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Glivenko-Cantelli (GC) class

Definition 1 (GC class)
A function class F is called P-GC if

∥Pn − P∥F
a.s.→ 0

under the probability measure P.

∥Q∥F = supf ∈F |Qf |
uniform almost sure convergence across F
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GC theorem with bracketing

Bracket number N[](ϵ, F , ∥ · ∥):
minimum number of brackets [ℓ, u] with ∥ℓ − u∥ < ϵ needed to cover F
entropy with bracketing: log N[](ϵ, F , ∥ · ∥)

Theorem 2 (GC with bracketing)
Let F be a class of P-measurable functions such that

N[](ϵ, F , L1(P)) < ∞, for every ϵ > 0.

Then F is P-GC.
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GC theorem with bracketing (cont.)

Proof.
For every f ∈ [ℓi , ui ], we have{

(Pn − P)f ≤ Pnui − Pℓi ≤ (Pn − P)ui + ∥ui − ℓi∥L1(P)

(Pn − P)f ≥ Pnℓi − Pui ≥ (Pn − P)ℓi − ∥ui − ℓi∥L1(P)

Thus, {
supf ∈F (Pn − P)f ≤ maxi(Pn − P)ui + ϵ

a.s.→ ϵ

inf f ∈F (Pn − P)f ≥ mini(Pn − P)ℓi − ϵ
a.s.→ −ϵ

(by SLLN)

⇒ lim sup
n

∥Pn − P∥F ≤ ϵ almost surely.

Letting ϵ ↓ 0 yields the desired result.
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GC theorem without bracketing

Covering number N(ϵ, F , ∥ · ∥):
minimum number of balls B(f ; ϵ) := {g : ∥g − f ∥ ≤ ϵ} needed to cover F
entropy without bracketing: log N(ϵ, F , ∥ · ∥)

Envelope function F : |f (x)| ≤ F (x) for every x ∈ X and f ∈ F

Theorem 3 (GC without bracketing)

Let F be a class of P-measurable functions with envelope F such that
PF < ∞. Let FM be the class of functions f 1{F ≤ M} when f ranges over
F . Then F is P-GC if and only if

n−1 log N(ϵ, FM , L1(Pn)) p→ 0, ∀ϵ, M > 0.
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GC theorem without bracketing (cont.)

Symmetrization (Theorem 1.26):

E ∥Pn − P∥F ≤ 2E ∥Po
n∥F

Proof of sufficiency.

E ∥Pn − P∥F ≤ 2EX Eε

∥∥∥∥∥1
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
F

(symmetrization)

≤ 2EX Eε

∥∥∥∥∥1
n

n∑
i=1

εi f (Xi)

∥∥∥∥∥
FM

+ 2P[F1{F > M}] (triangle inequality)

For sufficiently large M, P[F1{F > M}] is arbitrarily small.
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GC theorem without bracketing (cont.)
Maximal inequality for Rademacher linear combinations (Corollary 1.25):

E max
1≤i≤N

|ξi | ≤ C
√

log N max
1≤i≤N

∥a(i)∥

Proof of sufficiency (cont.)
Let G denote the ϵ-cover associated with N(ϵ, FM , L1(Pn)). For any f ∈ FM ,∣∣∣∣∣1n

n∑
i=1

εi f (Xi)

∣∣∣∣∣ ≤

∣∣∣∣∣1n
n∑

i=1

εig (Xi)

∣∣∣∣∣+

∣∣∣∣∣1n
n∑

i=1

εi [f (Xi) − g (Xi)]

∣∣∣∣∣
≤

∥∥∥∥∥1
n

n∑
i=1

εig (Xi)

∥∥∥∥∥
G

+ ϵ

≤ C

√
log N (ϵ, FM , L1 (Pn))

n max
g∈G

√
Png2 + ϵ (maximal inequality)

p→ ϵ
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GC theorem without bracketing (cont.)

Proof of sufficiency (cont.)
Letting ϵ ↓ 0 yields ∥ 1

n
∑n

i=1 εi f (Xi) ∥FM
p→ 0. Since ∥ 1

n
∑n

i=1 εi f (Xi) ∥FM ≤ M, it
follows by the dominated convergence theorem that EX Eε

∥∥ 1
n
∑n

i=1 εi f (Xi)
∥∥

FM
→ 0.

Thus, we conclude that E ∥Pn − P∥F → 0.
By Lemma 2.4.5 of VW, ∥Pn − P∥F is a reverse sub-martingale, thus converges
almost surely to a constant, which must be 0 by the convergence in mean.
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GC theorem with uniform covering
Corollary 4
Let F be a class of P-measurable functions with envelope F such that PF < ∞.
Then F is P-GC if

sup
Q

N(ϵ∥F∥L1(Q), F , L1(Q)) < ∞, ∀ϵ > 0,

where the supremum is over all probability measures Q with 0 < QF < ∞.

Proof.
Assume that PF > 0 (otherwise the result is trivial). There exists an η ∈ (0, ∞) such
that 1/η < PnF < η for all n large enough. For any ϵ > 0, there exists a Kϵ such
that with probability 1,

log N(ϵη, F , L1(Pn)) ≤ log N(ϵPnF , F , L1(Pn)) ≤ Kϵ

for all n large enough. Thus, for any ϵ, M > 0,

log N(ϵ, FM , L1(Pn)) ≤ log N(ϵ, F , L1(Pn)) = Op(1).

The desired result follows by Theorem 3.
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Donsker class

Definition 5
A function class F is called P-Donsker if

Gn =
√

n(Pn − P) d→ G,

where G is a tighta random element in ℓ∞(F).
a⇔ ∀ϵ > 0, ∃ a compact set Vϵ ∈ ℓ∞(F) s.t. P(Gf ∈ Vϵ) > 1 − ϵ, for all f ∈ F .

The multivariate CLT ensures marginal convergence of Gn:

(Gnf1, . . . ,Gnfk) d→ N(0, Σ), ∀(f1, . . . , fk) ∈ F

It follows that {Gf : f ∈ F} must be a mean-zero Gaussian process with
covariance function E{Gf1Gf2} = Σ(f1, f2).
This and tightness determine G to be a P-Brownian bridge in ℓ∞(F)1.

1By Lemma 1.5.3 of VW.
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Donsker with asymptotic equi-continuity

To prove the Donsker property by definition, we usually need to check:

Marginal convergence (guaranteed by multivariate CLT)

Tightness of the limiting process G, which is equivalent to both of the
following:

▶ Total boundedness of (F , d), i.e., N(ϵ, F , d) < ∞ for every ϵ > 0
▶ Asymptotic equicontinuity of (F , d), i.e., for every ϵ > 0,

lim
δ→0

lim sup
n→∞

P∗
(

sup
d(f ,g)≤δ;f ,g∈F

|Gn(f − g)| > ϵ

)
= 0

The semi-metric d is usually chosen as the L2(P) distance, and P∗ is outer
probability2, which behaves like usual probabilities in most cases.

2the infimum of the probabilities of all measurable sets that contain the event.
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Donsker with asymptotic equi-continuity (cont.)

This is formally stated in the following theorem, which follows immediately
from the result of weak convergence of stochastic processes.

Theorem 6 (Donsker with asymptotic equi-continuity)

Let F be a class of measurable, square-integrable functions from X to R such
that supf ∈F |f (x) − Pf | < ∞, ∀x ∈ X . Then {Gnf : f ∈ F} converges weakly
to a tight random element if and only if there exists a semi-metric d(·, ·) on F
such that (F , d) is totally bounded and for every ϵ > 0,

lim
δ→0

lim sup
n→∞

P∗

(
sup

d(f ,g)≤δ;f ,g∈F
|Gn(f − g)| > ϵ

)
= 0.
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Bracketing entropy integral

In many cases, bracketing numbers grow to infinity as ϵ ↓ 0.

Sufficient condition for Donsker class: bracketing numbers do not grow
too fast with 1/ϵ

Bracketing entropy integral measures the speed of growth:

J[](δ, F , Lr (P)) :=
∫ δ

0

√
log N[](ϵ, F , Lr (P))dϵ

The above integral coverges when the bracketing entropy grows with
order slower than 1/ϵ2.
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Donsker theorem with bracketing

Theorem 7 (Donsker with bracketing)

Suppose that F is a class of measurable functions satisfying

J[](1, F , L2(P)) < ∞.

Then F is P-Donsker.
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Donsker theorem with bracketing (cont.)

The proof of Theorem 7 uses the following maximal inequality:

Lemma 8 (Maximal inequality)

For any class F of measurable functions f : X → R satisfying Pf 2 < δ2,

E∗∥Gn∥F ≲ J[](δ, F , L2(P)) +
√

nP∗[F1{F >
√

na(δ)}],

where x ≲ y means x ≤ cy for some constant c > 0, F is an envelope function
of F , and a(δ) = δ/

√
log N[](ϵ, F , L2(P)).

See Lemma 19.34 of van der Vaart (1998)3 for the proof.

3van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, Cambridge.
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Donsker theorem with bracketing (cont.)

Proof of Theorem 7.
∀ϵ > 0, N[](ϵ, F , L2(P)) is finite, so (F , ∥·∥L2(P)) is totally bounded.
Define G = {f − g : f , g ∈ F}. It is easy to see that G = 2F is an envelope
for G and N[](2ϵ, G, L2(P)) ≤ N2

[](ϵ, F , L2(P)).
Let Gδ = {f − g : f , g ∈ F , ∥f − g∥L2(P) ≤ δ}. By Lemma 8, there exists a
finite number a(δ) = δ/

√
log N[](ϵ, Gδ, L2(P)) s.t.

E∗∥Gn∥Gδ
≲ J[](δ, Gδ, L2(P)) +

√
nP[G1{G > a(δ)

√
n}]

≤ J[](δ, G, L2(P)) +
√

nP[G1{G > a(δ)
√

n}].

The second term on RHS is bounded by a(δ)−1P[G2
1{G > a(δ)

√
n}] and

hence converges to 0 as n → ∞ for every δ.
By assumption, J[](δ, G, L2(P)) ≲ J[](δ, F , L2(P)) → 0 as δ → 0.
Thus, by Markov’s inequality, the asymptotic equi-continuity condition holds.
The desired result then follows by Theorem 6.
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Uniform entropy integral

Like GC theorems, an alternative sufficient condition for Donsker property is
based on the uniform entropy integral:

J(δ, F , F ) =
∫ δ

0
sup

Q

√
log N(ϵ∥F∥L2(Q), F , L2(Q))dϵ,

where F is an envelope of F , and the supremum is taken over all finitely
discrete probability measures Q with QF 2 > 0.
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Donsker theorem without bracketing

Theorem 9 (Donsker without bracketing)

Suppose that F is a pointwise-measurable class of measurable functions
satisfying PF 2 < ∞ and

J(1, F , F ) < ∞.

Then F is P-Donsker.

The pointwise-measurable condition suffices that there exists a countable
collection G of functions such that each f is the pointwise limit of a sequence
gm in G (see Example 2.3.4 of VW for details).
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Donsker theorem without bracketing (cont.)

The proof of Theorem 9 uses the following maximal inequality:

Lemma 10 (Maximal inequality)

Suppose 0 < ∥F∥L2(P) < ∞, let σ2 be any positive constant s.t.
supf ∈F Pf 2 ≤ σ2 ≤ ∥F∥2

L2(P). Let δ = σ/∥F∥L2(P) and
B =

√
Emax1≤i≤nF 2(Xi). Then,

E∥Gn∥F ≲ J(δ, F , F )∥F∥L2(P) + BJ2(δ, F , F )
δ2√

n
.

See Chernozhukov et al. (2014)4 for the proof.

4Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist.,
42(4):1564–1597.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9.
We first show that (F , ∥·∥L2(P)) is totally bounded. For any fixed ϵ > 0, there
exist f1, . . . , fN ∈ F s.t. P(fi − fj)2 > ϵ2PF 2, for every i ̸= j . By LLN,

Pn(fi − fj)2 a.s.→ P(fi − fj)2 and PnF 2 a.s.→ PF 2

⇒ Pn(fi − fj)2 > ϵ2PF 2 and 0 < PnF 2 < 2PF 2, for some large n
⇒ Pn(fi − fj)2 > ϵ2PnF 2/2
⇒ N ≤ D(ϵ∥F∥L2(Pn)/

√
2, F , L2(Pn)) < ∞. (by assumption)

Choosing N = D(ϵ∥F∥L2(P), F , L2(P)) yields the total boundedness.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9 (cont.)
To verify the asymptotic equi-continuity condition, it suffices to show that

lim
δ→0

lim sup
n→∞

E∥Gn∥Gδ
= 0, (1)

where Gδ = {f − g : f , g ∈ F , ∥f − g∥L2(P) ≤ δ}.
We observe that Gδ has envelope 2F and

sup
Q

N(ϵ∥2F∥L2(Q), Gδ, L2(Q)) ≤ sup
Q

N(ϵ∥2F∥L2(Q), G∞, L2(Q))

≤ sup
Q

N2(ϵ∥F∥L2(Q), F , L2(Q)),

which leads to J(ϵ, Gδ, 2F ) ≲ J(ϵ, F , F ) for all ϵ > 0.
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Donsker theorem without bracketing (cont.)

Proof of Theorem 9 (cont.)
Hence by Lemma 10 with σ = δ and envelope 2F , we have

E∥Gn∥Gδ
≤ C

{
J(δ′, F , F )∥F∥L2(P) + BnJ2(δ′, F , F )

δ′2√
n

}
,

where δ′ = σ/(2∥F∥L2(P)) and Bn = 2
√

Emax1≤i≤nF 2(Xi).
Since PF 2 < ∞, Bn = o(

√
n). Thus, ∀η > 0, we can choose δ small s.t.

lim sup
n→∞

E∥Gn∥Gδ
≤ C(∥F∥L2(P) + 1)η.

Hence, the asymptotic equi-continuity condition in (1) is satisfied and we
complete the proof.
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Discussion

Theorems 7 and 9 are based on finite bracketing entropy integral and
uniform entropy integral, respectively.

Although bracketing entropy integral involves only the true probability
measure P, this gain is offset by the fact that bracketing numbers are
usually larger than covering numbers.

Thus, these two sufficient conditions for Donsker classes are not
comparable.
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A general Donsker theorem

Define L2,∞(P)-norm as ∥f ∥L2,∞(P) = supt>0{t2P(|f | > t)}1/2. Note that
∥f ∥L2,∞(P) ≤ ∥f ∥L2(P). The following general Donsker theorem combines the
two entropy integrals:

Theorem 11 (General Donsker theorem)
Let F be a class of measurable functions such that∫ 1

0

√
log N[] (ϵ, F , L2,∞(P))dϵ +

∫ 1

0

√
log N (ϵ, F , L2(P))dϵ < ∞.

Moreover, assume that the envelope F of F satisfies a weak second moment,
i.e., t2P∗{F (X ) > t} → 0 as t → ∞. Then F is P-Donsker.

See Theorem 2.5.6 of VW for the proof.
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GC preservation

Theorem 12 (GC preservation)
Suppose that F1, . . . , Fk are P-GC with max1≤j≤k ∥P∥Fj

< ∞. Then for any
continuous transformation ϕ : Rk 7→ R, the class H = ϕ(F1, . . . , Fk) is also
P-GC provided it has an integrable envelope.

See Theorem 3 of van der Vaart and Wellner (2000)5 for the proof.

5van der Vaart, A., & Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes. In High
dimensional probability II (pp. 115-133). Boston, MA: Birkhäuser Boston.
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GC preservation (cont.)

Corollary 13
Let F and G be P-GC with respective integrable envelopes F and G. Then,
(i) F + G is P-GC.
(ii) F · G is P-GC if P(FG) < ∞.
(iii) Any continuous transformation ϕ(F) is P-GC provided it has an

integrable envelope.

See Corollary 9.27 of Kosorok for the proof.
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Closures and convex hulls

For a class F of measurable functions, define the following operations.

Closure:

F =
{

f : X 7→ R
∣∣ ∃{fm} ∈ F s.t. fm → f both pointwise and in L2(P)

}
Symmetric convex hull:

sconvF =
{ ∞∑

i=1
λi fi

∣∣∣∣∣ {fi} ∈ F ,

∞∑
i=1

|λi | ≤ 1
}
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Donsker preservation

Theorem 14 (Donsker preservation)
Let F be P-Donsker. Then,
(i) For any G ⊂ F , G is P-Donsker.
(ii) F is P-Donsker.
(iii) sconvF is P-Donsker.

See Theorems 2.10.1 – 2.10.3 of VW for the proofs.
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Donsker preservation (cont.)

The following theorem establishes Donsker preservation under Lipschitz
transformations and is one of the most useful preservation results:

Theorem 15 (Donsker preservation under Lipschitz transformations)
Suppose that F1, . . . , Fk are Donsker classes with max1≤j≤k ∥P∥Fj

< ∞.
Consider any Lipschitz transformation ϕ : Rk 7→ R satisfying

|ϕ ◦ f (x) − ϕ ◦ g(x)|2 ≤ c2
k∑

j=1
{fj(x) − gj(x)}2

,

for every f , g ∈ F1 × · · · × Fk , every x ∈ X , and some constant c < ∞. Then
the class ϕ ◦ (F1, . . . , Fk) is Donsker provided ϕ ◦ f is square integrable for at
least one f ∈ F1 × · · · × Fk .

See Theorem 2.10.6 and pages 196 – 198 of VW for the proof.
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Donsker preservation (cont.)

Corollary 16
Let F and G be Donsker classes. Then,
(i) F ∪ G and F + G are Donsker.
(ii) If ∥P∥F∪G < ∞, then the pairwise infima F ∧ G and the pairwise suprema

F ∨ G are Donsker.
(iii) If F and G are uniformly bounded, then F · G is Donsker.
(iv) Any Lipschitz continuous transformation ϕ(F) is Donsker, provided

∥ϕ(f )∥L2(P) < ∞ for at least one f ∈ F .
(v) If ∥P∥F < ∞ and g is a uniformly bounded, measurable function, then

F · g is Donsker.

See Corollary 9.32 of Kosorok for the proof.
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