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M-estimators

e M-estimators are (approximate) maximizers (or minimizers) 6, of criterion
functions M,(0), i.e., 8, = arg max M,(6).

@ For i.i.d. observations, a common empirical criterion function is of the
form M,(0) = P,my.

o Examples:

» maximum likelihood estimators
> least squares estimators

@ Asymptotic properties of 9,,:
> consistency for the true parameter 6g
» rate of convergence r,
» weak convergence of hn = rn(én — 6p) to some random point h
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Preliminary arguments

o If the argmax function were continuous w.r.t. some metric on the space of
criterion functions, then weak convergence of M,(6) would imply weak
convergence of 6, by the continuous mapping theorem.

o Let {M(6): 6 € ©} be the limiting process of M,(0).

@ The argmax function is continuous at M if M has a unique, well-separated
maximizer h. That is, M(h) > supsc M(h) almost surely for any
neighborhood G of h.
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Preliminary result

Lemma 1

Let M,,, M be stochastic processes indexed by a metric space H. Let A and B
be arbitrary subsets of H. Suppose that

(i) M(h) > SUPpg G hea MI(h) almost surely, for every open set G that
contains h.

(ii) I\/Jln(i’n) > supy, Mn(h) - OP(]-)'
(iii) M, M in (=(AU B).

Then, for every closed set F,

limsup P*(h, € FNA) < P(h e FU B°).

n— o0

e A=B=H=h,%h (by portmanteau theorem?).
@ See Lemma 3.2.1 of VW for the proof.

d
LX, — X if and only if lim supp_y o0 P*(Xn € F) < P(X € F) for every closed F.
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Remarks

@ The assumption that M, LSV uniformly in the whole parameter space is
too strong.

o If dropping this assumption, additional properties of h,, need to be
established in order to obtain A, 4

@ The Argmax theorem requires uniform tightness? of h, and uniform
convergence of Ml,, on compact subspace.

2V¥e > 0,3 a compact set Ve € Hst. P(hy € Ve) > 1 — e.
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Argmax theorem

Theorem 2 (Argmax theorem)

Let Ml,,, Ml be stochastic processes indexed by a metric space H. Suppose that

(i) Almost all sample paths h — M(h) are upper semicontinuous® and

possess a unique maximum at a (random) point h, which as a random
map in H is tight.

(ii) The sequence hy, is uniformly tight and satisfies

~

I\/Hn(hn) > Supp Mn(h) - OP(]')'

(iii) M, % M in £2°(K) for every compact K C H.
Then /A7n i> hin H.

A function f : D — R is upper semicontinuous if for all x; € D, lim SUPX—3 xo f(x) < f(xp)-

See Theorem 3.2.2 of VW for the proof.

8/18



Remarks

@ The preceding lemma and the Argmax theorem are typically applied to a
local parameter h, but they can also be applied to the original parameter
0.

@ Since the limiting criterion function M(#) is typically nonrandom, the
approach turns into a consistency proof.
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Consistency

Corollary 3 (Consistency)
Let M, be stochastic processes indexed by a metric space ©, and let
M : © — R be a deterministic function.
(A) Suppose that

(i) M(60) > supggc M(0) for every open set G that contains 0.

(il) Ma(01) > supg Mia(8) — 0p(1).

(iii) |M, — Ml||le — 0 in outer probability.

Then 0, — 0y in outer probability.
(B) Suppose that

(i) The map 6 — M(0) is upper semicontinuous with a unique maximum at 6.

(if) The sequence 0, is uniformly tight and satisfies
M, (65) > supy M,y(0) — 0p(1).

(iii) ||M, — M|k — 0 in outer probability for every compact K C ©.
Then 6, — 0o in outer probability.
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Under i.i.d. setting

In the case of i.i.d. data, M,(6) = P,mg and M = Pmy, the uniform

convergence in (iii) is valid if and only if the class of functions {my : 6 € ©} is
Glivenko-Cantelli.
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Preliminary arguments

o If M(6) is twice differentiable at a point of maximum 6, then M'(6p) =0

and M”(6p) is negative definite.

e It is natural to assume that M(#) — M(6p) < —d?(0,6p) for every 6 in a
neighborhood of 6.

@ The modulus of continuity of a stochastic process {X(t):t € T} is
defined by
me(®) = sup |X(s)— X(1)].
s,teT:d(s,t)<s

An upper bound for the rate of convergence of 0, can be obtained from
the modulus of continuity of M, — M at 6.
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Rate of convergence

Theorem 4 (Rate of convergence)

Let M, be stochastic processes indexed by a semimetric space © and M : © - R a
deterministic function. Suppose that

(i) For every 6 in a neighborhood of 6y,
M(6) — M (60) S —d?(8, 6o)-

(ii) For every n and sufficiently small §, the centered process M, — M satisfies

X B e #n(5)
£ d(0?(t915<5|(Mn M) (0) = (Mo M)(eo)}s Vv’

for functions ¢, such that § — ¢n(8)/0% is decreasing for some ac < 2 not depending
on n.

(iii) The sequence 0n converges in outer probability to 0y and satisfies
Mn(6r) > Mn(60) — Op(rn2) for some sequence r, such that
r2pa(ry) < \/n  for every n.

Then rad(6,,60) = O;(1). If the displayed conditions are valid for every 6 and 3, then the

condition that 0, is consistent is unnecessary.

See Theorem 3.2.5 of VW for the proof.
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Remarks

@ The theorem remains true if replacing the metric function d by an
arbitrary function d : © x © — [0, c0) that satisfies d(6,,6p) — 0
whenever d(6,,60) — 0.

o When ¢(6) = 6%, the rate r, is at least n*/(+=2%),

o In particular, the “usual” rate \/n corresponds to ¢(6) = 4.
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Under i.i.d. setting

@ Recall Condition (ii) in the preceding theorem:

. ¢n(6)
£ d(@s,goF))<5|(Mn ~M)(O) = (Mo = M) (Bo)| S Vn

e For i.i.d. data and empirical criterion functions M,(6) = P,my and
M(0) = Pmy, Condition (ii) involves the suprema of the empirical process
Gn = +/n(P, — P) indexed by classes of functions

My = {mg — Mmy, : d(9,60) < (;}

@ It is reasonable to assume that these suprema are bounded uniformly in n.
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Rate of convergence under i.i.d. setting

Corollary 5
In the i.i.d. case, assume that
(i) For every 0 in a neighborhood of 6y,

P(mg e mgo) < —d2(9,90).

~

(ii) There exists a function ¢ such that 6 — $(0)/0% is decreasing for some
«a < 2 and, for every n,

E* ||Gnll g, S #(6)-

(iii) The sequence 0, converges in outer probability to 6y and satisfies
P,my > supgeg Pamg — Op(r;?) for some sequence r, such that

r2on(rt) < /n  for every n.

Then ryd(0,,00) = 035(1).
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Bounds on continuity modulus

@ It is important to derive a sharp bound on the modulus of continuity of G,
before applying the corollary.

@ A simple but not necessarily efficient approach is to apply the maximal
inequalities to the class M, which yield

Ep|Gallats S (L, Ms)(P*M3)'2,
EpGallas S Jp (1, Ms, La(P)) (P*M3)!/2.
@ These bounds depend mostly on the envelope function Ms;.

@ Assuming that the entropy integrals are bounded as ¢ | 0, we obtain an upper
bound ¢(8) = (P*M?)!/2 on the modulus.

@ By the preceding corollary, r, is at least the solution of

4 2
rmP*Mi,,, ~ n.
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