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M-estimators

M-estimators are (approximate) maximizers (or minimizers) θ̂n of criterion
functions Mn(θ), i.e., θ̂n = arg maxMn(θ).

For i.i.d. observations, a common empirical criterion function is of the
form Mn(θ) = Pnmθ.

Examples:
▶ maximum likelihood estimators
▶ least squares estimators

Asymptotic properties of θ̂n:
▶ consistency for the true parameter θ0
▶ rate of convergence rn
▶ weak convergence of ĥn = rn(θ̂n − θ0) to some random point ĥ
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Preliminary arguments

If the argmax function were continuous w.r.t. some metric on the space of
criterion functions, then weak convergence of Mn(θ) would imply weak
convergence of θ̂n by the continuous mapping theorem.

Let {M(θ) : θ ∈ Θ} be the limiting process of Mn(θ).

The argmax function is continuous at M if M has a unique, well-separated
maximizer ĥ. That is, M(ĥ) > suph/∈G M(h) almost surely for any
neighborhood G of ĥ.
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Preliminary result

Lemma 1
Let Mn, M be stochastic processes indexed by a metric space H. Let A and B
be arbitrary subsets of H. Suppose that
(i) M(ĥ) > suph/∈G,h∈A M(h) almost surely, for every open set G that

contains ĥ.
(ii) Mn(ĥn) ≥ suph Mn(h) − op(1).

(iii) Mn
d→ M in ℓ∞(A ∪ B).

Then, for every closed set F ,

lim sup
n→∞

P∗(ĥn ∈ F ∩ A) ≤ P(ĥ ∈ F ∪ Bc).

A = B = H ⇒ ĥn
d→ ĥ (by portmanteau theorem1).

See Lemma 3.2.1 of VW for the proof.

1Xn
d

→ X if and only if lim supn→∞ P∗(Xn ∈ F ) ≤ P(X ∈ F ) for every closed F .
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Remarks

The assumption that Mn
d→ M uniformly in the whole parameter space is

too strong.

If dropping this assumption, additional properties of ĥn need to be
established in order to obtain ĥn

d→ ĥ.

The Argmax theorem requires uniform tightness2 of ĥn and uniform
convergence of Mn on compact subspace.

2∀ϵ > 0, ∃ a compact set Vϵ ∈ H s.t. P(ĥn ∈ Vϵ) > 1 − ϵ.
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Argmax theorem

Theorem 2 (Argmax theorem)
Let Mn, M be stochastic processes indexed by a metric space H. Suppose that
(i) Almost all sample paths h 7→ M(h) are upper semicontinuousa and

possess a unique maximum at a (random) point ĥ, which as a random
map in H is tight.

(ii) The sequence ĥn is uniformly tight and satisfies
Mn(ĥn) ≥ suph Mn(h) − op(1).

(iii) Mn
d→ M in ℓ∞(K ) for every compact K ⊂ H.

Then ĥn
d→ ĥ in H.

aA function f : D 7→ R is upper semicontinuous if for all x0 ∈ D, lim supx→x0 f (x) ≤ f (x0).

See Theorem 3.2.2 of VW for the proof.
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Remarks

The preceding lemma and the Argmax theorem are typically applied to a
local parameter h, but they can also be applied to the original parameter
θ.

Since the limiting criterion function M(θ) is typically nonrandom, the
approach turns into a consistency proof.
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Consistency

Corollary 3 (Consistency)
Let Mn be stochastic processes indexed by a metric space Θ, and let
M : Θ 7→ R be a deterministic function.
(A) Suppose that

(i) M(θ0) > supθ /∈G M(θ) for every open set G that contains θ0.

(ii) Mn(θ̂n) ≥ supθ Mn(θ) − op(1).

(iii) ∥Mn − M∥Θ → 0 in outer probability.
Then θ̂n → θ0 in outer probability.

(B) Suppose that
(i) The map θ 7→ M(θ) is upper semicontinuous with a unique maximum at θ0.

(ii) The sequence θ̂n is uniformly tight and satisfies
Mn(θ̂n) ≥ supθ Mn(θ) − op(1).

(iii) ∥Mn − M∥K → 0 in outer probability for every compact K ⊂ Θ.
Then θ̂n → θ0 in outer probability.
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Under i.i.d. setting

In the case of i.i.d. data, Mn(θ) = Pnmθ and M = Pmθ, the uniform
convergence in (iii) is valid if and only if the class of functions {mθ : θ ∈ Θ} is
Glivenko-Cantelli.
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Preliminary arguments

If M(θ) is twice differentiable at a point of maximum θ0, then M′(θ0) = 0
and M′′(θ0) is negative definite.

It is natural to assume that M(θ) − M(θ0) ≲ −d2(θ, θ0) for every θ in a
neighborhood of θ0.

The modulus of continuity of a stochastic process {X (t) : t ∈ T} is
defined by

mX (δ) := sup
s,t∈T :d(s,t)≤δ

|X (s) − X (t)|.

An upper bound for the rate of convergence of θ̂n can be obtained from
the modulus of continuity of Mn − M at θ0.
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Rate of convergence
Theorem 4 (Rate of convergence)
Let Mn be stochastic processes indexed by a semimetric space Θ and M : Θ → R a
deterministic function. Suppose that

(i) For every θ in a neighborhood of θ0,

M(θ) − M (θ0) ≲ −d2(θ, θ0).

(ii) For every n and sufficiently small δ, the centered process Mn − M satisfies

E∗ sup
d(θ,θ0)<δ

∣∣(Mn − M) (θ) − (Mn − M) (θ0)
∣∣ ≲ ϕn(δ)

√
n

,

for functions ϕn such that δ 7→ ϕn(δ)/δα is decreasing for some α < 2 not depending
on n.

(iii) The sequence θ̂n converges in outer probability to θ0 and satisfies
Mn(θ̂n) ≥ Mn(θ0) − Op(r−2

n ) for some sequence rn such that

r2
n ϕn(r−1

n ) ≤
√

n for every n.

Then rnd(θ̂n, θ0) = O∗
p (1). If the displayed conditions are valid for every θ and δ, then the

condition that θ̂n is consistent is unnecessary.

See Theorem 3.2.5 of VW for the proof.
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Remarks

The theorem remains true if replacing the metric function d by an
arbitrary function d̃ : Θ × Θ 7→ [0, ∞) that satisfies d̃(θn, θ0) → 0
whenever d(θn, θ0) → 0.

When ϕ(δ) = δα, the rate rn is at least n1/(4−2α).

In particular, the “usual” rate
√

n corresponds to ϕ(δ) = δ.
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Under i.i.d. setting

Recall Condition (ii) in the preceding theorem:

E∗ sup
d(θ,θ0)<δ

∣∣(Mn − M) (θ) − (Mn − M) (θ0)
∣∣ ≲ ϕn(δ)√

n

For i.i.d. data and empirical criterion functions Mn(θ) = Pnmθ and
M(θ) = Pmθ, Condition (ii) involves the suprema of the empirical process
Gn =

√
n(Pn − P) indexed by classes of functions

Mδ := {mθ − mθ0 : d(θ, θ0) < δ} .

It is reasonable to assume that these suprema are bounded uniformly in n.
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Rate of convergence under i.i.d. setting

Corollary 5
In the i.i.d. case, assume that
(i) For every θ in a neighborhood of θ0,

P (mθ − mθ0) ≲ −d2(θ, θ0).

(ii) There exists a function ϕ such that δ 7→ ϕ(δ)/δα is decreasing for some
α < 2 and, for every n,

E∗ ∥Gn∥Mδ
≲ ϕ(δ).

(iii) The sequence θ̂n converges in outer probability to θ0 and satisfies
Pnmθ̂n

≥ supθ∈Θ Pnmθ − Op(r−2
n ) for some sequence rn such that

r2
n ϕn(r−1

n ) ≤
√

n for every n.

Then rnd(θ̂n, θ0) = O∗
p (1).
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Bounds on continuity modulus

It is important to derive a sharp bound on the modulus of continuity of Gn
before applying the corollary.

A simple but not necessarily efficient approach is to apply the maximal
inequalities to the class Mδ, which yield

E ∗
P ∥Gn∥Mδ ≲ J(1, Mδ)(P∗M2

δ)1/2,

E ∗
P ∥Gn∥Mδ ≲ J[]

(
1, Mδ, L2(P)

)
(P∗M2

δ)1/2.

These bounds depend mostly on the envelope function Mδ.

Assuming that the entropy integrals are bounded as δ ↓ 0, we obtain an upper
bound ϕ(δ) = (P∗M2

δ)1/2 on the modulus.

By the preceding corollary, rn is at least the solution of

r 4
n P∗M2

1/rn ∼ n.
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