STAT6018 Research Frontiers in Data Science Topic II: Introduction to empirical process theory

Yu Gu, PhD Assistant Professor

Department of Statistics & Actuarial Science The University of Hong Kong

> <ロト < 部 > < 主 > < 主 > シスペ 1/18

Table of Contents

① Chapter 3: M-estimators

- Consistency
- Rate of Convergence

M-estimators

- *M*-estimators are (approximate) maximizers (or minimizers) θ̂_n of criterion functions M_n(θ), i.e., θ̂_n = arg max M_n(θ).
- For i.i.d. observations, a common empirical criterion function is of the form M_n(θ) = P_nm_θ.
- Examples:
 - maximum likelihood estimators
 - least squares estimators
- Asymptotic properties of $\hat{\theta}_n$:
 - consistency for the true parameter θ_0
 - rate of convergence r_n
 - weak convergence of $\hat{h}_n = r_n(\hat{\theta}_n \theta_0)$ to some random point \hat{h}

Table of Contents

• Rate of Convergence

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 2 9 Q (*)
4/18

Preliminary arguments

- If the argmax function were continuous w.r.t. some metric on the space of criterion functions, then weak convergence of $\mathbb{M}_n(\theta)$ would imply weak convergence of $\hat{\theta}_n$ by the continuous mapping theorem.
- Let $\{\mathbb{M}(\theta) : \theta \in \Theta\}$ be the limiting process of $\mathbb{M}_n(\theta)$.
- The argmax function is continuous at M if M has a unique, well-separated maximizer ĥ. That is, M(ĥ) > sup_{h∉G} M(h) almost surely for any neighborhood G of ĥ.

Preliminary result

Lemma 1

Let \mathbb{M}_n , \mathbb{M} be stochastic processes indexed by a metric space H. Let A and B be arbitrary subsets of H. Suppose that

(i) M(ĥ) > sup_{h∉G,h∈A} M(h) almost surely, for every open set G that contains ĥ.

(ii)
$$\mathbb{M}_n(\hat{h}_n) \geq \sup_h \mathbb{M}_n(h) - o_p(1).$$

(iii)
$$\mathbb{M}_n \xrightarrow{d} \mathbb{M}$$
 in $\ell^{\infty}(A \cup B)$.

Then, for every closed set F,

$$\limsup_{n\to\infty} P^*(\hat{h}_n\in F\cap A)\leq P(\hat{h}\in F\cup B^c).$$

• $A = B = H \Rightarrow \hat{h}_n \stackrel{d}{\rightarrow} \hat{h}$ (by portmanteau theorem¹).

• See Lemma 3.2.1 of VW for the proof.

Remarks

- The assumption that $\mathbb{M}_n \xrightarrow{d} \mathbb{M}$ uniformly in the whole parameter space is too strong.
- If dropping this assumption, additional properties of \hat{h}_n need to be established in order to obtain $\hat{h}_n \stackrel{d}{\rightarrow} \hat{h}$.
- The Argmax theorem requires uniform tightness² of \hat{h}_n and uniform convergence of \mathbb{M}_n on compact subspace.

 $^{^{2}\}forall \epsilon > 0, \exists \text{ a compact set } V_{\epsilon} \in H \text{ s.t. } P(\hat{h}_{n} \in V_{\epsilon}) > 1 - \epsilon.$

Argmax theorem

Theorem 2 (Argmax theorem)

Let \mathbb{M}_n , \mathbb{M} be stochastic processes indexed by a metric space H. Suppose that

- (i) Almost all sample paths h → M(h) are upper semicontinuous^a and possess a unique maximum at a (random) point ĥ, which as a random map in H is tight.
- (ii) The sequence \hat{h}_n is uniformly tight and satisfies $\mathbb{M}_n(\hat{h}_n) \ge \sup_h \mathbb{M}_n(h) o_p(1).$

(iii)
$$\mathbb{M}_n \xrightarrow{d} \mathbb{M}$$
 in $\ell^{\infty}(K)$ for every compact $K \subset H$.
Then $\hat{h}_n \xrightarrow{d} \hat{h}$ in H .

^aA function $f : \mathbb{D} \to \mathbb{R}$ is upper semicontinuous if for all $x_0 \in \mathbb{D}$, $\limsup_{x \to x_0} f(x) \leq f(x_0)$.

See Theorem 3.2.2 of VW for the proof.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Remarks

- The preceding lemma and the Argmax theorem are typically applied to a local parameter h, but they can also be applied to the original parameter θ .
- Since the limiting criterion function $\mathbb{M}(\theta)$ is typically nonrandom, the approach turns into a consistency proof.

Consistency

Corollary 3 (Consistency)

Let \mathbb{M}_n be stochastic processes indexed by a metric space Θ , and let $\mathbb{M} : \Theta \mapsto \mathbb{R}$ be a deterministic function.

(A) Suppose that

(i) $\mathbb{M}(\theta_0) > \sup_{\theta \notin G} \mathbb{M}(\theta)$ for every open set G that contains θ_0 .

(ii)
$$\mathbb{M}_n(\hat{\theta}_n) \geq \sup_{\theta} \mathbb{M}_n(\theta) - o_p(1).$$

(iii) $\|\mathbb{M}_n - \mathbb{M}\|_{\Theta} \to 0$ in outer probability.

Then $\hat{\theta}_n \rightarrow \theta_0$ in outer probability.

(B) Suppose that

(i) The map $\theta \mapsto \mathbb{M}(\theta)$ is upper semicontinuous with a unique maximum at θ_0 .

(ii) The sequence
$$\hat{\theta}_n$$
 is uniformly tight and satisfies $\mathbb{M}_n(\hat{\theta}_n) \ge \sup_{\theta} \mathbb{M}_n(\theta) - o_p(1).$

(iii) $\|\mathbb{M}_n - \mathbb{M}\|_{\mathcal{K}} \to 0$ in outer probability for every compact $\mathcal{K} \subset \Theta$. Then $\hat{\theta}_n \to \theta_0$ in outer probability.

Under i.i.d. setting

In the case of i.i.d. data, $\mathbb{M}_n(\theta) = \mathbb{P}_n m_{\theta}$ and $\mathbb{M} = \mathbb{P} m_{\theta}$, the uniform convergence in (iii) is valid if and only if the class of functions $\{m_{\theta} : \theta \in \Theta\}$ is Glivenko-Cantelli.

Table of Contents

① Chapter 3: M-estimators

- Consistency
- Rate of Convergence

Preliminary arguments

- If M(θ) is twice differentiable at a point of maximum θ₀, then M'(θ₀) = 0 and M''(θ₀) is negative definite.
- It is natural to assume that $\mathbb{M}(\theta) \mathbb{M}(\theta_0) \lesssim -d^2(\theta, \theta_0)$ for every θ in a neighborhood of θ_0 .
- The modulus of continuity of a stochastic process {X(t) : t ∈ T} is defined by

$$m_X(\delta) := \sup_{s,t\in T: d(s,t)\leq \delta} |X(s) - X(t)|.$$

An upper bound for the rate of convergence of $\hat{\theta}_n$ can be obtained from the modulus of continuity of $\mathbb{M}_n - \mathbb{M}$ at θ_0 .

Rate of convergence

Theorem 4 (Rate of convergence)

Let \mathbb{M}_n be stochastic processes indexed by a semimetric space Θ and \mathbb{M} : $\Theta \to \mathbb{R}$ a deterministic function. Suppose that

(i) For every θ in a neighborhood of θ_0 ,

$$\mathbb{M}(heta) - \mathbb{M}\left(heta_0
ight) \lesssim -d^2(heta, heta_0).$$

(ii) For every n and sufficiently small δ , the centered process $\mathbb{M}_n - \mathbb{M}$ satisfies

$$E^* \sup_{d(heta, heta_0) < \delta} \left| (\mathbb{M}_n - \mathbb{M})(heta) - (\mathbb{M}_n - \mathbb{M})(heta_0) \right| \lesssim rac{\phi_n(\delta)}{\sqrt{n}},$$

for functions ϕ_n such that $\delta \mapsto \phi_n(\delta)/\delta^{\alpha}$ is decreasing for some $\alpha < 2$ not depending on n.

(iii) The sequence $\hat{\theta}_n$ converges in outer probability to θ_0 and satisfies $\mathbb{M}_n(\hat{\theta}_n) \ge \mathbb{M}_n(\theta_0) - O_p(r_n^{-2})$ for some sequence r_n such that $r_n^2 \phi_n(r_n^{-1}) \le \sqrt{n}$ for every n.

Then $r_n d(\hat{\theta}_n, \theta_0) = O_p^*(1)$. If the displayed conditions are valid for every θ and δ , then the condition that $\hat{\theta}_n$ is consistent is unnecessary.

See Theorem 3.2.5 of VW for the proof.

イロン イロン イヨン イヨン

Remarks

- The theorem remains true if replacing the metric function d by an arbitrary function $\tilde{d} : \Theta \times \Theta \mapsto [0, \infty)$ that satisfies $\tilde{d}(\theta_n, \theta_0) \to 0$ whenever $d(\theta_n, \theta_0) \to 0$.
- When $\phi(\delta) = \delta^{\alpha}$, the rate r_n is at least $n^{1/(4-2\alpha)}$.
- In particular, the "usual" rate \sqrt{n} corresponds to $\phi(\delta) = \delta$.

Under i.i.d. setting

• Recall Condition (ii) in the preceding theorem:

$$E^* \sup_{d(heta, heta_0) < \delta} \left| (\mathbb{M}_n - \mathbb{M}) \left(heta
ight) - (\mathbb{M}_n - \mathbb{M}) \left(heta_0
ight) \right| \lesssim rac{\phi_n(\delta)}{\sqrt{n}}$$

• For i.i.d. data and empirical criterion functions $\mathbb{M}_n(\theta) = \mathbb{P}_n m_{\theta}$ and $\mathbb{M}(\theta) = Pm_{\theta}$, Condition (ii) involves the suprema of the empirical process $\mathbb{G}_n = \sqrt{n}(\mathbb{P}_n - \mathbb{P})$ indexed by classes of functions

$$\mathcal{M}_{\delta} := \left\{ m_{\theta} - m_{\theta_0} : d(\theta, \theta_0) < \delta \right\}.$$

• It is reasonable to assume that these suprema are bounded uniformly in *n*.

Rate of convergence under i.i.d. setting

Corollary 5

In the i.i.d. case, assume that

(i) For every θ in a neighborhood of θ_0 ,

$$P(m_ heta-m_{ heta_0})\lesssim -d^2(heta, heta_0).$$

(ii) There exists a function ϕ such that $\delta \mapsto \phi(\delta)/\delta^{\alpha}$ is decreasing for some $\alpha < 2$ and, for every n,

$$E^* \|\mathbb{G}_n\|_{\mathcal{M}_{\delta}} \lesssim \phi(\delta).$$

(iii) The sequence $\hat{\theta}_n$ converges in outer probability to θ_0 and satisfies $\mathbb{P}_n m_{\hat{\theta}_n} \ge \sup_{\theta \in \Theta} \mathbb{P}_n m_{\theta} - O_p(r_n^{-2})$ for some sequence r_n such that

$$r_n^2 \phi_n(r_n^{-1}) \leq \sqrt{n}$$
 for every n .

Then $r_n d(\hat{\theta}_n, \theta_0) = O_p^*(1)$.

Bounds on continuity modulus

- It is important to derive a sharp bound on the modulus of continuity of G_n before applying the corollary.
- A simple but not necessarily efficient approach is to apply the maximal inequalities to the class M_δ, which yield

 $egin{aligned} & E_{\mathcal{P}}^* \| \mathbb{G}_n \|_{\mathcal{M}_{\delta}} \lesssim J(1,\mathcal{M}_{\delta}) (\mathcal{P}^* M_{\delta}^2)^{1/2}, \ & E_{\mathcal{P}}^* \| \mathbb{G}_n \|_{\mathcal{M}_{\delta}} \lesssim J_{[]}ig(1,\mathcal{M}_{\delta},L_2(\mathcal{P})ig) (\mathcal{P}^* M_{\delta}^2)^{1/2}. \end{aligned}$

- These bounds depend mostly on the envelope function M_{δ} .
- Assuming that the entropy integrals are bounded as δ ↓ 0, we obtain an upper bound φ(δ) = (P*M²_δ)^{1/2} on the modulus.
- By the preceding corollary, r_n is at least the solution of

$$r_n^4 P^* M_{1/r_n}^2 \sim n.$$