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Multi-State Data

Multi-state data arise frequently in studies
of chronic diseases.

Health status can be characterized by a
finite number of disease states.

Transition: change from one state to
another. Cardiac allograft vasculopathy
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Significance

Analysis of multi-state data allows us to

understand how a subject transitions from one state to another over time

study the associations between risk factors and the disease process

predict future disease progression using the disease history
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Interval Censoring

For economic and logistical reasons, subjects can only be examined
periodically, such that transitions are only known to occur between two
successive examinations.

Such data are called interval-censored multi-state data.
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Absorbing State and Right Censoring

In many applications, there is an absorbing state (e.g., death) which
terminates the disease process.

A common situation is that the time of entering the absorbing state is
observed exactly or right-censored.

However, the transient state from which a subject enters the absorbing
state is still unknown.

8 / 40



Analysis Challenges

None of the transition times among transient states are directly observed.

Trajectory of transitions from one examination to the next is unknown.

Dependence among transitions from the same subject.

A mixture of interval- and right-censored transition times.

Missing data on the transient state right before the absorbing state.
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Existing Methods

Time-homogeneous Markov models
§ Kalbfleisch & Lawless (1985); Satten (1999); Cook et al. (2002, 2004)
§ simple; parametric; implemented in the msm package
§ homogeneous assumption is unrealistic

Piecewise constant transition intensities
§ Gentleman et al. (1994); Saint-Pierre et al. (2003); Jackson (2011);

Lawless & Nazeri Rad (2015)
§ relatively simple; parametric
§ restrictive; sensitive to the choice of change points

Spline-based intensities + penalized likelihood
§ Joly & Commenges (1999); Machado & van den Hout (2018); Machado et

al. (2021)
§ more flexible; semiparametric
§ tuning parameters (e.g., knots); inconsistent estimators
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Overview of this work

We provide a new framework to study semiparametric regression models
for general interval-censored multi-state data with an absorbing state
whose entry time is exactly known or right-censored.

Our models use random effects to capture the dependence among
transitions and accommodate time-dependent covariates.

We combine nonparametric maximum likelihood estimation
(NPMLE) and sieve estimation for inference.

We devise a stable EM algorithm to compute the estimators.

We leverage random effects to dynamically predict future process using
the evolving disease history.
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Notation

We consider a random sample of n subjects and K states, with state K
being absorbing and all others being transient.

Let Nijkptq denote the number of transitions j Ñ k the ith subject has
experienced by time t.

For the ith subject, let X iptq denote a set of potentially time-dependent
covariates and bi denote a d-vector of random effects.
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Semiparametric Regression Model

We specify that the transition intensity of Nijkptq is related to X iptq and bi
through the proportional intensity model:

λijkpt; X i ,biq “ λjkptq exp
!

βT
jkX iptq ` bT

i Z iptq
)

(1)

λjkp¨q: arbitrary baseline intensity function
βjk : unknown regression parameters
bi „ Ndp0,Σpγqq
Z ip¨q: consists of 1 and covariates that are part of X ip¨q
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Observed Data

Examination times: pUi0,Ui1, . . . ,UiMi q

Observed transient states: pSi0,Si1, . . . ,SiMi q

Time and status of entering state K : pYi ,∆iq

§ Yi “ minpTi ,Ciq

§ ∆i “ IpTi ď Ciq

§ Ti is actual event time, Ci is censoring time

Covariates: X iptq
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Likelihood

Under the noninformative censoring and conditional Markov assumptions, the
likelihood is proportional to

n
ź

i“1

ż

bi

Mi
ź

l“1
PpUi,l´1,Uil ; X i ,biq

pSi,l´1,Sil q

ˆ

#

ÿ

j‰K
PpUiMi ,Yi ; X i ,biq

pSiMi ,jq

+1´∆i

ˆ

#

ÿ

jPDK

PpUiMi ,Yi ; X i ,biq
pSiMi ,jqλijK pYiq

+∆i

φpbi ; γqdbi

(2)

Ppu, v ; X i ,biq denotes the transition probability matrix between times u
and v for the ith subject.
φpb; γq denotes the density function of Ndp0,Σpγqq.
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Compute Transition Probability

The transition probability matrix is given by

Ppu, v ; X i ,biq “πuătďv tIK ` dApt; X i ,biqu

Apt; X i ,biq is the cumulative transition intensity matrix, with

Apt; X i ,biq
pj,kq “

ż t

0
exp

 

βT
jkX ipsq ` bT

i Z ipsq
(

dΛjkpsq.

Λjkptq “
şt

0 λjkpsqds.

17 / 40



NPMLE + Sieve Estimation

We adopt NPMLE approach for Λjk of
1. all transitions among states 1, 2, . . . ,K ´ 1
2. transition from state 1 to state K ñ reference Λa

We use B-splines to approximate the log transition intensity ratio
ψj “ logpλjK {λaq

Why not NPMLE for all Λjk? Inconsistent estimators!
§ unknown state right before entering state K
§ Ma & Wang (2012); Wang et al. (2012)
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More on NPMLE

We treat Λjk as step functions with nonnegative jumps at all examination
times and Yi ’s.

We treat Λa as a step function that jumps only at those Yi with ∆i “ 1.

Then the transition probability matrix

P ipu, vq “πuătďv tIK ` dAiptqu
ó

rP ipu, vq “
ź

uătqďv
tIK ` δAiptqqu.

δAiptqq involves the jump sizes λjkq and λaq.
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Remarks

Advantages of NPMLE:
§ uses all information told by the data
§ minimal assumption about Λ’s compared to splines
§ no tuning parameters

The combination of NPMLE and B-splines ensures estimation consistency
while achieving the maximal model flexibility.

Challenges of computing sieve NPMLE:
§ high-dimensional parameters λjkq and λaq

§ lack of analytical expressions
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Poissonization

We introduce independent latent Poisson random variables Wijkq with
means tδAiptqqu

pj,kq.

The key fact is that the transition probability rP ipu, vqps0,sr q is equal to the
probability of the event

ď

trajps0,s1,...,sr q

!

Wijkq ą 0 if there’s a transition j Ñ k at time tq

and Wijkq “ 0 otherwise
)

.

Thus, maximizing the original likelihood is tantamount to maximizing the
likelihood arising from the events of W ’s.
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EM Algorithm

We can treat Wijkq’s and bi ’s as missing data and apply the EM algorithm
for maximizing the likelihood function.

The complete-data log-likelihood is
n
ÿ

i“1

$

&

%

ÿ

pj,kqPD˚

m
ÿ

q“1
Iptq ď Yi q

”

Wijkq
!

log
`

λjkq
˘

` βT
jkX iq ` bT

i Z iq
)

´ λjkq exp
!

βT
jkX iq ` bT

i Z iq
)

´ logpWijkq!q
ı

`
ÿ

jPDK

m
ÿ

q“1
Iptq ď Yi q

”

WijKq
!

log pλaqq ` αT
j Bq ` βT

jK X iq ` bT
i Z iq

)

´ λaq exp
!

αT
j Bq ` βT

jK X iq ` bT
i Z iq

)

´ logpWijKq!q
ı

´
d2
2

logp2πq ´
1
2

log |Σpγq| ´
1
2

bT
i Σpγq´1bi

,

.

-

.

(3)
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E-Step

We evaluate the conditional expectations of Wijkq’s and functions of bi ’s
given the observed data.

All conditional expectations have explicit expressions.

Integrals of bi can be approximated using Gaussian-Hermite quadratures.
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M-Step

The regression and spline parameters can be updated by solving their
respective score equations with the one-step Newton-Raphson approach.

The biggest advantage of the EM algorithm is that the jump sizes can be
updated explicitly:

λjkq “

řn
i“1 Iptq ď Yi qrEpWijkqq

řn
i“1 Iptq ď Yi qrEtexppβT

jkX iq ` bT
i Z iqqu

,

λaq “

řn
i“1 Iptq ď Yi q

ř

jPDK
rEpWijKqq

řn
i“1 Iptq ď Yi q

ř

jPDK
rEtexppαT

j Bq ` βT
jK X iq ` bT

i Z iqqu
.

Therefore, the EM algorithm is immune to the high-dimensional
parameters in NPMLE.
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Asymptotic Properties

(Mixed rates of convergence) Under some regularity conditions,

}pθ´θ0}
2
`

ÿ

pj,kqPD˚
}pΛjk ´Λ0jk}

2
L2 `}

pΛa´Λ0a}
2
L2 `

ÿ

jPD˚K

} pψj ´ψ0j}
2
L2 “ oppn´1{2

q.

(Asymptotic normality) n1{2ppθ ´ θ0q converges in distribution to a
multivariate normal vector with mean zero and a covariance matrix that
attains the semiparametric efficiency bound.

(Variance estimation) The limiting covariance matrix of n1{2ppθ ´ θ0q can
be consistently estimated by the inverse of

n´1
n
ÿ

i“1

!

∇plippθq
)b2

.
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Dynamic Prediction

The key is to update the posterior density of random effects given the
disease history Hpt0q, which is proportional to

Lpt0q
ź

l“1

pPpUl´1,Ulq
pSl´1,Sl q ˆ

#

ÿ

j‰K

pPpULpt0q, t0q
pSLpt0q,jq

+

φpb; pγq.

We then plug in this posterior density to estimate
1. conditional probability of Sptq “ k given Hpt0q, k “ 1, . . . ,K ´ 1
2. conditional probability of reaching state K at time t given Hpt0q
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Simulation Setting

X1 „ Bernoullip0.5q and X2 „ Unifp0, 1q

b „ Np0, 0.5q

Six potential examination times separated
by 0.05`Unifp0, 1q; no examinations after
reaching state 4 or beyond τ “ 3.
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Details of B-Splines

We used cubic spline basis functions.

We placed the boundary knots at 0 and τ , and placed two internal knots
at the first and second tertiles of the observed time points.

The estimation results are not sensitive to these choices.
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Simulation Results

Table 1: Estimation of regression parameters

n “ 500 n “ 1000 n “ 2000
Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP

β121 “ 0.5 0.026 0.272 0.254 94 0.014 0.178 0.180 96 0.003 0.134 0.127 95
β122 “ ´0.5 0.010 0.482 0.445 93 ´0.005 0.322 0.312 94 ´0.010 0.224 0.219 95
β231 “ 0.4 ´0.004 0.259 0.229 92 0.003 0.171 0.163 94 0.004 0.116 0.115 95
β232 “ 0.2 0.022 0.467 0.398 91 0.016 0.296 0.283 94 0.012 0.208 0.199 94
β141 “ 0.3 ´0.007 0.309 0.256 91 0.000 0.193 0.180 94 ´0.005 0.133 0.127 95
β142 “ 0.3 ´0.019 0.510 0.447 93 0.009 0.326 0.312 94 ´0.002 0.219 0.220 95
β241 “ 0.3 0.041 0.349 0.251 88 0.019 0.198 0.176 92 0.004 0.129 0.125 95
β242 “ 0.5 0.001 0.570 0.426 86 ´0.002 0.330 0.302 94 ´0.006 0.226 0.214 95
β341 “ ´0.2 ´0.030 0.272 0.220 90 ´0.009 0.170 0.158 93 ´0.003 0.114 0.113 95
β342 “ 0.5 0.027 0.456 0.381 89 0.009 0.304 0.276 92 0.009 0.212 0.196 92
σ2 “ 0.5 ´0.000 0.354 0.294 90 0.012 0.209 0.207 95 ´0.002 0.130 0.141 97

30 / 40



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 2), n = 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 2), n = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 2), n = 2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 3), n = 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 3), n = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 3), n = 2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 4), n = 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 4), n = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(1, 4), n = 2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 4), n = 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 4), n = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(2, 4), n = 2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(3, 4), n = 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(3, 4), n = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Time

C
um

ul
at

iv
e 

tr
an

si
tio

n 
in

te
ns

ity

(3, 4), n = 2000

Figure 1: Estimation of cumulative baseline transition intensity functions.
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CAV Study

CAV is a deterioration of the arterial walls and is a common cause of
death after heart transplantation.

An important goal of the CAV study (Sharples et al., 2003) was to assess
the effects of risk factors on CAV onset, progression, and survival.

Starting from August 1979, a total of 622 heart transplant recipients
underwent approximately yearly angiographic examinations and were
classified as having no CAV, mild CAV, or severe CAV.

Each patient was followed for up to 20 years, until death or the end of
follow-up.

The median follow-up time was 5 years; „ 40% of the patients died
during follow-up.
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Analysis Specifics

We fit a four-state random effects model.

Tuning parameters in B-splines were
determined based on AIC.

For comparison, we also fit a homogeneous
Markov model using the msm package.
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Table 2: Estimation results of regression parameters

Proposed methods msm package
Covariate Estimate St error p-value Estimate St error p-value

No CAV to mild CAV
Recipient age ´0.009 0.009 0.296 ´0.013 0.007 0.071

Donor age 0.039 0.008 ă0.001 0.027 0.006 ă0.001
IHD 0.693 0.176 ă0.001 0.549 0.151 ă0.001

Acute rejection 0.163 0.041 ă0.001 0.157 0.031 ă0.001
Mild CAV to severe CAV

Recipient age ´0.027 0.012 0.030 0.003 0.014 0.838
Donor age ´0.019 0.011 0.091 ´0.009 0.011 0.378

IHD 0.335 0.269 0.213 0.081 0.227 0.722
Acute rejection 0.091 0.066 0.170 ´0.015 0.055 0.783
No CAV to death

Recipient age 0.074 0.015 ă0.001 0.054 0.016 0.001
Donor age 0.032 0.010 0.002 0.020 0.009 0.032

IHD 0.144 0.255 0.573 0.085 0.223 0.703
Acute rejection 0.045 0.103 0.664 ´0.058 0.085 0.498
Mild CAV to death

Recipient age 0.074 0.031 0.017 ´0.016 0.057 0.786
Donor age 0.025 0.027 0.349 ´0.017 0.050 0.739

IHD 0.567 0.672 0.399 0.021 0.859 0.981
Acute rejection 0.101 0.123 0.412 0.250 0.123 0.043
Severe CAV to death

Recipient age ´0.021 0.014 0.136 0.004 0.014 0.777
Donor age ´0.017 0.014 0.239 ´0.008 0.012 0.518

IHD ´0.088 0.310 0.776 ´0.232 0.225 0.303
Acute rejection 0.058 0.052 0.260 0.015 0.045 0.740
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Key Findings

Both donor age at transplant and cumulative number of acute rejection
episodes are positively associated with the risk of mild CAV.

Patients who received heart transplant due to ischemic heart disease have
significantly higher risk of mild CAV.

Older recipient and donor ages at transplant increase the risk of transition
from no CAV to death.

The variance of the random effect is estimated at 0.880 with a standard
error estimator of 0.234, suggesting strong dependence among transitions.
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Test Dynamic Prediction

We randomly divide the 622 patients into training and testing sets at a
7:3 ratio.

We fit the model using the training set to obtain the parameter estimates.

For the testing set, we predict the RMST given the disease history up to
each examination.

For comparison, we redo the above steps using the msm package.
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Figure 2: Boxplots of prediction error over 20 replicates at each examination.
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Extension

Our models can be extended to the competing risks set-up with more
than one absorbing states, e.g., different causes of death.

Joint modelling (with shared random effects) can be used when
time-dependent covariates are measured only at a finite number of time
points, or when there are more than one disease processes.

Model diagnostics techniques, e.g., goodness-of-fit test.
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Thank you!
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