-Lipschitz}. Then there exists some
constant A such that

log N(ϵ,F , ∥·∥∞) ≤ A
ϵ
, ∀ϵ > 0.

Proof.
If ϵ ≥ 1, take f0 ≡ 0 and observe that ∀f ∈ F , ∥f − f0∥∞ ≤ 1 ≤ ϵ. Then
N(ϵ,F , ∥·∥∞) = 1.
Let 0 < ϵ < 1. Define a ϵ-grid of the interval [0, 1] (for both axes), i.e.
0 = a0 < a1 < · · · , aN = 1 where N = ⌊1/ϵ⌋ + 1 and ak = kϵ for
k = 1, · · · ,N − 1.
Let B1 := [a0, a1] and Bk := (ak−1, ak ] for k = 2, · · · ,N.
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Example: bounded Lipschitz functions (cont.)

Proof (cont.)
For each f ∈ F , define the step function f̃ : [0, 1] 7→ R as

f̃ (x) =
N∑

k=1
ϵ

⌊
f (ak)
ϵ

⌋
1Bk (x).

Clearly, f̃ is constant on each interval Bk and can only take values of the form
iϵ for i = 0, · · · ,N − 1.
For any x ∈ [0, 1], suppose that x ∈ Bk . By the Lipschitz property of f and
the construction of f̃ ,∣∣f (x) − f̃ (x)

∣∣ ≤ |f (x) − f (ak)| +
∣∣f (ak) − f̃ (ak)

∣∣ ≤ 2ϵ.

Therefore,
∥∥f − f̃

∥∥
∞ ≤ 2ϵ.
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Example: bounded Lipschitz functions (cont.)

Proof (cont.)
Now we count the number of distinct f̃ ’s obtained as f varies over F .
There are at most N choices for f̃ (a1). Further, note that for any f̃ and
k = 2, · · · ,N,∣∣f̃ (ak) − f̃ (ak−1)

∣∣
≤

∣∣f̃ (ak) − f (ak)
∣∣ + |f (ak) − f (ak−1)| +

∣∣f (ak−1) − f̃ (ak−1)
∣∣ ≤ 3ϵ.

Thus, for fixed f̃ (ak−1), there are at most 7 choices left for f̃ (ak). Therefore,

N(2ϵ,F , ∥·∥∞) ≤ (⌊1/ϵ⌋ + 1) 7⌊1/ϵ⌋,

which completes the proof.
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Bracketing numbers

Let (F , ∥·∥) be a subset of a normed space of real functions f : X 7→ R on
some set X .

Definition 10 (Bracketing number)
Given two functions l(·) and u(·), the bracket [l , u] is the set of all functions
f ∈ F with l(x) ≤ f (x) ≤ u(x),∀x ∈ X . An ϵ-bracket is a bracket [l , u] with
∥l − u∥ < ϵ. The bracketing number N[](ϵ,F , ∥·∥) is the minimum number of
the ϵ-brackets needed to cover F . The entropy with bracketing is
log N[](ϵ,F , ∥·∥).
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Bracketing numbers (cont.)

Theorem 11 (Bracketing vs covering numbers)
Suppose that ∥·∥ has the Riesz propertya. Then

N(ϵ,F , ∥·∥) ≤ N[](2ϵ,F , ∥·∥), ∀ϵ > 0.
a|f | ≤ |g| implies that ∥f ∥ ≤ ∥g∥.

The proof uses the fact that every f within the 2ϵ-bracket [l , u] falls
within the ball B( l+u

2 ; ϵ).
In general, there is no converse inequality, so that bracketing numbers are
bigger than covering numbers.
A bracket gives pointwise control over a function.
A ball under the Lr (Q)-norm gives integrated control over a function.
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Example: distribution functions

Example 12 (Distribution functions)
Recall that the function class relevant to the e.d.f. Fn is
F = {1(−∞,t] | t ∈ R}. The bracketing numbers of F are of polynomial orders:

N[](ϵ,F , L1(P)) ≤ 2
ϵ
,

N[](ϵ,F , L2(P)) ≤ 2
ϵ2
.

Proof.
Consider the brackets of the form [1(−∞,ti−1],1(−∞,ti ]] for a grid of points
−∞ = t0 < t1 < · · · < tN = ∞ such that F (ti) − F (ti−1) < ϵ for
i = 1, . . . ,N, where N = ⌊1/ϵ⌋ + 1 < 2/ϵ.
Clearly, these brackets can cover F . Moreover, these brackets have L1(P)-size
ϵ and L2(P)-size bounded by

√
ϵ (since Pf 2 ≤ Pf for every 0 ≤ f ≤ 1).
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Example: classes Lipschitz in a parameter

Example 13 (Classes Lipschitz in a parameter)
Consider a function class F = {mθ : θ ∈ Θ} which has a Lipschitz dependence
on θ, i.e., there exists some function F : X 7→ R such that

|mθ1(x) − mθ2(x)| ≤ F (x)d(θ1, θ2), ∀θ1, θ2 ∈ Θ,∀x ∈ X .

Then, for any norm ∥·∥,

N[](2ϵ ∥F∥ ,F , ∥·∥) ≤ N(ϵ,Θ, d).

Proof.
Let θ1, · · · , θp be an ϵ-cover of Θ (under the metric d).
Then for every θ ∈ B(θi ; ϵ), |mθ(x) − mθi (x)| ≤ ϵF (x).
Thus, the brackets [mθi − ϵF ,mθi + ϵF ] (i = 1, · · · , p), each of size 2ϵ ∥F∥,
can cover F .
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Monotone functions

Theorem 14 (Monotone functions)
The class F of monotone functions f : R 7→ [0, 1] satisfies

log N[](ϵ,F , Lr (Q)) ≤ K (1
ϵ

), ∀ϵ > 0,

for every probability measure Q, every r ≥ 1, and some constant K that
depends on r only.

The result implies that F is Donsker (by Theorem 3).
See Theorem 2.7.5 of VW for the proof.
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Smooth functions

X : bounded, convex subset of Rp with nonempty interior
α: largest integer smaller than α, for any α > 0
Dk : differential operator of order k
For a function f : X 7→ R, define

∥f ∥α = max
k≤α

sup
Dk ,x

|Dk f (x)| + sup
Dα,x ,y

|Dαf (x) − Dαf (y)|
∥x − y∥α−α

Cα
M(X ): set of all continuous functions f : X 7→ R with ∥f ∥α ≤ M

(f has uniformly bounded partial derivatives and the highest partial
derivatives are Lipschitz)
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Smooth functions (cont.)

Theorem 15 (Smooth functions)
There exists a constant K depending only on α, diamX , and p such that

log N(ϵ,Cα
1 (X ), ∥·∥∞) ≤ K

(
1
ϵ

)p/α

,

log N[](ϵ,Cα
1 (X ), Lr (Q)) ≤ K

(
1
ϵ

)p/α

,

for every ϵ > 0, r ≥ 1, and probability measure Q.

See Theorem 2.7.1 and Corollary 2.7.2 of VW for the proofs.
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Convex functions

Theorem 16 (Convex functions)
For a compact, convex subset C ⊂ Rp, the class F of all convex functions
f : C 7→ [0, 1] that are L-Lipschitz satisfies

log N(ϵ,F , ∥·∥∞) ≤ K (1 + L)p/2
(

1
ϵ

)p/2
,

for some constant K depending on p and C only.

See Corollary 2.7.10 of VW for the proof.
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Tail probability of random variables

Markov’s inequality
Let Z ≥ 0 be a random variable. Then for any t > 0,

P(Z ≥ t) ≤ EZ
t .

Chebyshev’s inequality
If Z has a finite variance Var(Z ), then

P(|Z − EZ | ≥ t) ≤ Var(Z )
t2 .

But these inequalities can only yield a tail bound of order t−2, which may be
too relaxed. The tail bound can be improved to an exponential decrease in t2

by Hoeffding’s inequality.
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Hoeffding’s inequality

Lemma 17 (Hoeffding’s inequality)
Let X1, . . . ,Xn be independent bounded random variables such that
Xi ∈ [ai , bi ] with probability 1. Let Sn =

∑n
i=1 Xi . Then,

P(Sn − ESn ≥ t) ≤ e−2t2/
∑n

i=1
(bi −ai )2

,

P(Sn − ESn ≤ −t) ≤ e−2t2/
∑n

i=1
(bi −ai )2

.

The proof uses Markov’s inequality and the following lemma:

Lemma 18
Let X be a random variable with EX = 0 and X ∈ [a, b] with probability 1.
Then for any λ > 0,

E (eλX ) ≤ eλ2(b−a)2/8.
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Sub-Gaussian random variables

Definition 19 (Sub-Gaussian random variables)
A random variable X is called sub-Gaussian if there exist constants C , v > 0
such that P(|X | > t) ≤ Ce−vt2 for every t > 0.

Some equivalent characterizations of sub-Gaussian random variables:
There exists a > 0 such that E [eaX 2 ] < ∞.
Laplace transform condition: ∃B, b > 0 such that
∀λ ∈ R,Eeλ(X−E [X ]) ≤ Beλ2b.
Moment condition: ∃K > 0 such that ∀p ≥ 1, (E |X |p)1/p ≤ K√p.
Union bound condition: ∃c > 0 such that ∀n ≥ c,

E [max{|X1 − E [X ]|, . . . , |Xn − E [X ]|}] ≤ c
√

log n

where X1, . . . ,Xn are i.i.d. copies of X .
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Sub-Gaussian processes

Definition 20 (Sub-Gaussian processes)
Let (T , d) be a semi-metric space and {Xt , t ∈ T} be a stochastic process
indexed by T . Then Xt is called sub-Gaussian w.r.t. the semi-metric d if

P(|Xs − Xt | > u) ≤ 2 exp
(

− u2

2d(s, t)2

)
, ∀s, t ∈ T , u > 0.

Any Gaussian process is sub-Gaussian w.r.t. the standard deviation
semi-metric d(s, t) =

√
Var(Xs − Xt).

37 / 45



Rademacher process and Hoeffding’s inequality

Consider the Rademacher process

Xa =
n∑

i=1
aiεi , a = (a1, . . . , an) ∈ Rn, (1)

where εi ’s are independent Radermacher variables which take values +1 and
−1 with probability 1/2.

By the following special case of Hoeffding’s inequality, Rademacher process is
also sub-Gaussian (w.r.t. the Euclidean distance).

Lemma 21 (Hoeffding’s inequality)
The Rademacher process {Xa : a ∈ Rn} defined in (1) satisfies

P(|Xa| > t) ≤ 2e−t2/(2∥a∥2).
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Bernstein’s inequality

The following result gives tail bounds for random variables with larger than
normal tails.

Lemma 22 (Bernstein’s inequality)
For independent random variables Y1, . . . ,Yn with zero means and bounded
ranges [−M,M], there exists a constant v ≥ Var(

∑n
i=1 Yi) such that

P(|
n∑

i=1
Yi | > t) ≤ 2e− t2

2(v+Mt/3) .

See page 855 of Shorack and Wellner (1986)1 for the proof.
Compared to the normal tail bound e−t2/(2v), the extra term 2Mt/3 can
be seen as a penalty for the non-normality.
When n → ∞, Mt/3 is typically negligible w.r.t. v .

1Shorack, G. R., & Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
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Maximal inequalities

Lemma 23 (Maximal inequality for sub-Gaussian variables)
Suppose that Y1, . . . ,YN (not necessarily independent) are sub-Gaussian in the
sense that EeλYi ≤ eλ2σ2/2 for all λ > 0 and i = 1, . . . ,N. Then,

E max
i=1,...,N

Yi ≤ σ
√

2 log N.

Proof.
By Jensen’s inequality, we have

eλE maxi=1,...,N Yi ≤ Eeλ maxi=1,...,N Yi ≤
N∑

i=1
EeλYi ≤ Neλ2σ2/2.

Tanking logarithms yields

E max
i=1,...,N

Yi ≤ log N
λ

+ λσ2

2 ≤ σ
√

2 log N.
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Maximal inequalities (cont.)

Lemma 24
Let ψ be a strictly increasing, convex, non-negative function. Suppose that
ξ1, . . . , ξN are random variables such that E [ψ(|ξi |/ci)] ≤ L for i = 1, . . . ,N
and some constant L. Then,

E max
1≤i≤N

|ξi | ≤ ψ−1(LN) max
1≤i≤N

ci .

Proof.
By the properties of ψ,

ψ

(
E max |ξi |

max ci

)
≤ ψ

(
E max |ξi |

ci

)
≤

N∑
i=1

Eψ
(

|ξi |
ci

)
≤ LN.

Apply ψ−1 to both sides.
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Maximal inequalities (cont.)

Corollary 25
Let ξ1, . . . , ξN be Rademacher linear combinations, i.e., ξi =

∑n
k=1 a(i)

k εk .
Then there exists some constant C > 0 such that for N ≥ 2,

E max
1≤i≤N

|ξi | ≤ C
√

log N max
1≤i≤N

∥a(i)∥,

where a(i) = (a(i)
1 , . . . , a(i)

n ) ∈ Rn.

Proof.
Use the fact that E [eξ2

i /(6∥a(i)∥2)] ≤ 2 and Lemma 24 with ψ(x) = ex2 .
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Symmetrization

Symmetrized empirical process:

f 7→ Po
nf = 1

n

n∑
i=1

εi f (Xi),

where ε1, . . . , εn are i.i.d. Rademacher random variables.
ε1, . . . , εn are independent of (X1, . . . ,Xn)
E (Po

nf ) = 0
For fixed (X1, . . . ,Xn), Po

n is a Rademacher process (hence sub-Gaussian).
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Symmetrization result

Theorem 26 (Symmetrization)
For any class F of measurable functions,

E ∥Pn − P∥F ≤ 2E ∥Po
n∥F .

Proof.
Let Yi be independent copies of Xi . For fixed (X1, . . . ,Xn),

∥Pn − P∥F = sup
f ∈F

1
n

∣∣∣∣∣
n∑

i=1
[f (Xi) − Ef (Yi)]

∣∣∣∣∣ ≤ EY sup
f ∈F

1
n

∣∣∣∣∣
n∑

i=1
[f (Xi) − f (Yi)]

∣∣∣∣∣ .
Taking expectation with respect to (X1, . . . ,Xn), we obtain

E ∥Pn − P∥F ≤ E

∥∥∥∥∥1
n

n∑
i=1

[f (Xi) − f (Yi)]

∥∥∥∥∥
F

.
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Symmetrization result (cont.)

Proof (cont.)
We can see that adding a minus sign in front of [f (Xi) − f (Yi)] just exchanges
X ’s and Y ’s, so the expectation remains unchanged. Thus,
E 1

n ∥
∑n

i=1 ei [f (Xi) − f (Yi)]∥F is the same for any (e1, . . . , en) ∈ {−1,+1}n.
Hence,

E∥Pn − P∥F ≤ EεEX ,Y

∥∥∥∥∥1
n

n∑
i=1

εi [f (Xi) − f (Yi)]

∥∥∥∥∥
F

≤ EεEX

∥∥∥∥∥1
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

+ EεEY

∥∥∥∥∥1
n

n∑
i=1

εi f (Yi)

∥∥∥∥∥
F

= 2E ∥Po
n∥F .

45 / 45


	Chapter 1: Introduction to empirical processes
	Overview
	Covering and bracketing numbers
	Maximal inequality and symmetrization


