Semiparametric Regression Analysis of Interval-Censored Multi-State Data with An Absorbing State

Yu Gu

Department of Biostatistics University of North Carolina at Chapel Hill

July 1, 2023

1/40

Acknowledgments

Dr. Donglin Zeng

Dr. Danyu Lin

Gu, Y., Zeng, D., Lin, D. Y. Semiparametric Regression Analysis of Interval-Censored Multi-State Data with An Absorbing State. Under review.

Outline

- 2 Methods and Theory
- 3 Simulation Studies
- 4 CAV Data Application

・ロト・日本・モー・ 中・ うくの

Outline

1 Introduction

- 2 Methods and Theory
- 3 Simulation Studies
- 4 CAV Data Application

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 2 9 0 0 0
4 / 40
4 / 40

Multi-State Data

- Multi-state data arise frequently in studies of chronic diseases.
- Health status can be characterized by a finite number of disease states.
- **Transition**: change from one state to another.

Cardiac allograft vasculopathy

Significance

Analysis of multi-state data allows us to

- understand how a subject transitions from one state to another over time
- study the associations between risk factors and the disease process
- predict future disease progression using the disease history

Interval Censoring

• For economic and logistical reasons, subjects can only be examined periodically, such that transitions are only known to occur between two successive examinations.

• Such data are called interval-censored multi-state data.

Absorbing State and Right Censoring

- In many applications, there is an *absorbing state* (e.g., death) which terminates the disease process.
- A common situation is that the time of entering the absorbing state is observed exactly or right-censored.
- However, the *transient state* from which a subject enters the absorbing state is still unknown.

Analysis Challenges

- None of the transition times among transient states are directly observed.
- Trajectory of transitions from one examination to the next is unknown.
- Dependence among transitions from the same subject.
- A mixture of interval- and right-censored transition times.
- Missing data on the transient state right before the absorbing state.

Existing Methods

Nonparametric

Time-homogeneous Markov models

- Kalbfleisch & Lawless (1985); Satten (1999); Cook et al. (2002, 2004)
- simple; parametric; implemented in the msm package
- homogeneous assumption is unrealistic

Piecewise constant transition intensities

- Gentleman et al. (1994); Saint-Pierre et al. (2003); Jackson (2011); Lawless & Nazeri Rad (2015)
- relatively simple; parametric
- restrictive; sensitive to the choice of change points

Spline-based intensities + penalized likelihood

- Joly & Commenges (1999); Machado & van den Hout (2018); Machado et al. (2021)
- more flexible; semiparametric
- tuning parameters (e.g., knots); inconsistent estimators

Overview of this work

- We provide a new framework to study semiparametric regression models for general interval-censored multi-state data with an absorbing state whose entry time is exactly known or right-censored.
- Our models use random effects to capture the dependence among transitions and accommodate time-dependent covariates.
- We combine *nonparametric maximum likelihood estimation* (NPMLE) and *sieve estimation* for inference.
- We devise a stable EM algorithm to compute the estimators.
- We leverage random effects to dynamically predict future process using the evolving disease history.

Outline

3 Simulation Studies

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 2 9 Q (や 12 / 40

Notation

- We consider a random sample of *n* subjects and *K* states, with state *K* being absorbing and all others being transient.
- Let $N_{ijk}(t)$ denote the number of transitions $j \rightarrow k$ the *i*th subject has experienced by time *t*.
- For the *i*th subject, let **X**_{*i*}(*t*) denote a set of potentially time-dependent covariates and **b**_{*i*} denote a *d*-vector of random effects.

Semiparametric Regression Model

We specify that the transition intensity of $N_{ijk}(t)$ is related to $\mathbf{X}_i(t)$ and \mathbf{b}_i through the proportional intensity model:

$$\lambda_{ijk}(t; \boldsymbol{X}_i, \boldsymbol{b}_i) = \lambda_{jk}(t) \exp\left\{\boldsymbol{\beta}_{jk}^{\mathsf{T}} \boldsymbol{X}_i(t) + \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{Z}_i(t)\right\}$$
(1)

- $\lambda_{jk}(\cdot)$: arbitrary baseline intensity function
- β_{ik} : unknown regression parameters
- $\boldsymbol{b}_i \sim N_d(\boldsymbol{0}, \boldsymbol{\Sigma}(\boldsymbol{\gamma}))$
- $\boldsymbol{Z}_i(\cdot)$: consists of 1 and covariates that are part of $\boldsymbol{X}_i(\cdot)$

Observed Data

- Examination times: $(U_{i0}, U_{i1}, \ldots, U_{iM_i})$
- Observed transient states: $(S_{i0}, S_{i1}, \ldots, S_{iM_i})$
- Time and status of entering state K: (Y_i, Δ_i)
 - $Y_i = \min(T_i, C_i)$
 - $\Delta_i = I(T_i \leq C_i)$
 - ► T_i is actual event time, C_i is censoring time
- Covariates: $\boldsymbol{X}_i(t)$

Likelihood

Under the noninformative censoring and conditional Markov assumptions, the likelihood is proportional to

$$\prod_{i=1}^{n} \int_{\boldsymbol{b}_{i}} \prod_{l=1}^{M_{i}} \boldsymbol{P}(U_{i,l-1}, U_{il}; \boldsymbol{X}_{i}, \boldsymbol{b}_{i})^{(S_{i,l-1}, S_{il})} \\ \times \left\{ \sum_{j \neq K} \boldsymbol{P}(U_{iM_{i}}, Y_{i}; \boldsymbol{X}_{i}, \boldsymbol{b}_{i})^{(S_{iM_{i}}, j)} \right\}^{1-\Delta_{i}}$$

$$\times \left\{ \sum_{j \in \mathcal{D}_{K}} \boldsymbol{P}(U_{iM_{i}}, Y_{i}; \boldsymbol{X}_{i}, \boldsymbol{b}_{i})^{(S_{iM_{i}}, j)} \lambda_{ijK}(Y_{i}) \right\}^{\Delta_{i}} \phi(\boldsymbol{b}_{i}; \boldsymbol{\gamma}) d\boldsymbol{b}_{i}$$

$$(2)$$

- **P**(*u*, *v*; **X**_{*i*}, **b**_{*i*}) denotes the transition probability matrix between times *u* and *v* for the *i*th subject.
- $\phi(\mathbf{b}; \boldsymbol{\gamma})$ denotes the density function of $N_d(\mathbf{0}, \boldsymbol{\Sigma}(\boldsymbol{\gamma}))$.

Compute Transition Probability

• The transition probability matrix is given by

$$\boldsymbol{P}(u, v; \boldsymbol{X}_i, \boldsymbol{b}_i) = \boldsymbol{\pi}_{u < t \leq v} \{ \boldsymbol{I}_K + d\boldsymbol{A}(t; \boldsymbol{X}_i, \boldsymbol{b}_i) \}$$

• $A(t; X_i, b_i)$ is the cumulative transition intensity matrix, with

$$\boldsymbol{A}(t;\boldsymbol{X}_{i},\boldsymbol{b}_{i})^{(j,k)} = \int_{0}^{t} \exp\{\boldsymbol{\beta}_{jk}^{\mathsf{T}}\boldsymbol{X}_{i}(s) + \boldsymbol{b}_{i}^{\mathsf{T}}\boldsymbol{Z}_{i}(s)\}d\Lambda_{jk}(s).$$

•
$$\Lambda_{jk}(t) = \int_0^t \lambda_{jk}(s) ds.$$

NPMLE + Sieve Estimation

- We adopt NPMLE approach for Λ_{jk} of
 - 1. all transitions among states $1,2,\ldots,K-1$
 - 2. transition from state 1 to state $K \Rightarrow$ reference Λ_a
- We use B-splines to approximate the log transition intensity ratio $\psi_j = \log(\lambda_{jK}/\lambda_{\rm a})$
- Why not NPMLE for all Λ_{jk}? Inconsistent estimators!
 - unknown state right before entering state K
 - Ma & Wang (2012); Wang et al. (2012)

More on NPMLE

- We treat Λ_{jk} as step functions with nonnegative jumps at all examination times and Y_i 's.
- We treat Λ_a as a step function that jumps only at those Y_i with $\Delta_i = 1$.
- Then the transition probability matrix

• $\delta \mathbf{A}_i(t_q)$ involves the jump sizes λ_{jkq} and λ_{aq} .

Remarks

- Advantages of NPMLE:
 - uses all information told by the data
 - minimal assumption about Λ 's compared to splines
 - no tuning parameters
- The combination of NPMLE and B-splines ensures estimation consistency while achieving the maximal model flexibility.
- Challenges of computing sieve NPMLE:
 - high-dimensional parameters λ_{jkq} and λ_{aq}
 - lack of analytical expressions

Poissonization

- We introduce independent latent Poisson random variables W_{ijkq} with means {δ**A**_i(t_q)}^(j,k).
- The key fact is that the transition probability $\widetilde{P}_i(u,v)^{(s_0,s_r)}$ is equal to the probability of the event

$$\bigcup_{\text{traj}(s_0,s_1,\ldots,s_r)} \Big\{ W_{ijkq} > 0 \text{ if there's a transition } j \to k \text{ at time } t_q \\ \text{ and } W_{ijkq} = 0 \text{ otherwise} \Big\}.$$

• Thus, maximizing the original likelihood is tantamount to maximizing the likelihood arising from the events of *W*'s.

EM Algorithm

- We can treat W_{ijkq} 's and \boldsymbol{b}_i 's as missing data and apply the EM algorithm for maximizing the likelihood function.
- The complete-data log-likelihood is

$$\sum_{i=1}^{n} \left\{ \sum_{(j,k)\in\mathcal{D}^{*}} \sum_{q=1}^{m} I(t_{q} \leq Y_{i}) \left[W_{ijkq} \left\{ \log \left(\lambda_{jkq} \right) + \beta_{jk}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_{i}^{\mathsf{T}} \mathbf{Z}_{iq} \right\} - \lambda_{jkq} \exp \left\{ \beta_{jk}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_{i}^{\mathsf{T}} \mathbf{Z}_{iq} \right\} - \log(W_{ijkq}!) \right] + \sum_{j\in\mathcal{D}_{K}} \sum_{q=1}^{m} I(t_{q} \leq Y_{i}) \left[W_{ijKq} \left\{ \log \left(\lambda_{aq} \right) + \alpha_{j}^{\mathsf{T}} \mathbf{B}_{q} + \beta_{jK}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_{i}^{\mathsf{T}} \mathbf{Z}_{iq} \right\} - \lambda_{aq} \exp \left\{ \alpha_{j}^{\mathsf{T}} \mathbf{B}_{q} + \beta_{jK}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_{i}^{\mathsf{T}} \mathbf{Z}_{iq} \right\} - \lambda_{aq} \exp \left\{ \alpha_{j}^{\mathsf{T}} \mathbf{B}_{q} + \beta_{jK}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_{i}^{\mathsf{T}} \mathbf{Z}_{iq} \right\} - \log(W_{ijKq}!) \right] - \frac{d_{2}}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}(\gamma)| - \frac{1}{2} \mathbf{b}_{i}^{\mathsf{T}} \mathbf{\Sigma}(\gamma)^{-1} \mathbf{b}_{i} \right\}.$$
(3)

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 22 / 40 22 / 40

- We evaluate the conditional expectations of W_{ijkq} 's and functions of b_i 's given the observed data.
- All conditional expectations have explicit expressions.
- Integrals of \boldsymbol{b}_i can be approximated using Gaussian-Hermite quadratures.

M-Step

- The regression and spline parameters can be updated by solving their respective score equations with the one-step Newton-Raphson approach.
- The biggest advantage of the EM algorithm is that the jump sizes can be updated explicitly:

$$\lambda_{jkq} = \frac{\sum_{i=1}^{n} I(t_q \leq Y_i) \tilde{E}(W_{ijkq})}{\sum_{i=1}^{n} I(t_q \leq Y_i) \tilde{E}\{\exp(\beta_{jk}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_i^{\mathsf{T}} \mathbf{Z}_{iq})\}},$$
$$\lambda_{aq} = \frac{\sum_{i=1}^{n} I(t_q \leq Y_i) \sum_{j \in \mathcal{D}_K} \tilde{E}(W_{ijKq})}{\sum_{i=1}^{n} I(t_q \leq Y_i) \sum_{j \in \mathcal{D}_K} \tilde{E}\{\exp(\alpha_j^{\mathsf{T}} \mathbf{B}_q + \beta_{jK}^{\mathsf{T}} \mathbf{X}_{iq} + \mathbf{b}_i^{\mathsf{T}} \mathbf{Z}_{iq})\}}$$

• Therefore, the EM algorithm is immune to the high-dimensional parameters in NPMLE.

Asymptotic Properties

• (Mixed rates of convergence) Under some regularity conditions,

$$\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\|^2 + \sum_{(j,k)\in\mathcal{D}^*} \|\widehat{\Lambda}_{jk} - \Lambda_{0jk}\|_{L_2}^2 + \|\widehat{\Lambda}_s - \Lambda_{0s}\|_{L_2}^2 + \sum_{j\in\mathcal{D}^*_K} \|\widehat{\psi}_j - \psi_{0j}\|_{L_2}^2 = o_p(n^{-1/2}).$$

- (Asymptotic normality) $n^{1/2}(\hat{\theta} \theta_0)$ converges in distribution to a multivariate normal vector with mean zero and a covariance matrix that attains the semiparametric efficiency bound.
- (Variance estimation) The limiting covariance matrix of $n^{1/2}(\hat{\theta} \theta_0)$ can be consistently estimated by the inverse of

$$n^{-1}\sum_{i=1}^{n}\left\{ \nabla pl_{i}(\widehat{\theta})\right\} ^{\otimes 2}$$

Dynamic Prediction

• The key is to update the posterior density of random effects given the disease history $\mathcal{H}(t_0)$, which is proportional to

$$\prod_{l=1}^{L(t_0)} \widehat{\boldsymbol{P}}(U_{l-1}, U_l)^{(\mathcal{S}_{l-1}, \mathcal{S}_l)} \times \left\{ \sum_{j \neq K} \widehat{\boldsymbol{P}}(U_{L(t_0)}, t_0)^{(\mathcal{S}_{L(t_0)}, j)} \right\} \phi(\boldsymbol{b}; \widehat{\boldsymbol{\gamma}}).$$

- We then plug in this posterior density to estimate
 - 1. conditional probability of S(t) = k given $\mathcal{H}(t_0)$, $k = 1, \ldots, K 1$
 - 2. conditional probability of reaching state K at time t given $\mathcal{H}(t_0)$

Outline

Introduction

- 2 Methods and Theory
- 3 Simulation Studies
- 4 CAV Data Application

4 ロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 27 / 40

Simulation Setting

- $X_1 \sim \text{Bernoulli}(0.5)$ and $X_2 \sim \text{Unif}(0,1)$
- $b \sim N(0, 0.5)$
- Six potential examination times separated by 0.05 + Unif(0, 1); no examinations after reaching state 4 or beyond τ = 3.

イロト イヨト イヨト イヨト 三日

Details of B-Splines

- We used cubic spline basis functions.
- We placed the boundary knots at 0 and τ , and placed two internal knots at the first and second tertiles of the observed time points.
- The estimation results are not sensitive to these choices.

Simulation Results

	<i>n</i> = 500				<i>n</i> = 1000				<i>n</i> = 2000			
	Bias	SE	SEE	CP	Bias	SE	SEE	CP	Bias	SE	SEE	CP
$\beta_{121} = 0.5$	0.026	0.272	0.254	94	0.014	0.178	0.180	96	0.003	0.134	0.127	95
$\beta_{122} = -0.5$	0.010	0.482	0.445	93	-0.005	0.322	0.312	94	-0.010	0.224	0.219	95
$\beta_{231} = 0.4$	-0.004	0.259	0.229	92	0.003	0.171	0.163	94	0.004	0.116	0.115	95
$\beta_{232} = 0.2$	0.022	0.467	0.398	91	0.016	0.296	0.283	94	0.012	0.208	0.199	94
$\beta_{141} = 0.3$	-0.007	0.309	0.256	91	0.000	0.193	0.180	94	-0.005	0.133	0.127	95
$\beta_{142} = 0.3$	-0.019	0.510	0.447	93	0.009	0.326	0.312	94	-0.002	0.219	0.220	95
$\beta_{241} = 0.3$	0.041	0.349	0.251	88	0.019	0.198	0.176	92	0.004	0.129	0.125	95
$\beta_{242} = 0.5$	0.001	0.570	0.426	86	-0.002	0.330	0.302	94	-0.006	0.226	0.214	95
$\beta_{341} = -0.2$	-0.030	0.272	0.220	90	-0.009	0.170	0.158	93	-0.003	0.114	0.113	95
$\beta_{342} = 0.5$	0.027	0.456	0.381	89	0.009	0.304	0.276	92	0.009	0.212	0.196	92
$\sigma^2 = 0.5$	-0.000	0.354	0.294	90	0.012	0.209	0.207	95	-0.002	0.130	0.141	97

Table 1: Estimation of regression parameters

Figure 1: Estimation of cumulative baseline transition intensity functions.

Outline

Introduction

- 2 Methods and Theory
- 3 Simulation Studies

・ロト・日本・モート ヨー うへで

CAV Study

- CAV is a deterioration of the arterial walls and is a common cause of death after heart transplantation.
- An important goal of the CAV study (Sharples et al., 2003) was to assess the effects of risk factors on CAV onset, progression, and survival.
- Starting from August 1979, a total of 622 heart transplant recipients underwent approximately yearly angiographic examinations and were classified as having no CAV, mild CAV, or severe CAV.
- Each patient was followed for up to 20 years, until death or the end of follow-up.
- The median follow-up time was 5 years; $\sim 40\%$ of the patients died during follow-up.

Analysis Specifics

- We fit a four-state random effects model.
- Tuning parameters in B-splines were determined based on AIC.
- For comparison, we also fit a homogeneous Markov model using the msm package.

イロト イヨト イヨト イヨト 三日

	Prop	osed meth	ods	msm package					
Covariate	Estimate	St error	<i>p</i> -value	Estimate	St error	<i>p</i> -value			
No CAV to mile	d CAV								
Recipient age	-0.009	0.009	0.296	-0.013	0.007	0.071			
Donor age	0.039	0.008	< 0.001	0.027	0.006	< 0.001			
IHD	0.693	0.176	< 0.001	0.549	0.151	< 0.001			
Acute rejection	0.163	0.041	< 0.001	0.157	0.031	< 0.001			
Mild CAV to severe CAV									
Recipient age	-0.027	0.012	0.030	0.003	0.014	0.838			
Donor age	-0.019	0.011	0.091	-0.009	0.011	0.378			
IHD	0.335	0.269	0.213	0.081	0.227	0.722			
Acute rejection	0.091	0.066	0.170	-0.015	0.055	0.783			
No CAV to dea	th								
Recipient age	0.074	0.015	< 0.001	0.054	0.016	0.001			
Donor age	0.032	0.010	0.002	0.020	0.009	0.032			
IHD	0.144	0.255	0.573	0.085	0.223	0.703			
Acute rejection	0.045	0.103	0.664	-0.058	0.085	0.498			
Mild CAV to death									
Recipient age	0.074	0.031	0.017	-0.016	0.057	0.786			
Donor age	0.025	0.027	0.349	-0.017	0.050	0.739			
IHD	0.567	0.672	0.399	0.021	0.859	0.981			
Acute rejection	0.101	0.123	0.412	0.250	0.123	0.043			
Severe CAV to death									
Recipient age	-0.021	0.014	0.136	0.004	0.014	0.777			
Donor age	-0.017	0.014	0.239	-0.008	0.012	0.518			
IHD	-0.088	0.310	0.776	-0.232	0.225	0.303			
Acute rejection	0.058	0.052	0.260	0.015	0.045	0.740			

Table 2: Estimation results of regression parameters

Key Findings

- Both donor age at transplant and cumulative number of acute rejection episodes are positively associated with the risk of mild CAV.
- Patients who received heart transplant due to ischemic heart disease have significantly higher risk of mild CAV.
- Older recipient and donor ages at transplant increase the risk of transition from no CAV to death.
- The variance of the random effect is estimated at 0.880 with a standard error estimator of 0.234, suggesting strong dependence among transitions.

Test Dynamic Prediction

- We randomly divide the 622 patients into training and testing sets at a 7:3 ratio.
- We fit the model using the training set to obtain the parameter estimates.
- For the testing set, we predict the RMST given the disease history up to each examination.
- For comparison, we redo the above steps using the msm package.

Prediction Error

Figure 2: Boxplots of prediction error over 20 replicates at each examination.

Extension

- Our models can be extended to the competing risks set-up with more than one absorbing states, e.g., different causes of death.
- Joint modelling (with shared random effects) can be used when time-dependent covariates are measured only at a finite number of time points, or when there are more than one disease processes.
- Model diagnostics techniques, e.g., goodness-of-fit test.

Thank you!

