Maximum Likelihood Estimation for Semiparametric Regression Models with Interval-Censored Multi-State Data

Yu Gu

Department of Biostatistics University of North Carolina at Chapel Hill

March 20, 2023

イロン 不同 とくほど 不良 とうほう

Acknowledgments

- Dr. Donglin Zeng
- Dr. Gerardo Heiss
- Dr. Danyu Lin
- Gu, Y., Zeng, D., Heiss, G., Lin, D. Y. Maximum Likelihood Estimation for Semiparametric Regression Models with Interval-Censored Multi-State Data. https://arxiv.org/abs/2209.07708.

Outline

1 Introduction

3 Simulation Studies

◆□ → ◆□ → ◆ = → ◆ = → ◆ ● ◆ ◆ ●

Outline

1 Introduction

2 Methods

3 Simulation Studies

Application

・ロ・・母・・ヨ・・ヨ・ ヨー うへぐ

- Multi-state data arise frequently in studies of chronic diseases (e.g., dementia, cancer).
- Health status can be characterized by a finite number of disease states.
- Transition: change from one state to another

イロト イヨト イヨト イヨト 三日

Significance

Analysis of multi-state data allows us to

- understand how a subject transitions from one state to another over time
- study the associations between risk factors and the disease process
- predict disease progression over time

Interval Censoring

• For economic and logistical reasons, subjects can only be examined periodically, such that transitions are only known to occur between two successive examinations.

• Such data are called interval-censored multi-state data.

Analysis Challenges

- None of the transition times are directly observed.
- Trajectory of transitions from one examination to the next is unknown.
- Dependence among transitions of the same subject.

Existing Methods

Nonparametric

Time-homogeneous Markov models

- ▶ Kalbfleisch & Lawless (1985); Satten (1999); Cook et al. (2002, 2004)
- simple; parametric; implemented in the msm package
- homogeneous assumption is unrealistic

Piecewise constant transition intensities

- Gentleman et al. (1994); Saint-Pierre et al. (2003); Jackson (2011); Lawless & Nazeri Rad (2015)
- relatively simple; parametric
- restrictive; sensitive to the choice of change points

Spline-based intensities + penalized likelihood

- Joly & Commenges (1999); Machado & van den Hout (2018); Machado et al. (2021)
- more flexible; semiparametric
- tuning parameters (e.g., knots); inconsistent estimators

Overview of this work

- We provide a new framework to study semiparametric regression models for general interval-censored multi-state data.
- Our models use random effects to capture the dependence among transitions and accommodate time-dependent covariates.
- We adopt *nonparametric maximum likelihood estimation* (NPMLE) for inference.
- We devise a stable EM algorithm to compute the estimators.

Outline

Introduction

3 Simulation Studies

Application

Semiparametric Regression Model

We specify the following proportional intensity model:

$$\lambda_{ijk}(t; \boldsymbol{X}_i, \boldsymbol{b}_i) = \lambda_{jk}(t) \exp\left\{\boldsymbol{\beta}_{jk}^{\mathsf{T}} \boldsymbol{X}_i(t) + \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{Z}_i(t)\right\}$$
(1)

- $\lambda_{jk}(\cdot)$: arbitrary baseline intensity function
- β_{ik} : unknown regression parameters
- $X_i(\cdot)$: potentially time-dependent covariates
- $\boldsymbol{b}_i \sim N_d(\boldsymbol{0}, \boldsymbol{\Sigma}(\boldsymbol{\gamma}))$: random effects
- $\boldsymbol{Z}_i(\cdot)$: consists of 1 and covariates that are part of $\boldsymbol{X}_i(\cdot)$

Observed Data

- Examination times: $(U_{i0}, U_{i1}, \ldots, U_{iM_i})$
- Observed states: $(S_{i0}, S_{i1}, \ldots, S_{iM_i})$
- Covariates: $\boldsymbol{X}_i(t)$

Likelihood

Under the noninformative censoring and conditional Markov assumptions, the likelihood is proportional to

$$\prod_{i=1}^{n} \int_{\boldsymbol{b}_{i}} \prod_{l=1}^{M_{i}} \boldsymbol{P}(U_{i,l-1}, U_{il}; \boldsymbol{X}_{i}, \boldsymbol{b}_{i})^{(S_{i,l-1}, S_{il})} \phi(\boldsymbol{b}_{i}; \boldsymbol{\gamma}) d\boldsymbol{b}_{i}$$
(2)

- **P**(*u*, *v*; **X**_{*i*}, **b**_{*i*}) denotes the transition probability matrix between times *u* and *v* for the *i*th subject.
- $\phi(\mathbf{b}; \boldsymbol{\gamma})$ denotes the density function of $N_d(\mathbf{0}, \boldsymbol{\Sigma}(\boldsymbol{\gamma}))$.

Compute Transition Probability

• The transition probability matrix is given by

$$\boldsymbol{P}(u, v; \boldsymbol{X}_i, \boldsymbol{b}_i) = \boldsymbol{\pi}_{u < t \leq v} \{ \boldsymbol{I}_K + d\boldsymbol{A}(t; \boldsymbol{X}_i, \boldsymbol{b}_i) \}$$

• $A(t; X_i, b_i)$ is the cumulative transition intensity matrix, with

$$\boldsymbol{A}(t;\boldsymbol{X}_{i},\boldsymbol{b}_{i})^{(j,k)} = \int_{0}^{t} \exp\{\boldsymbol{\beta}_{jk}^{\mathsf{T}}\boldsymbol{X}_{i}(s) + \boldsymbol{b}_{i}^{\mathsf{T}}\boldsymbol{Z}_{i}(s)\}d\Lambda_{jk}(s).$$

•
$$\Lambda_{jk}(t) = \int_0^t \lambda_{jk}(s) ds.$$

NPMLE

- We treat Λ_{jk} as step functions with nonnegative jumps at all examination times.
- Then the transition probability matrix

• $\delta A_i(t_q)$ involves the jump sizes λ_{jkq} , which are high-dimensional and lack analytical expressions.

Poissonization

- We introduce independent latent Poisson random variables W_{ijkq} with means {δ**A**_i(t_q)}^(j,k).
- The key fact is that the transition probability $\widetilde{P}_i(u,v)^{(s_0,s_r)}$ is equal to the probability of the event

$$\bigcup_{\text{traj}(s_0,s_1,\ldots,s_r)} \Big\{ W_{ijkq} > 0 \text{ if there's a transition } j \to k \text{ at time } t_q \\ \text{ and } W_{ijkq} = 0 \text{ otherwise} \Big\}.$$

• Thus, maximizing the original likelihood is tantamount to maximizing the likelihood arising from the events of *W*'s.

EM Algorithm

- We can treat W_{ijkq} 's and b_i 's as missing data and apply the EM algorithm for maximizing the likelihood function.
- E-step involves the conditional expectations of W_{ijkq} 's and functions of **b**_i's given the observed data, which all have explicit expressions.
- In the M-step, β_{jk} 's can be updated using the one-step Newton-Raphson approach, and λ_{jkq} 's can be updated explicitly.
- Therefore, the EM algorithm is immune to the high-dimensional parameters in NPMLE.

Asymptotic Properties

• (Consistency) Under some regularity conditions,

$$\|\widehat{\boldsymbol{ heta}}-\boldsymbol{ heta}_0\|+\sum_{(j,k)\in\mathcal{D}}\|\widehat{\boldsymbol{\lambda}}_{jk}-\boldsymbol{\Lambda}_{0jk}\|_{\infty}\overset{a.s.}{
ightarrow} 0.$$

- (Asymptotic normality) $n^{1/2}(\hat{\theta} \theta_0)$ converges in distribution to a multivariate normal vector with mean zero and a covariance matrix that attains the semiparametric efficiency bound.
- (Variance estimation) The limiting covariance matrix of $n^{1/2}(\hat{\theta} \theta_0)$ can be consistently estimated by the inverse of

$$n^{-1}\sum_{i=1}^{n}\left\{ \nabla pl_{i}(\widehat{\theta})\right\} ^{\otimes 2}$$

(日)

Outline

Introduction

2 Methods

Simulation Studies

Application

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ● ● ●

Simulation Setting

- $X_1 \sim \text{Bernoulli}(0.5)$ and $X_2 \sim \text{Unif}(0,1)$
- $b \sim N(0, 0.8)$
- Six potential examination times separated by 0.05 + Unif(0,1); no examinations beyond τ = 3.

Simulation Results

			Proposed methods				msm package			
	Parameter	Bias	SE	SEE	CP	Bias	SE	SEE	CP	
<i>n</i> = 400	$\beta_{121} = 0.5$	0.014	0.265	0.259	95.0	-0.091	0.209	0.207	92.4	
	$\beta_{122} = -0.5$	-0.021	0.458	0.448	94.7	0.087	0.363	0.356	94.0	
	$\beta_{231} = 0.4$	0.013	0.206	0.198	94.5	-0.078	0.156	0.147	90.4	
	$\beta_{232} = 0.2$	0.005	0.350	0.339	94.5	-0.053	0.268	0.254	92.8	
	$\sigma^{2} = 0.8$	0.060	0.422	0.396	95.1					
<i>n</i> = 800	$\beta_{121} = 0.5$	0.010	0.181	0.181	95.4	-0.092	0.145	0.146	90.4	
	$\beta_{122} = -0.5$	-0.008	0.315	0.311	95.1	0.095	0.253	0.251	93.1	
	$\beta_{231} = 0.4$	0.007	0.139	0.138	95.3	-0.079	0.107	0.104	87.4	
	$\beta_{232} = 0.2$	0.006	0.240	0.236	94.6	-0.053	0.187	0.179	92.8	
	$\sigma^2 = 0.8$	0.024	0.270	0.263	95.5					
n = 1600	$\beta_{121} = 0.5$	0.002	0.127	0.126	94.8	-0.096	0.103	0.103	84.8	
	$\beta_{122} = -0.5$	-0.000	0.217	0.216	95.0	0.100	0.176	0.177	91.2	
	$\beta_{231} = 0.4$	0.000	0.098	0.096	94.9	-0.080	0.076	0.073	79.7	
	$\beta_{232} = 0.2$	-0.002	0.168	0.164	94.7	-0.057	0.132	0.126	91.3	
	$\sigma^{2} = 0.8$	-0.004	0.181	0.178	95.6					

Table 1: Estimation of regression parameters

Figure 1: Estimation of cumulative baseline transition intensity functions.

Outline

Introduction

2 Methods

3 Simulation Studies

Application

・ロト・西ト・モン・ビー シック

ARIC Study

Figure 2: Timeline of the ARIC study.

- 6,407 participants remained after data cleaning
- Median follow-up time: 28.8 years since baseline examination

Analysis Results

	No	ormal to M	CI	MCI to dementia							
Covariate	Estimate	St error	<i>p</i> -value	Estimate	St error	<i>p</i> -value					
Age (years)	0.089	0.003	< 0.001	0.111	0.006	< 0.001					
Male	0.319	0.052	< 0.001	0.164	0.102	0.108					
Advanced education	-0.100	0.053	0.056	-0.616	0.110	< 0.001					
Diabetes	0.559	0.099	< 0.001	0.396	0.165	0.016					
Smoker	0.155	0.066	0.019	0.201	0.136	0.138					
Body mass index (kg/m ²)	0.021	0.005	< 0.001	0.016	0.009	0.068					
Systolic blood pressure (mmHg)	0.005	0.002	0.001	0.006	0.003	0.038					
Black, Jackson	-0.001	0.079	0.992	1.469	0.161	< 0.001					
White, Minneapolis	-0.205	0.072	0.004	0.485	0.162	0.003					
White, Washington County	-0.083	0.072	0.252	0.522	0.159	0.001					

Table 2: Estimation results on the regression parameters in the ARIC study.

Key Findings

- Older people have significantly higher risk of developing both MCI and dementia.
- Advanced education can significantly reduce the risk of progression from MCI to dementia.
- Baseline diabetes occurrence, BMI, and systolic blood pressure are all positively associated with the risk of MCI.
- The variance of the random effect is estimated at 0.928 with a standard error estimator of 0.146, suggesting strong dependence among transitions.

Extension

- Our methods can be extended to allow a terminal event (e.g., death) that can be exactly observed or right-censored.
- Joint modelling can be used when time-dependent covariates are measured only at a finite number of time points.
- Joint analysis of multiple multi-state disease processes.

Thank you!

