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Glivenko-Cantelli (GC) class

Definition 1 (GC class)
A function class F is called P-GC if

IPn — Pll= =3 0

under the probability measure P.

° [|QllF = supsc 7 | Qf|
@ uniform almost sure convergence across F
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GC theorem with bracketing

Bracket number Njj(e, F, || - [|):

@ minimum number of brackets [¢, u] with ||¢ — u|| < € needed to cover F
e entropy with bracketing: log Njj(e, F, | - )

Theorem 2 (GC with bracketing)

Let F be a class of P-measurable functions such that

Ny(e, F, Li(P)) < oo,  for every € > 0.
Then F is P-GC.
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GC theorem with bracketing (cont.)

Proof.

For every f € [¢;, u;], we have
(]P,, = P)f S ]P,,U,' = PE, S (]P)n = P)U,’ =+ ||U,' = gi”Ll(P)
(]P,-, — P)f Z ]P’,,E,- — PU,‘ Z (Pn — P)E, — ||U,‘ — é,‘”[_l(p)

Thus,

. < ) . . a.s.
{supfef(]P’,, P)f < max;(P, — P)ui+¢€ = ¢ (by SLLN)

infrer (P, — P)f > mini(P, — P)l; — e 23 —e

= limsup |P, — P||# < € almost surely.
n

Letting € | O yields the desired result.
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GC theorem without bracketing

Covering number N(e, F, || - ||):

@ minimum number of balls B(f;€) := {g : ||g — f|| < €} needed to cover F
@ entropy without bracketing: log N(e, F, || - ||)

Envelope function F: |f(x)| < F(x) for every x € X and f € F
Theorem 3 (GC without bracketing)
Let F be a class of P-measurable functions with envelope F such that

PF < co. Let Fpy be the class of functions f1{F < M} when f ranges over
F. Then F is P-GC if and only if

n~Ylog N(e, Fi, L1(P,)) 5 0, Ve, M > 0.
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GC theorem without bracketing (cont.)

Symmetrization (Theorem 1.26):

E|[Pn — Pllz < 2E[IP7]

Proof of sufficiency.

n

2 it (x)

i=1

E||P, — P||» < 2ExE. (symmetrization)

F

n

%Ze,f(x,-)

i=1

< 2ExE. + 2P[F1{F > M}] (triangle inequality)

Fm

For sufficiently large M, P[F1{F > M}] is arbitrarily small.
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GC theorem without bracketing (cont.)

Maximal inequality for Rademacher linear combinations (Corollary 1.25):
E )| < Cy/log N @
max [§i] < Cy/log N max [|a™]

Proof of sufficiency (cont.)

Let G denote the e-cover associated with N(e, Fu, L1(Pn)). For any f € Fu,

n

%Zs,-f(x,-)

i=1

n

% Z eig (Xi)| +

i=1

n

=S elF () - g (X0)]

i=1

<

n

%Z&'g (Xi)

=il

< +e

g
- C\/log N (&, Fu, Ly (Ba))

axy/Pn,g? 4+ ¢ (maximal inequality)
n g€g

P
— €
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GC theorem without bracketing (cont.)

Proof of sufficiency (cont.)

Letting € | 0 yields |2 "7 &if (X)) |7, = 0. Since |2 Y7 &if (X)) |7y < M, it
follows by the dominated convergence theorem that ExE.
Thus, we conclude that E ||P, — P|| - — 0.

By Lemma 2.4.5 of VW, [P, — P|| - is a reverse sub-martingale, thus converges
almost surely to a constant, which must be 0 by the convergence in mean.

et (X)), —o.

O

V.
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GC theorem with uniform covering

Corollary 4

Let F be a class of P-measurable functions with envelope F such that PF < co.
Then F is P-GC if

sup N(e||Fll(q), F> L1(Q)) < o0, Ve >0,
Q

where the supremum is over all probability measures Q with 0 < QF < cc.

Proof.

Assume that PF > 0 (otherwise the result is trivial). There exists an 7 € (0, 00) such

that 1/n < P,F < n for all n large enough. For any € > 0, there exists a K¢ such
that with probability 1,

log N(en, F, L1(Ps)) < log N(eP.F, F, L1(Py)) < Ke
for all n large enough. Thus, for any ¢, M > 0,
IOg N(Ev‘FMv Ll(P")) S |0g N(€7 ]:7 L]_(]P)n)) = OP(]')

The desired result follows by Theorem 3.
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Donsker class

Definition 5

A function class F is called P-Donsker if
G, = vn(P, — P) % G,

where G is a tight® random element in (>°(F).

24 Ve > 0, 3 a compact set Ve € £°°(F) s.t. P(GF € Ve) > 1 — ¢, forall f € F.

@ The multivariate CLT ensures marginal convergence of G,:

(Gnfi,....Cuf) S N(O,X), Y(f,...,f)EF

o It follows that {Gf : f € F} must be a mean-zero Gaussian process with
covariance function E{GHGhHL} = X(f, ).

e This and tightness determine G to be a P-Brownian bridge in £>°(F)*.

LBy Lemma 1.5.3 of VW.
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Donsker with asymptotic equi-continuity

To prove the Donsker property by definition, we usually need to check:

e Marginal convergence (guaranteed by multivariate CLT)

@ Tightness of the limiting process G, which is equivalent to both of the
following:

> Total boundedness of (F,d), i.e., N(e, F,d) < oo for every ¢ > 0
> Asymptotic equicontinuity of (F,d), i.e., for every € > 0,

lim lim sup P* sup |Gn(f —g)| >€| =0
60 pooco d(f,g)<8:f,gEF

The semi-metric d is usually chosen as the Ly(P) distance, and P* is outer
probability?, which behaves like usual probabilities in most cases.

2the infimum of the probabilities of all measurable sets that contain the event.
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Donsker with asymptotic equi-continuity (cont.)

This is formally stated in the following theorem, which follows immediately
from the result of weak convergence of stochastic processes.

Theorem 6 (Donsker with asymptotic equi-continuity)

Let F be a class of measurable, square-integrable functions from X to R such
that sup;  |f(x) — Pf| < 0o, Vx € X. Then {G,f : f € F} converges weakly
to a tight random element if and only if there exists a semi-metric d(-,-) on F
such that (F, d) is totally bounded and for every € > 0,

lim lim sup P* sup |Gn(f —g)| >¢€| =0.
0 d(f.g)

-0 n—oo <6:;f,.geF
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Bracketing entropy integral

@ In many cases, bracketing numbers grow to infinity as € | 0.

o Sufficient condition for Donsker class: bracketing numbers do not grow
too fast with 1/e

o Bracketing entropy integral measures the speed of growth:

6
Jy(8, F, L,(P)) = /0 \/log Ny(e, F, L(P))de

@ The above integral coverges when the bracketing entropy grows with
order slower than 1/¢2.
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Donsker theorem with bracketing

Theorem 7 (Donsker with bracketing)
Suppose that F is a class of measurable functions satisfying
J[](l,]:, L2(P)) < 0.

Then F is P-Donsker.
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Donsker theorem with bracketing (cont.)

The proof of Theorem 7 uses the following maximal inequality:

Lemma 8 (Maximal inequality)

For any class F of measurable functions f : X — R satisfying Pf? < 62,
E*|Gnllr S Hy(6, F, L2(P)) + VnP*[FI{F > v/na(5)}],

where x < y means x < cy for some constant ¢ > 0, F is an envelope function
of F, and a(d) = 0/+/log Nj(e, F, L>(P)).

v

See Lemma 19.34 of van der Vaart (1998)3 for the proof.

3van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, Cambridge.
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Donsker theorem with bracketing (cont.)

Proof of Theorem 7.

Ve >0, Niy(e, 7, L2(P)) is finite, so (F, |[-[| ,(p)) is totally bounded.

Define G ={f —g: f,g € F}. It is easy to see that G = 2F is an envelope
for G and Nj(2¢,G, L2(P)) < Nﬁ(e,]—“, Ly(P)).

Let Gs ={f —g: f,g € F,||If — glli,(p) < 6}. By Lemma 8, there exists a
finite number a(8) = &/+/log Njj(¢, Gs, L2(P)) s.t.

E*|Gallgs < (8, G5, L2(P)) + V/nP[GL{G > a(5)v/n}]
< Jy(5,G, Lo(P)) + v/nP[G1{G > a(5)/n}].

The second term on RHS is bounded by a(6)'P[G?1{G > a(5)\/n}] and
hence converges to 0 as n — oo for every 9.

By assumption, J;(0,G, L2(P)) S Jy(0, F, L2(P)) —+ 0 as 6 — 0.

Thus, by Markov's inequality, the asymptotic equi-continuity condition holds.
The desired result then follows by Theorem 6.

O

v
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Uniform entropy integral

Like GC theorems, an alternative sufficient condition for Donsker property is
based on the uniform entropy integral:

&
16, F, F) :/ sup /o8 N(c L0 7 Lo( Q)
0

where F is an envelope of F, and the supremum is taken over all finitely
discrete probability measures @ with QF? > 0.
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Donsker theorem without bracketing

Theorem 9 (Donsker without bracketing)

Suppose that F is a pointwise-measurable class of measurable functions
satisfying PF? < oo and
J(1,F,F) < 0.

Then F is P-Donsker.

The pointwise-measurable condition suffices that there exists a countable
collection G of functions such that each f is the pointwise limit of a sequence
8m in G (see Example 2.3.4 of VW for details).
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Donsker theorem without bracketing (cont.)

The proof of Theorem 9 uses the following maximal inequality:
Lemma 10 (Maximal inequality)

Suppose 0 < ||F||1,(p) < 00, let o2 be any positive constant s.t.
supser P2 <02 < ||F||%2(P). Let 6 = o/||F||L,(py and

B = \/Emaxi<i<,F?(X;). Then,

BJ?(8, F, F)

E\G,llz < J(5, F, F)||F T s2 5
1GallF S I, F, F)IIFllapy + 82/n

See Chernozhukov et al. (2014)* for the proof.

4 Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist.,
42(4):1564-1597.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9.
We first show that (F, ||'||L2(P)) is totally bounded. For any fixed € > 0, there
exist fi,...,fy € F s.it. P(fi — f;)? > €2PF?, for every i # j. By LLN,
P,(f— )23 P(f —f)*> and P,F2%3 PF?
=P,(fi—£)?>PF?  and 0<P,F? <2PF?  for some large n
= Po(fi — £)° > €P,F?/2
= N< D(GHF||L2(IP>")/\/§7 F,Ly(Py)) < 0. (by assumption)

Choosing N = D(¢||F||.,(p), F, L2(P)) yields the total boundedness.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9 (cont.)

To verify the asymptotic equi-continuity condition, it suffices to show that
lim limsup E||G,||g; =0, (1)
0=0 nsoco

where Gs = {f —g:f,g € F,||f — gll,(p) < 0}
We observe that G5 has envelope 2F and

sup N(el|2F || y(@y: 9o, L2(Q)) < sup N(€l|2F]| (@), Goos L2( Q)

< sgpN2(€”F”L2(Q)7]:’ L2(Q))7

which leads to J(¢,Gs,2F) < J(e, F, F) for all e > 0.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9 (cont.)

Hence by Lemma 10 with 0 = 0 and envelope 2F, we have

B,J?(8', F,F
E||<c7n||,c;5sc{J(<S',f,F)|F||L2<P>+ ( )}7

§'2\/n
where §' = U/(2||F||L2(P)) and Bn = 2\/Emax1§,-§,,F2(X,~).
Since PF? < o0, B, = o(y/n). Thus, V1 > 0, we can choose § small s.t.

limsup E||Gyllgs < C(||Flio(py + 1)n-

n—o0

Hence, the asymptotic equi-continuity condition in (1) is satisfied and we
complete the proof.
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Discussion

@ Theorems 7 and 9 are based on finite bracketing entropy integral and
uniform entropy integral, respectively.

@ Although bracketing entropy integral involves only the true probability
measure P, this gain is offset by the fact that bracketing numbers are
usually larger than covering numbers.

@ Thus, these two sufficient conditions for Donsker classes are not
comparable.
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A general Donsker theorem

Define Ly oo(P)-norm as |, _(p) = supeso{t?P(If] > t)}*/2. Note that
11, ..cpy < Ifll,(p)- The following general Donsker theorem combines the
two entropy integrals:

Theorem 11 (General Donsker theorem)

Let F be a class of measurable functions such that

/O \/IogN[] (e,f,Lg’oo(P))de—l—/O Vog N (e, F, L2(P))de < .

Moreover, assume that the envelope F of F satisfies a weak second moment,
ie., t2?P*{F(X) >t} — 0 ast— oo. Then F is P-Donsker.

See Theorem 2.5.6 of VW for the proof.
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GC preservation

Theorem 12 (GC preservation)

Suppose that Fi, ..., Fi are P-GC with maxi<j<k ||P|\fj < oo. Then for any

continuous transformation ¢ : R¥ — R, the class H = ¢(Fi, ..., Fx) is also
P-GC provided it has an integrable envelope.

See Theorem 3 of van der Vaart and Wellner (2000)° for the proof.

5van der Vaart, A., & Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes. In High
dimensional probability Il (pp. 115-133). Boston, MA: Birkhzuser Boston.
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GC preservation (cont.)

Corollary 13

Let F and G be P-GC with respective integrable envelopes F and G. Then,
(i) F+ G is P-GC.

(i) F -G is P-GC if P(FG) < 0.

(iii) Any continuous transformation ¢(F) is P-GC provided it has an
integrable envelope.

See Corollary 9.27 of Kosorok for the proof.
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Closures and convex hulls

For a class F of measurable functions, define the following operations.

Closure:

F = {f : X+ R | 3{fp} € F s.t. fy — f both pointwise and in L2(P)}

Symmetric convex hull:

sconv.F = {Z Aif;
i=1

{f}e 7D IN §1}
i=1
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Donsker preservation

Theorem 14 (Donsker preservation)
Let F be P-Donsker. Then,

(i) Forany G C F, G is P-Donsker.

(i) F is P-Donsker.

(iii) sconvF is P-Donsker.

See Theorems 2.10.1 — 2.10.3 of VW for the proofs.
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Donsker preservation (cont.)

The following theorem establishes Donsker preservation under Lipschitz
transformations and is one of the most useful preservation results:
Theorem 15 (Donsker preservation under Lipschitz transformations)

Suppose that Fi, ..., Fi are Donsker classes with maxi<j<k ||P||fj < 00.
Consider any Lipschitz transformation ¢ : R¥ — R satisfying

{fi(x) — g(x)}*,

1

6o f(x) —pog(x)] < c?

k
J:
for every f,g € F1 X --- X Fx, every x € X, and some constant ¢ < co. Then
the class ¢ o (Fi,...,Fk) is Donsker provided ¢ o f is square integrable for at
least one f € F1 X -+ X Fy.

See Theorem 2.10.6 and pages 196 — 198 of VW for the proof.
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Donsker preservation (cont.)

Corollary 16
Let F and G be Donsker classes. Then,
(i) FUG and F + G are Donsker.

(ii) If||P||z g < oo, then the pairwise infima F NG and the pairwise suprema
F VG are Donsker.

(iii) If F and G are uniformly bounded, then F - G is Donsker.

(iv) Any Lipschitz continuous transformation ¢(F) is Donsker, provided
H¢(f)||L2(P) < oo for at least one f € F.

(v) If||P||z < oo and g is a uniformly bounded, measurable function, then
F - g is Donsker.

See Corollary 9.32 of Kosorok for the proof.
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