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Multi-State Data

Multi-state data arise frequently in studies of
chronic diseases (e.g., dementia, cancer).

Health status can be characterized by a finite
number of disease states.

Transition: change from one state to another
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Significance

Analysis of multi-state data allows us to

understand how a subject transitions from one state to another over time

study the associations between risk factors and the disease process

predict disease progression over time
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Interval Censoring

For economic and logistical reasons, subjects can only be examined
periodically, such that transitions are only known to occur between two
successive examinations.

Such data are called interval-censored multi-state data.
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Analysis Challenges

None of the transition times are directly observed.

Trajectory of transitions from one examination to the next is unknown.

Dependence among transitions of the same subject.
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Existing Methods

Time-homogeneous Markov models
§ Kalbfleisch & Lawless (1985); Satten (1999); Cook et al. (2002, 2004)
§ simple; parametric; implemented in the msm package
§ homogeneous assumption is unrealistic

Piecewise constant transition intensities
§ Gentleman et al. (1994); Saint-Pierre et al. (2003); Jackson (2011);

Lawless & Nazeri Rad (2015)
§ relatively simple; parametric
§ restrictive; sensitive to the choice of change points

Spline-based intensities + penalized likelihood
§ Joly & Commenges (1999); Machado & van den Hout (2018); Machado et

al. (2021)
§ more flexible; semiparametric
§ tuning parameters (e.g., knots); inconsistent estimators
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Overview of this work

We provide a new framework to study semiparametric regression models
for general interval-censored multi-state data.

Our models use random effects to capture the dependence among
transitions and accommodate time-dependent covariates.

We adopt nonparametric maximum likelihood estimation (NPMLE)
for inference.

We devise a stable EM algorithm to compute the estimators.
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Semiparametric Regression Model

We specify the following proportional intensity model:

λijkpt; X i ,biq “ λjkptq exp
!

βT
jkX iptq ` bT

i Z iptq
)

(1)

λjkp¨q: arbitrary baseline intensity function
βjk : unknown regression parameters
X ip¨q: potentially time-dependent covariates
bi „ Ndp0,Σpγqq: random effects
Z ip¨q: consists of 1 and covariates that are part of X ip¨q
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Observed Data

Examination times: pUi0,Ui1, . . . ,UiMi q

Observed states: pSi0,Si1, . . . ,SiMi q

Covariates: X iptq
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Likelihood

Under the noninformative censoring and conditional Markov assumptions, the
likelihood is proportional to

n
ź

i“1

ż

bi

Mi
ź

l“1
PpUi,l´1,Uil ; X i ,biq

pSi,l´1,Sil qφpbi ; γqdbi (2)

Ppu, v ; X i ,biq denotes the transition probability matrix between times u
and v for the ith subject.
φpb; γq denotes the density function of Ndp0,Σpγqq.
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Compute Transition Probability

The transition probability matrix is given by

Ppu, v ; X i ,biq “πuătďv tIK ` dApt; X i ,biqu

Apt; X i ,biq is the cumulative transition intensity matrix, with

Apt; X i ,biq
pj,kq “

ż t

0
exp

 

βT
jkX ipsq ` bT

i Z ipsq
(

dΛjkpsq.

Λjkptq “
şt
0 λjkpsqds.
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NPMLE

We treat Λjk as step functions with nonnegative jumps at all examination
times.

Then the transition probability matrix

P ipu, vq “πuătďv tIK ` dAiptqu
ó

rP ipu, vq “
ź

uătqďv
tIK ` δAiptqqu.

δAiptqq involves the jump sizes λjkq, which are high-dimensional and lack
analytical expressions.
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Poissonization

We introduce independent latent Poisson random variables Wijkq with
means tδAiptqqu

pj,kq.

The key fact is that the transition probability rP ipu, vqps0,sr q is equal to the
probability of the event

ď

trajps0,s1,...,sr q

!

Wijkq ą 0 if there’s a transition j Ñ k at time tq

and Wijkq “ 0 otherwise
)

.

Thus, maximizing the original likelihood is tantamount to maximizing the
likelihood arising from the events of W ’s.
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EM Algorithm

We can treat Wijkq’s and bi ’s as missing data and apply the EM algorithm
for maximizing the likelihood function.

E-step involves the conditional expectations of Wijkq’s and functions of
bi ’s given the observed data, which all have explicit expressions.

In the M-step, βjk ’s can be updated using the one-step Newton-Raphson
approach, and λjkq’s can be updated explicitly.

Therefore, the EM algorithm is immune to the high-dimensional
parameters in NPMLE.
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Asymptotic Properties

(Consistency) Under some regularity conditions,

}pθ ´ θ0} `
ÿ

pj,kqPD

}pΛjk ´ Λ0jk}8
a.s.
Ñ 0.

(Asymptotic normality) n1{2ppθ ´ θ0q converges in distribution to a
multivariate normal vector with mean zero and a covariance matrix that
attains the semiparametric efficiency bound.

(Variance estimation) The limiting covariance matrix of n1{2ppθ ´ θ0q can
be consistently estimated by the inverse of

n´1
n
ÿ

i“1

!

∇plippθq
)b2

.
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Simulation Setting

X1 „ Bernoullip0.5q and X2 „ Unifp0, 1q

b „ Np0, 0.8q

Six potential examination times separated
by 0.05` Unifp0, 1q; no examinations
beyond τ “ 3.
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Simulation Results

Table 1: Estimation of regression parameters

Proposed methods msm package
Parameter Bias SE SEE CP Bias SE SEE CP

n “ 400 β121 “ 0.5 0.014 0.265 0.259 95.0 ´0.091 0.209 0.207 92.4
β122 “ ´0.5 ´0.021 0.458 0.448 94.7 0.087 0.363 0.356 94.0
β231 “ 0.4 0.013 0.206 0.198 94.5 ´0.078 0.156 0.147 90.4
β232 “ 0.2 0.005 0.350 0.339 94.5 ´0.053 0.268 0.254 92.8
σ2 “ 0.8 0.060 0.422 0.396 95.1

n “ 800 β121 “ 0.5 0.010 0.181 0.181 95.4 ´0.092 0.145 0.146 90.4
β122 “ ´0.5 ´0.008 0.315 0.311 95.1 0.095 0.253 0.251 93.1
β231 “ 0.4 0.007 0.139 0.138 95.3 ´0.079 0.107 0.104 87.4
β232 “ 0.2 0.006 0.240 0.236 94.6 ´0.053 0.187 0.179 92.8
σ2 “ 0.8 0.024 0.270 0.263 95.5

n “ 1600 β121 “ 0.5 0.002 0.127 0.126 94.8 -0.096 0.103 0.103 84.8
β122 “ ´0.5 ´0.000 0.217 0.216 95.0 0.100 0.176 0.177 91.2
β231 “ 0.4 0.000 0.098 0.096 94.9 ´0.080 0.076 0.073 79.7
β232 “ 0.2 ´0.002 0.168 0.164 94.7 ´0.057 0.132 0.126 91.3
σ2 “ 0.8 ´0.004 0.181 0.178 95.6
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Figure 1: Estimation of cumulative baseline transition intensity functions.
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ARIC Study

1987   1988   1989   1990   1991   1992   1993   1994   1995   1996   1997   1998   1999    2011   2012   2013    2014    2015    2016    2017    2018    2019    2020    

Exam 1  
n=15,792

Exam 2
n=14,348

Exam 3
n=12,887

Exam 4
n=11,656

Exam 5  
n=6,538

Exam 6
n=4,214

Exam 7
n=3,589

Diagnosis of MCI and dementia

Figure 2: Timeline of the ARIC study.

6,407 participants remained after data cleaning
Median follow-up time: 28.8 years since baseline examination
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Analysis Results

Table 2: Estimation results on the regression parameters in the ARIC study.

Normal to MCI MCI to dementia

Covariate Estimate St error p-value Estimate St error p-value

Age (years) 0.089 0.003 ă0.001 0.111 0.006 ă0.001
Male 0.319 0.052 ă0.001 0.164 0.102 0.108
Advanced education ´0.100 0.053 0.056 ´0.616 0.110 ă0.001
Diabetes 0.559 0.099 ă0.001 0.396 0.165 0.016
Smoker 0.155 0.066 0.019 0.201 0.136 0.138
Body mass index (kg/m2) 0.021 0.005 ă0.001 0.016 0.009 0.068
Systolic blood pressure (mmHg) 0.005 0.002 0.001 0.006 0.003 0.038
Black, Jackson ´0.001 0.079 0.992 1.469 0.161 ă0.001
White, Minneapolis ´0.205 0.072 0.004 0.485 0.162 0.003
White, Washington County ´0.083 0.072 0.252 0.522 0.159 0.001
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Key Findings

Older people have significantly higher risk of developing both MCI and
dementia.

Advanced education can significantly reduce the risk of progression from
MCI to dementia.

Baseline diabetes occurrence, BMI, and systolic blood pressure are all
positively associated with the risk of MCI.

The variance of the random effect is estimated at 0.928 with a standard
error estimator of 0.146, suggesting strong dependence among transitions.
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Extension

Our methods can be extended to allow a terminal event (e.g., death) that
can be exactly observed or right-censored.

Joint modelling can be used when time-dependent covariates are
measured only at a finite number of time points.

Joint analysis of multiple multi-state disease processes.
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Thank you!
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