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Multi-State Data

@ Multi-state data arise frequently in studies of
chronic diseases (e.g., dementia, cancer).

@ Health status can be characterized by a finite
number of disease states.

o Transition: change from one state to another

Normal

MCl

Dementia
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Significance

Analysis of multi-state data allows us to
@ understand how a subject transitions from one state to another over time
@ study the associations between risk factors and the disease process

@ predict disease progression over time
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Interval Censoring

@ For economic and logistical reasons, subjects can only be examined
periodically, such that transitions are only known to occur between two

Exam 4
Years

successive examinations.
sl Exam 1 Exam 2 Exam 3
Exam
E 1 2 ) 3

0

Observed Data

@ Such data are called interval-censored multi-state data.
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Analysis Challenges

@ None of the transition times are directly observed.
@ Trajectory of transitions from one examination to the next is unknown.

@ Dependence among transitions of the same subject.
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Existing Methods

Time-homogeneous Markov models
» Kalbfleisch & Lawless (1985); Satten (1999); Cook et al. (2002, 2004)
» simple; parametric; implemented in the msm package
» homogeneous assumption is unrealistic

Piecewise constant transition intensities
» Gentleman et al. (1994); Saint-Pierre et al. (2003); Jackson (2011);
Lawless & Nazeri Rad (2015)
> relatively simple; parametric
» restrictive; sensitive to the choice of change points

neweiedugy,

Spline-based intensities + penalized likelihood

» Joly & Commenges (1999); Machado & van den Hout (2018); Machado et

al. (2021)
> more flexible; semiparametric
» tuning parameters (e.g., knots); inconsistent estimators
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Overview of this work

@ We provide a new framework to study semiparametric regression models
for general interval-censored multi-state data.

@ Our models use random effects to capture the dependence among
transitions and accommodate time-dependent covariates.

e We adopt nonparametric maximum likelihood estimation (NPMLE)
for inference.

@ We devise a stable EM algorithm to compute the estimators.
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Semiparametric Regression Model

We specify the following proportional intensity model:

N8 Xi, by) = Ni(2) exp { B1Xi () + BT Zi(1)} (1)

Ajk(+): arbitrary baseline intensity function

Bj: unknown regression parameters

X;(): potentially time-dependent covariates

b; ~ Ny(0,X()): random effects

Z,;(-): consists of 1 and covariates that are part of X;(-)
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Observed Data

e Examination times: (Ui, U, ..., Un,)
@ Observed states: (Sio, Si1,- .-, Sim;)

o Covariates: X;(t)
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Likelihood

Under the noninformative censoring and conditional Markov assumptions, the
likelihood is proportional to

Hf HP -1, Ui X1, b)) S50 (by; ) db, )

@ P(u,v; X;, b;) denotes the transition probability matrix between times u
and v for the ith subject.

o ¢(b;~) denotes the density function of Ny(0,X(~)).
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Compute Transition Probability

@ The transition probability matrix is given by

P(u,v; Xi,b;) = TU ycecy {Ix + dA(t; Xi, b))}

e A(t; X;, b;) is the cumulative transition intensity matrix, with

A(t; X;, b;) 0k = Jtexp{IBJ-TkX,-(S) +b] Z;(s)}dNi(s).
0

o Nj(t) = §3 Ai(s)ds.
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NPMLE

o We treat Ajc as step functions with nonnegative jumps at all examination
times.

@ Then the transition probability matrix
Pi(u,v) = T ycrcy {Ix + dA;(t)}

U
Pi(u,v) = [] {Ik+0Ai(ty)}

u<tg<v

@ §A(tq) involves the jump sizes Ajq, which are high-dimensional and lack
analytical expressions.
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Poissonization

@ We introduce independent latent Poisson random variables W, with
means {5A;(t,)}U").

@ The key fact is that the transition probability I~3,-(u, v)(50:%) is equal to the
probability of the event

U {W,-jkq > 0 if there’s a transition j — k at time tg

traj(so,S1,...,5r)

and Wiyq =0 otherwise}.

@ Thus, maximizing the original likelihood is tantamount to maximizing the
likelihood arising from the events of W's.
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EM Algorithm

@ We can treat Wijq's and b;'s as missing data and apply the EM algorithm
for maximizing the likelihood function.

@ E-step involves the conditional expectations of Wjj,'s and functions of
b;'s given the observed data, which all have explicit expressions.

@ In the M-step, B s can be updated using the one-step Newton-Raphson
approach, and \jq's can be updated explicitly.

@ Therefore, the EM algorithm is immune to the high-dimensional
parameters in NPMLE.
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Asymptotic Properties

o (Consistency) Under some regularity conditions,

16 =00l + > IAu — Aol ™3 0.
(j,k)eD

e (Asymptotic normality) n1/2(§ — B0p) converges in distribution to a
multivariate normal vector with mean zero and a covariance matrix that
attains the semiparametric efficiency bound.

o (Variance estimation) The limiting covariance matrix of n1/2(§ — 6g) can
be consistently estimated by the inverse of

— u S ®2
n 1’_; {vp/,-(o)} .
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Simulation Setting

@ X; ~ Bernoulli(0.5) and X, ~ Unif(0,1)
e b~ N(0,0.8)

@ Six potential examination times separated
by 0.05 + Unif(0,1); no examinations
beyond 7 = 3.

State 1

0.3
1+03¢t

State 2
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Simulation Results

Table 1: Estimation of regression parameters
Proposed methods msm package

Parameter Bias SE  SEE CcpP Bias SE SEE CcP

n=400 121 =05 0.014 0.265 0.259 95.0 —0.091 0.209 0.207 92.4
Pi2o =—05 —0.021 0.458 0.448 94.7 0.087 0.363 0.356 94.0
Baz1 = 0.4 0.013 0.206 0.198 945 —0.078 0.156 0.147 90.4
Paz2 = 0.2 0.005 0.350 0.339 945 —0.053 0.268 0.254 92.8
02 =08 0.060 0.422 0.396 95.1

n=2800 f121 =05 0.010 0.181 0.181 954 —0.092 0.145 0.146 90.4
P12 =—-05 —0.008 0.315 0.311 95.1 0.095 0.253 0.251 93.1
[a31 = 0.4 0.007 0.139 0.138 953 —0.079 0.107 0.104 87.4
Baza = 0.2 0.006 0.240 0.236 946 —0.053 0.187 0.179 92.8
02 =08 0.024 0.270 0.263 95.5

n=1600 f121 =0.5 0.002 0.127 0.126 94.8 -0.096 0.103 0.103 84.8
P12 =—05 —0.000 0.217 0.216 95.0 0.100 0.176 0.177 91.2
P31 = 0.4 0.000 0.098 0.096 949 —-0.080 0.076 0.073 79.7
B232 = 0.2 —0.002 0.168 0.164 947 —0.057 0.132 0.126 91.3
02 =08 —0.004 0.181 0.178 95.6
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Cumulative transition intensity

Cumulative transiton intensity
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Figure

1: Estimation of cumulative baseline transition intensity functions.
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ARIC Study

Exam 6 Exam 7
n=3,589

Exam 1 EBxam 2 Exam 3 Bxam 4 Exam 5
0=15,792 n=14,348 n=12,887 n=11,656 n=6,538 n=4,214
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Q Diagnosis of MCI and dementia

Figure 2: Timeline of the ARIC study.

@ 6,407 participants remained after data cleaning
@ Median follow-up time: 28.8 years since baseline examination
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Analysis Results

Table 2: Estimation results on the regression parameters in the ARIC study.

Normal to MCI MCI to dementia
Covariate Estimate St error  p-value Estimate Sterror p-value
Age (years) 0.089 0.003 <0.001 0.111 0.006 <0.001
Male 0.319 0.052 <0.001 0.164 0.102 0.108
Advanced education —0.100 0.053 0.056 —0.616 0.110 <0.001
Diabetes 0.559 0.099 <0.001 0.396 0.165 0.016
Smoker 0.155 0.066 0.019 0.201 0.136 0.138
Body mass index (kg/m?) 0.021 0.005 <0.001 0.016 0.009 0.068
Systolic blood pressure (mmHg) 0.005 0.002 0.001 0.006 0.003 0.038
Black, Jackson —0.001 0.079 0.992 1.469 0.161 <0.001
White, Minneapolis —0.205 0.072 0.004 0.485 0.162 0.003
White, Washington County —0.083 0.072 0.252 0.522 0.159 0.001
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Key Findings

@ Older people have significantly higher risk of developing both MCl and
dementia.

@ Advanced education can significantly reduce the risk of progression from
MCI to dementia.

@ Baseline diabetes occurrence, BMI, and systolic blood pressure are all
positively associated with the risk of MCI.

@ The variance of the random effect is estimated at 0.928 with a standard
error estimator of 0.146, suggesting strong dependence among transitions.
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Extension

@ Our methods can be extended to allow a terminal event (e.g., death) that
can be exactly observed or right-censored.

@ Joint modelling can be used when time-dependent covariates are
measured only at a finite number of time points.

@ Joint analysis of multiple multi-state disease processes.
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Thank you!
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