STAT6018 Research Frontiers in Data Science Topic II: Introduction to empirical process theory

Yu Gu, PhD Assistant Professor

Department of Statistics & Actuarial Science The University of Hong Kong

> <ロト < 部 ト < 主 ト < 主 ト ミ の < で 1/34

Table of Contents

Chapter 2: Glivenko-Cantelli and Donsker Theorems

- Glivenko-Cantelli theorems
- Donsker theorems
- Preservation results

Table of Contents

1 Chapter 2: Glivenko-Cantelli and Donsker Theorems

- Glivenko-Cantelli theorems
- Donsker theorems
- Preservation results

Glivenko-Cantelli (GC) class

Definition 1 (GC class)

A function class ${\mathcal F}$ is called P-GC if

$$\|\mathbb{P}_n - P\|_{\mathcal{F}} \stackrel{a.s.}{\to} 0$$

under the probability measure P.

• $\|Q\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |Qf|$

• uniform almost sure convergence across ${\cal F}$

GC theorem with bracketing

Bracket number $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$:

- minimum number of brackets $[\ell, u]$ with $\|\ell u\| < \epsilon$ needed to cover $\mathcal F$
- entropy with bracketing: log $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$

Theorem 2 (GC with bracketing)

Let ${\mathcal F}$ be a class of P-measurable functions such that

 $N_{[]}(\epsilon, \mathcal{F}, L_1(P)) < \infty,$ for every $\epsilon > 0.$

Then \mathcal{F} is P-GC.

GC theorem with bracketing (cont.)

Proof.

For every $f \in [\ell_i, u_i]$, we have

$$\begin{cases} (\mathbb{P}_n - P)f \leq \mathbb{P}_n u_i - P\ell_i \leq (\mathbb{P}_n - P)u_i + \|u_i - \ell_i\|_{L_1(P)} \\ (\mathbb{P}_n - P)f \geq \mathbb{P}_n\ell_i - Pu_i \geq (\mathbb{P}_n - P)\ell_i - \|u_i - \ell_i\|_{L_1(P)} \end{cases}$$

Thus,

$$\begin{cases} \sup_{f \in \mathcal{F}} (\mathbb{P}_n - P)f \leq \max_i (\mathbb{P}_n - P)u_i + \epsilon \xrightarrow{a.s.} \epsilon \\ \inf_{f \in \mathcal{F}} (\mathbb{P}_n - P)f \geq \min_i (\mathbb{P}_n - P)\ell_i - \epsilon \xrightarrow{a.s.} -\epsilon \end{cases} \quad (by SLLN) \\ \Rightarrow \limsup_n \|\mathbb{P}_n - P\|_{\mathcal{F}} \leq \epsilon \text{ almost surely.} \end{cases}$$

Letting $\epsilon \downarrow 0$ yields the desired result.

GC theorem without bracketing

Covering number $N(\epsilon, \mathcal{F}, \|\cdot\|)$:

- minimum number of balls $B(f; \epsilon) := \{g : \|g f\| \le \epsilon\}$ needed to cover \mathcal{F}
- entropy without bracketing: log $N(\epsilon, \mathcal{F}, \|\cdot\|)$

Envelope function F: $|f(x)| \leq F(x)$ for every $x \in \mathcal{X}$ and $f \in \mathcal{F}$

Theorem 3 (GC without bracketing)

Let \mathcal{F} be a class of P-measurable functions with envelope F such that $PF < \infty$. Let \mathcal{F}_M be the class of functions $f \mathbb{1}\{F \leq M\}$ when f ranges over \mathcal{F} . Then \mathcal{F} is P-GC if and only if

 $n^{-1}\log N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n)) \stackrel{\rho}{\to} 0, \quad \forall \epsilon, M > 0.$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ q</p>

GC theorem without bracketing (cont.)

Symmetrization (Theorem 1.26):

$$E \left\| \mathbb{P}_n - P \right\|_{\mathcal{F}} \leq 2E \left\| \mathbb{P}_n^o \right\|_{\mathcal{F}}$$

Proof of sufficiency. $E \|\mathbb{P}_{n} - P\|_{\mathcal{F}} \leq 2E_{X}E_{\varepsilon} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}f(X_{i}) \right\|_{\mathcal{F}} \qquad (symmetrization)$ $\leq 2E_{X}E_{\varepsilon} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}f(X_{i}) \right\|_{\mathcal{F}_{M}} + 2P[F\mathbb{1}\{F > M\}] \quad (triangle inequality)$

For sufficiently large M, $P[F1{F > M}]$ is arbitrarily small.

・ロト・日本・モート モー シャク

GC theorem without bracketing (cont.)

Maximal inequality for Rademacher linear combinations (Corollary 1.25):

$$E \max_{1 \le i \le N} |\xi_i| \le C \sqrt{\log N} \max_{1 \le i \le N} \|a^{(i)}\|$$

Proof of sufficiency (cont.)

Let \mathcal{G} denote the ϵ -cover associated with $N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n))$. For any $f \in \mathcal{F}_M$,

$$\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(X_{i})\right| \leq \left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}g(X_{i})\right| + \left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left[f(X_{i}) - g(X_{i})\right]\right|$$
$$\leq \left\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}g(X_{i})\right\|_{\mathcal{G}} + \epsilon$$
$$\leq C\sqrt{\frac{\log N\left(\epsilon, \mathcal{F}_{M}, L_{1}\left(\mathbb{P}_{n}\right)\right)}{n}}\max_{g\in\mathcal{G}}\sqrt{\mathbb{P}_{n}g^{2}} + \epsilon \quad \text{(maximal inequality)}$$
$$\xrightarrow{P} \epsilon$$

GC theorem without bracketing (cont.)

Proof of sufficiency (cont.)

Letting $\epsilon \downarrow 0$ yields $\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i)\|_{\mathcal{F}_M} \xrightarrow{P} 0$. Since $\|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i)\|_{\mathcal{F}_M} \leq M$, it follows by the dominated convergence theorem that $E_X E_{\varepsilon} \|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i)\|_{\mathcal{F}_M} \to 0$. Thus, we conclude that $E \|\mathbb{P}_n - P\|_{\mathcal{F}} \to 0$. By Lemma 2.4.5 of VW, $\|\mathbb{P}_n - P\|_{\mathcal{F}}$ is a reverse sub-martingale, thus converges almost surely to a constant, which must be 0 by the convergence in mean.

GC theorem with uniform covering

Corollary 4

Let ${\cal F}$ be a class of P-measurable functions with envelope F such that PF $<\infty.$ Then ${\cal F}$ is P-GC if

$$\sup_{Q} N(\epsilon \|F\|_{L_1(Q)}, \mathcal{F}, L_1(Q)) < \infty, \quad \forall \epsilon > 0,$$

where the supremum is over all probability measures Q with $0 < QF < \infty$.

Proof.

Assume that PF > 0 (otherwise the result is trivial). There exists an $\eta \in (0, \infty)$ such that $1/\eta < \mathbb{P}_n F < \eta$ for all *n* large enough. For any $\epsilon > 0$, there exists a K_{ϵ} such that with probability 1,

$$\log N(\epsilon\eta, \mathcal{F}, L_1(\mathbb{P}_n)) \leq \log N(\epsilon\mathbb{P}_n\mathcal{F}, \mathcal{F}, L_1(\mathbb{P}_n)) \leq K_{\epsilon}$$

for all *n* large enough. Thus, for any ϵ , M > 0,

$$\log N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n)) \leq \log N(\epsilon, \mathcal{F}, L_1(\mathbb{P}_n)) = O_{\rho}(1).$$

The desired result follows by Theorem 3.

Table of Contents

1 Chapter 2: Glivenko-Cantelli and Donsker Theorems

- Glivenko-Cantelli theorems
- Donsker theorems
- Preservation results

Donsker class

Definition 5

A function class ${\mathcal F}$ is called P-Donsker if

$$\mathbb{G}_n = \sqrt{n}(\mathbb{P}_n - P) \stackrel{d}{\to} \mathbb{G},$$

where \mathbb{G} is a tight^a random element in $\ell^{\infty}(\mathcal{F})$.

 $a \Leftrightarrow \forall \epsilon > 0, \exists a \text{ compact set } V_{\epsilon} \in \ell^{\infty}(\mathcal{F}) \text{ s.t. } P(\mathbb{G}f \in V_{\epsilon}) > 1 - \epsilon, \text{ for all } f \in \mathcal{F}.$

• The multivariate CLT ensures marginal convergence of \mathbb{G}_n :

$$(\mathbb{G}_n f_1, \ldots, \mathbb{G}_n f_k) \stackrel{d}{\rightarrow} N(0, \Sigma), \quad \forall (f_1, \ldots, f_k) \in \mathcal{F}$$

- It follows that $\{\mathbb{G}f : f \in \mathcal{F}\}$ must be a mean-zero Gaussian process with covariance function $E\{\mathbb{G}f_1\mathbb{G}f_2\} = \Sigma(f_1, f_2)$.
- This and tightness determine \mathbb{G} to be a *P*-Brownian bridge in $\ell^{\infty}(\mathcal{F})^1$.

・ロト・日本・山田・山田・山市・山市・

¹By Lemma 1.5.3 of VW.

Donsker with asymptotic equi-continuity

To prove the Donsker property by definition, we usually need to check:

- Marginal convergence (guaranteed by multivariate CLT)
- \bullet Tightness of the limiting process $\mathbb{G},$ which is equivalent to both of the following:
 - ► Total boundedness of (F, d), i.e., N(ε, F, d) < ∞ for every ε > 0
 - Asymptotic equicontinuity of (\mathcal{F}, d) , i.e., for every $\epsilon > 0$,

$$\lim_{\delta\to 0}\limsup_{n\to\infty}\mathbb{P}^*\left(\sup_{d(f,g)\leq \delta; f,g\in\mathcal{F}}|\mathbb{G}_n(f-g)|>\epsilon\right)=0$$

The semi-metric *d* is usually chosen as the $L_2(P)$ distance, and \mathbb{P}^* is outer probability², which behaves like usual probabilities in most cases.

14/34

² the infimum of the probabilities of all measurable sets that contain the event.

Donsker with asymptotic equi-continuity (cont.)

This is formally stated in the following theorem, which follows immediately from the result of weak convergence of stochastic processes.

Theorem 6 (Donsker with asymptotic equi-continuity)

Let \mathcal{F} be a class of measurable, square-integrable functions from \mathcal{X} to \mathbb{R} such that $\sup_{f \in \mathcal{F}} |f(x) - Pf| < \infty$, $\forall x \in \mathcal{X}$. Then $\{\mathbb{G}_n f : f \in \mathcal{F}\}$ converges weakly to a tight random element if and only if there exists a semi-metric $d(\cdot, \cdot)$ on \mathcal{F} such that (\mathcal{F}, d) is totally bounded and for every $\epsilon > 0$,

$$\lim_{\delta\to 0}\limsup_{n\to\infty}\mathbb{P}^*\left(\sup_{d(f,g)\leq \delta; f,g\in\mathcal{F}}|\mathbb{G}_n(f-g)|>\epsilon\right)=0.$$

Bracketing entropy integral

- In many cases, bracketing numbers grow to infinity as $\epsilon \downarrow 0$.
- \bullet Sufficient condition for Donsker class: bracketing numbers do not grow too fast with $1/\epsilon$
- Bracketing entropy integral measures the speed of growth:

$$J_{[]}(\delta,\mathcal{F},L_r(P)) := \int_0^\delta \sqrt{\log N_{[]}(\epsilon,\mathcal{F},L_r(P))} d\epsilon$$

• The above integral coverges when the bracketing entropy grows with order slower than $1/\epsilon^2.$

Donsker theorem with bracketing

Theorem 7 (Donsker with bracketing)

Suppose that $\mathcal F$ is a class of measurable functions satisfying

$$J_{[]}(1,\mathcal{F},L_2(P))<\infty.$$

Then \mathcal{F} is P-Donsker.

The proof of Theorem 7 uses the following maximal inequality:

Lemma 8 (Maximal inequality)

For any class \mathcal{F} of measurable functions $f : \mathcal{X} \to \mathbb{R}$ satisfying $\mathsf{P} f^2 < \delta^2$,

$$\mathbb{E}^* \| \mathbb{G}_n \|_{\mathcal{F}} \lesssim J_{[]}(\delta, \mathcal{F}, L_2(P)) + \sqrt{n} P^* [F \mathbb{1}\{F > \sqrt{n}a(\delta)\}],$$

where $x \leq y$ means $x \leq cy$ for some constant c > 0, F is an envelope function of \mathcal{F} , and $a(\delta) = \delta/\sqrt{\log N_{[]}(\epsilon, \mathcal{F}, L_2(P))}$.

See Lemma 19.34 of van der Vaart (1998)³ for the proof.

³ van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

Proof of Theorem 7.

 $\begin{aligned} \forall \epsilon > 0, \ & N_{[]}(\epsilon, \mathcal{F}, L_2(P)) \text{ is finite, so } (\mathcal{F}, \|\cdot\|_{L_2(P)}) \text{ is totally bounded.} \\ \text{Define } \mathcal{G} = \{f - g : f, g \in \mathcal{F}\}. \text{ It is easy to see that } G = 2F \text{ is an envelope} \\ \text{for } \mathcal{G} \text{ and } & N_{[]}(2\epsilon, \mathcal{G}, L_2(P)) \leq N_{[]}^2(\epsilon, \mathcal{F}, L_2(P)). \\ \text{Let } & \mathcal{G}_{\delta} = \{f - g : f, g \in \mathcal{F}, \|f - g\|_{L_2(P)} \leq \delta\}. \text{ By Lemma 8, there exists a} \\ \text{finite number } & a(\delta) = \delta/\sqrt{\log N_{[]}(\epsilon, \mathcal{G}_{\delta}, L_2(P))} \text{ s.t.} \end{aligned}$

$$\begin{split} \mathbb{E}^* \|\mathbb{G}_n\|_{\mathcal{G}_{\delta}} &\lesssim J_{[]}(\delta, \mathcal{G}_{\delta}, L_2(P)) + \sqrt{n} P[G\mathbb{1}\{G > a(\delta)\sqrt{n}\}] \\ &\leq J_{[]}(\delta, \mathcal{G}, L_2(P)) + \sqrt{n} P[G\mathbb{1}\{G > a(\delta)\sqrt{n}\}]. \end{split}$$

The second term on RHS is bounded by $a(\delta)^{-1}P[G^2\mathbb{1}\{G > a(\delta)\sqrt{n}\}]$ and hence converges to 0 as $n \to \infty$ for every δ . By assumption, $J_{[]}(\delta, \mathcal{G}, L_2(P)) \lesssim J_{[]}(\delta, \mathcal{F}, L_2(P)) \to 0$ as $\delta \to 0$. Thus, by Markov's inequality, the asymptotic equi-continuity condition holds. The desired result then follows by Theorem 6. Like GC theorems, an alternative sufficient condition for Donsker property is based on the **uniform entropy integral**:

$$J(\delta, \mathcal{F}, F) = \int_0^\delta \sup_Q \sqrt{\log N(\epsilon \|F\|_{L_2(Q)}, \mathcal{F}, L_2(Q))} d\epsilon,$$

where F is an envelope of \mathcal{F} , and the supremum is taken over all finitely discrete probability measures Q with $QF^2 > 0$.

Donsker theorem without bracketing

Theorem 9 (Donsker without bracketing)

Suppose that ${\cal F}$ is a pointwise-measurable class of measurable functions satisfying $PF^2<\infty$ and

$$J(1,\mathcal{F},\mathcal{F})<\infty.$$

Then \mathcal{F} is P-Donsker.

The pointwise-measurable condition suffices that there exists a countable collection \mathcal{G} of functions such that each f is the pointwise limit of a sequence g_m in \mathcal{G} (see Example 2.3.4 of VW for details).

The proof of Theorem 9 uses the following maximal inequality:

Lemma 10 (Maximal inequality)

Suppose
$$0 < \|F\|_{L_2(P)} < \infty$$
, let σ^2 be any positive constant s.t. $\sup_{f \in \mathcal{F}} Pf^2 \le \sigma^2 \le \|F\|_{L_2(P)}^2$. Let $\delta = \sigma/\|F\|_{L_2(P)}$ and $B = \sqrt{Emax_{1 \le i \le n}F^2(X_i)}$. Then,

$$E\|\mathbb{G}_n\|_{\mathcal{F}} \lesssim J(\delta, \mathcal{F}, F)\|F\|_{L_2(P)} + \frac{BJ^2(\delta, \mathcal{F}, F)}{\delta^2\sqrt{n}}.$$

See Chernozhukov et al. $(2014)^4$ for the proof.

⁴ Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist., 42(4):1564–1597.

Proof of Theorem 9.

We first show that $(\mathcal{F}, \|\cdot\|_{L_2(P)})$ is totally bounded. For any fixed $\epsilon > 0$, there exist $f_1, \ldots, f_N \in \mathcal{F}$ s.t. $P(f_i - f_j)^2 > \epsilon^2 P F^2$, for every $i \neq j$. By LLN,

$$\begin{split} & \mathbb{P}_n(f_i - f_j)^2 \xrightarrow{a.s.} P(f_i - f_j)^2 \quad \text{and} \quad \mathbb{P}_n F^2 \xrightarrow{a.s.} PF^2 \\ & \Rightarrow \mathbb{P}_n(f_i - f_j)^2 > \epsilon^2 PF^2 \quad \text{and} \quad 0 < \mathbb{P}_n F^2 < 2PF^2, \quad \text{for some large } n \\ & \Rightarrow \mathbb{P}_n(f_i - f_j)^2 > \epsilon^2 \mathbb{P}_n F^2/2 \\ & \Rightarrow N \le D(\epsilon \|F\|_{L_2(\mathbb{P}_n)}/\sqrt{2}, \mathcal{F}, L_2(P_n)) < \infty. \end{split}$$
 (by assumption)

Choosing $N = D(\epsilon ||F||_{L_2(P)}, \mathcal{F}, L_2(P))$ yields the total boundedness.

Proof of Theorem 9 (cont.)

To verify the asymptotic equi-continuity condition, it suffices to show that

$$\lim_{\delta \to 0} \limsup_{n \to \infty} E \| \mathbb{G}_n \|_{\mathcal{G}_{\delta}} = 0, \tag{1}$$

where $\mathcal{G}_{\delta} = \{f - g : f, g \in \mathcal{F}, \|f - g\|_{L_2(P)} \leq \delta\}.$ We observe that \mathcal{G}_{δ} has envelope 2F and

$$\begin{split} \sup_{Q} \mathsf{N}(\epsilon \| 2F\|_{L_2(Q)}, \mathcal{G}_{\delta}, L_2(Q)) &\leq \sup_{Q} \mathsf{N}(\epsilon \| 2F\|_{L_2(Q)}, \mathcal{G}_{\infty}, L_2(Q)) \\ &\leq \sup_{Q} \mathsf{N}^2(\epsilon \| F\|_{L_2(Q)}, \mathcal{F}, L_2(Q)), \end{split}$$

which leads to $J(\epsilon, \mathcal{G}_{\delta}, 2F) \lesssim J(\epsilon, \mathcal{F}, F)$ for all $\epsilon > 0$.

Proof of Theorem 9 (cont.)

Hence by Lemma 10 with $\sigma = \delta$ and envelope 2*F*, we have

$$E\|\mathbb{G}_n\|_{\mathcal{G}_{\delta}} \leq C\left\{J(\delta',\mathcal{F},F)\|F\|_{L_2(P)} + \frac{B_n J^2(\delta',\mathcal{F},F)}{\delta'^2 \sqrt{n}}\right\},$$

where $\delta' = \sigma/(2||F||_{L_2(P)})$ and $B_n = 2\sqrt{Emax_{1 \le i \le n}F^2(X_i)}$. Since $PF^2 < \infty$, $B_n = o(\sqrt{n})$. Thus, $\forall \eta > 0$, we can choose δ small s.t.

$$\limsup_{n\to\infty} E \|\mathbb{G}_n\|_{\mathcal{G}_{\delta}} \leq C(\|F\|_{L_2(P)}+1)\eta.$$

Hence, the asymptotic equi-continuity condition in (1) is satisfied and we complete the proof.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Discussion

- Theorems 7 and 9 are based on finite bracketing entropy integral and uniform entropy integral, respectively.
- Although bracketing entropy integral involves only the true probability measure *P*, this gain is offset by the fact that bracketing numbers are usually larger than covering numbers.
- Thus, these two sufficient conditions for Donsker classes are not comparable.

A general Donsker theorem

Define $L_{2,\infty}(P)$ -norm as $||f||_{L_{2,\infty}(P)} = \sup_{t>0} \{t^2 P(|f| > t)\}^{1/2}$. Note that $||f||_{L_{2,\infty}(P)} \le ||f||_{L_{2}(P)}$. The following general Donsker theorem combines the two entropy integrals:

Theorem 11 (General Donsker theorem)

Let \mathcal{F} be a class of measurable functions such that

$$\int_0^1 \sqrt{\log N_{[]}\left(\epsilon, \mathcal{F}, L_{2,\infty}(P)\right)} d\epsilon + \int_0^1 \sqrt{\log N\left(\epsilon, \mathcal{F}, L_2(P)\right)} d\epsilon < \infty.$$

Moreover, assume that the envelope F of \mathcal{F} satisfies a weak second moment, i.e., $t^2P^*{F(X) > t} \to 0$ as $t \to \infty$. Then \mathcal{F} is P-Donsker.

See Theorem 2.5.6 of VW for the proof.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Table of Contents

1 Chapter 2: Glivenko-Cantelli and Donsker Theorems

- Glivenko-Cantelli theorems
- Donsker theorems
- Preservation results

GC preservation

Theorem 12 (GC preservation)

Suppose that $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are P-GC with $\max_{1 \le j \le k} \|P\|_{\mathcal{F}_j} < \infty$. Then for any continuous transformation $\phi : \mathbb{R}^k \mapsto \mathbb{R}$, the class $\mathcal{H} = \phi(\mathcal{F}_1, \ldots, \mathcal{F}_k)$ is also P-GC provided it has an integrable envelope.

See Theorem 3 of van der Vaart and Wellner $(2000)^5$ for the proof.

⁵ van der Vaart, A., & Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes. In High dimensional probability II (pp. 115-133). Boston, MA: Birkhäuser Boston.

GC preservation (cont.)

Corollary 13

Let \mathcal{F} and \mathcal{G} be P-GC with respective integrable envelopes F and G. Then,

- (i) $\mathcal{F} + \mathcal{G}$ is P-GC.
- (ii) $\mathcal{F} \cdot \mathcal{G}$ is P-GC if $P(FG) < \infty$.
- (iii) Any continuous transformation $\phi(\mathcal{F})$ is P-GC provided it has an integrable envelope.

See Corollary 9.27 of Kosorok for the proof.

Closures and convex hulls

For a class ${\mathcal F}$ of measurable functions, define the following operations.

Closure:

$$\overline{\mathcal{F}} = \left\{ f : \mathcal{X} \mapsto \mathbb{R} \mid \exists \{ f_m \} \in \mathcal{F} \text{ s.t. } f_m \to f \text{ both pointwise and in } L_2(P) \right\}$$

Symmetric convex hull:

$$\mathsf{sconv}\mathcal{F} = \left\{ \sum_{i=1}^{\infty} \lambda_i f_i \; \left| \; \{f_i\} \in \mathcal{F}, \sum_{i=1}^{\infty} |\lambda_i| \le 1 \right. \right\}$$

・ロト・白 ・ キョ・ キョ・ ・ ヨー うんぐう

31 / 34

Donsker preservation

Theorem 14 (Donsker preservation)

Let \mathcal{F} be P-Donsker. Then,

- (i) For any $\mathcal{G} \subset \mathcal{F}$, \mathcal{G} is P-Donsker.
- (ii) $\overline{\mathcal{F}}$ is *P*-Donsker.
- (iii) sconvF is P-Donsker.

See Theorems 2.10.1 - 2.10.3 of VW for the proofs.

Donsker preservation (cont.)

The following theorem establishes Donsker preservation under Lipschitz transformations and is one of the most useful preservation results:

Theorem 15 (Donsker preservation under Lipschitz transformations) Suppose that $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are Donsker classes with $\max_{1 \le j \le k} \|P\|_{\mathcal{F}_j} < \infty$. Consider any Lipschitz transformation $\phi : \mathbb{R}^k \mapsto \mathbb{R}$ satisfying

$$|\phi\circ f(x)-\phi\circ g(x)|^2\leq c^2\sum_{j=1}^k\left\{f_j(x)-g_j(x)
ight\}^2,$$

for every $f, g \in \mathcal{F}_1 \times \cdots \times \mathcal{F}_k$, every $x \in \mathcal{X}$, and some constant $c < \infty$. Then the class $\phi \circ (\mathcal{F}_1, \ldots, \mathcal{F}_k)$ is Donsker provided $\phi \circ f$ is square integrable for at least one $f \in \mathcal{F}_1 \times \cdots \times \mathcal{F}_k$.

See Theorem 2.10.6 and pages 196 - 198 of VW for the proof.

Donsker preservation (cont.)

Corollary 16

Let \mathcal{F} and \mathcal{G} be Donsker classes. Then,

- (i) $\mathcal{F} \cup \mathcal{G}$ and $\mathcal{F} + \mathcal{G}$ are Donsker.
- (ii) If $||P||_{\mathcal{F}\cup\mathcal{G}} < \infty$, then the pairwise infima $\mathcal{F} \wedge \mathcal{G}$ and the pairwise suprema $\mathcal{F} \vee \mathcal{G}$ are Donsker.
- (iii) If \mathcal{F} and \mathcal{G} are uniformly bounded, then $\mathcal{F} \cdot \mathcal{G}$ is Donsker.
- (iv) Any Lipschitz continuous transformation $\phi(\mathcal{F})$ is Donsker, provided $\|\phi(f)\|_{L_2(P)} < \infty$ for at least one $f \in \mathcal{F}$.
- (v) If $||P||_{\mathcal{F}} < \infty$ and g is a uniformly bounded, measurable function, then $\mathcal{F} \cdot g$ is Donsker.

See Corollary 9.32 of Kosorok for the proof.